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Abstract—Antibiotic resistance presents a significant 

challenge to public health, as bacteria can develop resistance to 
antibiotics through random mutations during their life cycles, 
making the drugs ineffective. Understanding how these 
mutations contribute to drug resistance at the molecular level is 
crucial for designing new treatment approaches. Recent 
advancements in molecular biology tools have made it possible 
to conduct comprehensive analyses of protein mutations. 
Computational methods for assessing molecular fitness, such as 
binding energies, are not as precise as experimental techniques 
like deep mutational scanning. Although full atomistic 
alchemical free energy calculations offer the necessary 
precision, they are seldom used to assess high throughput data 
as they require significantly more computational resources. We 
generated a computational library using deep mutational 
scanning for dihydrofolate reductase (DHFR), a protein 
commonly studied in antibiotic resistance research. Due to 
resource limitations, we analyzed 33 out of 159 positions, 
identifying 16 single amino acid replacements. Calculations 
were conducted for DHFR in its drug-free state and in the 
presence of two different inhibitors. We demonstrate the 
feasibility of such calculations, made possible due to the 
enhancements in computational resources and their optimized 
use.  

Keywords— dihydrofolate reductase, trimethoprim, 4’-deoxy 
trimethoprim, relative binding, bacterial fitness, free energy 
perturbation 

I. INTRODUCTION 
Bacteria constantly evolve to adapt to their surroundings 

through genetic mutations. These mutations, occurring at the 
gene level, can affect proteins that are essential for the 
organism's survival. With natural selection, these mutations, 
even if they arise in extreme environments, can become 
permanent. This process lies at the core of the antibiotic 
resistance crisis which is among the most significant public 
health challenges today. 

In our project that we conducted on the Karolina cluster, 
we concentrated on the enzyme DHFR, responsible for 
converting dihydrofolate (DHF) to tetrahydrofolate (THF) 
(Figure 1). THF is critical for DNA, RNA, and amino acid 
synthesis, making DHFR ubiquitous in all organisms. The 
resistance of E. coli DHFR to the drug trimethoprim (TMP), 
which competes with DHF for binding at the same site, has 
been extensively studied through systematic experiments, 
revealing a series of enduring mutations [1]. Some mutations 
may be temporary, appearing at certain stages but not in the 
final colonies while others are fixed early on [2]. On the 
experimental side, the advancements in molecular biology 
tools over the past decade have enabled deep mutational 
scanning (DMS) of proteins [3]. DMS libraries of E. coli 
DHFR now exist, with fitness quantified under different 
conditions and mapped to specific protein locations [4]. 
However, quantifying fitness poses challenges, as 
contributions can arise from folding pathways in addition to 
those directly related to protein function. 

Fig. 1. Five-step kinetic cycle of DHFR. 

In our previous research, we have conducted molecular 
dynamics (MD) simulations of appropriate duration for 
specific mutants in both their DHF and TMP-bound states. 
Initially, we focused on understanding the molecular-scale 
mechanism of the frequently occurring L28R mutant [5]. This 
allowed us to elucidate the essential characteristics of the 
actions taken by various mutants, all of which were confirmed 
through experimental validation [2]. Utilizing the insights 
gained from the mechanism of the L28R mutant, we devised 
a derivative of TMP (4’-deoxy trimethoprim) that diverts 
evolutionary trajectories towards less harmful outcomes [6]. 
More recently, we have employed hydrogen bond dynamics 
and side-chain relaxations on nanosecond time scales to 
automatically uncover the atomistic-level mechanisms 
involved in the emergence of resistance [7]. 

FEP simulations were performed on the Karolina cluster via the EuroHPC 
project no. DD-22-92 - EU2022R02-220. This work was supported by 
National Institutes of Health grant R01GM125748. 
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 In most cases, molecules with competitive binding are 
distinguished by changes in free energy, which in turn affect 
binding probabilities. However, since the mutants we 
investigated remain functional, the free energy differences due 
to these single mutants are usually small. Additionally, solvent 
effects contribute significantly to entropy/enthalpy 
compensation [8]. Consequently, coarse-grained free energy 
methods employing implicit solvation models are inadequate 
for computationally describing the observed effects. 

 In this study, we assess the fitness at the molecular level 
for all single mutants of DHFR at 33 positions. For this 
purpose, we utilized the free energy perturbation (FEP) 
approach, which currently yields values within 1 kcal/mol of 
experimentally measured binding free energies [9]. We 
constructed a library of mutants for three systems; DHFR in 
its drug-free from (apo), TMP-bound, and 4’DTMP-bound 
forms. By using suitable thermodynamic cycles, we predicted 
the change in the free energy cost of the mutations. To achieve 
this task, we constructed a pipeline for generating the systems 
of interest and analyzing the large amount of output. 

 The information collected in this study has the potential to 
contribute to the scientific literature in fundamental ways: (1) 
Experimental findings regarding DHFR’s drug resistance may 
be evaluated through the structural changes of the enzyme; (2) 
contribution of protein thermodynamics to drug resistance 
may be systematically studied; (3) findings may guide future 
work in developing new and potent TMP derivatives.  

 

II. METHODS 
 

A. Thermodynamic cycles 
 

 For understanding the relative binding between the drug 
TMP and the inhibitor 4’DTMP, two thermodynamic schemes 
are constructed (Figure 2).  

 
Fig. 2. Horizontal lines represent binding events (gray), while vertical lines 
depict mutations on the enzyme (red). 

To calculate the relative binding energy of 4’DTMP over 
TMP, we first need to understand the relation between 
mutational energies and the binding energies. M denotes the 
presence of a mutation in the protein, and I depicts the 
inhibitor (drug). Thus, the thermodynamic scheme of either 
TMP or 4’DTMP can be written as: 
 
∆𝐺!"#𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 +	∆𝐺$%𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 	∆𝐺$&'𝑏𝑖𝑛𝑑𝑖𝑛𝑔 +	∆𝐺$𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
      
      (1) 
 

When we collect the mutational energies on one side the 
equality becomes: 

 
∆𝐺$%𝑏𝑖𝑛𝑑𝑖𝑛𝑔 − ∆𝐺$&'𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = ∆𝐺$𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 − ∆𝐺!"#𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
       
      (2) 
 

For calculating the relative binding free energies, we 
write equation (2) both for 4’DTMP and TMP. Then, by 
subtracting and rearranging the terms, we obtain: 
 
∆𝐺(!)'%*𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 − ∆𝐺'%*𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = 1∆𝐺(!)'%*

% 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 −
∆𝐺(!)'%*

&' 𝑏𝑖𝑛𝑑𝑖𝑛𝑔) − (∆𝐺'%*% 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 − ∆𝐺'%*&' 𝑏𝑖𝑛𝑑𝑖𝑛𝑔4  
      (3) 

 
The last term is an additive constant which is the same for 

all systems and is ignored in the interpretation of the results. 
This set-up provides a means to compare the effectiveness of 
the two drugs in the presence of a mutation. 
 

B. System set-up 
To calculate the free energy differences across the apo, 

TMP-bound, and 4'DTMP-bound systems, we first conducted 
1 μs-long molecular dynamics (MD) simulations for each 
condition, from which the structures were obtained. MD 
simulations were performed by using NAMD [10] program. 
CHARMM36 force-field [11] was used for topologies and 
parameters. The dimensions of the water box were set to 62 × 
68 × 60 Å, including a minimum of 10 Å TIP3P water layer 
in all directions. K+ and Cl- ions were added to neutralize 
charges and maintain a 150 mM physiological ionic strength. 
NADPH was included in all simulations. The systems were 
minimized for 10 000 steps. The Particle Mesh Ewald method 
was employed for calculating long-range electrostatic 
interactions with a cutoff of 12 Å and a switching distance of 
10 Å. The RATTLE algorithm was applied, and the Verlet 
algorithm was used with a time step of 2 fs. Temperature 
control at 310 K was achieved through Langevin dynamics, 
featuring a damping coefficient of 5 ps. Pressure was 
maintained at 1 atm, regulated by the Langevin piston. The 
production equilibrium simulations were performed for 1μs, 
and trajectories were stored every 10 ps. 

C. Selection of initial conformers for FEP calculations 
We utilized different metrics to obtain structures from MD 

trajectories, such as solvent accessible area (SASA), hydrogen 
bonds between protein-ligand and evolution of 
conformational cluster populations during simulations (Figure 
3). The number of hydrogen bonds formed between a ligand 
and a protein can provide valuable insights into the stability 
and dynamics of the drug-protein interaction. Therefore, 
structures with a higher number of hydrogen bonds were 
considered more stable and suitable for further analysis. 
SASA also helps discriminate the compactness and the 
stability of the structure. By analyzing the changes in SASA 
over time, valuable insights can be gained into the protein's 
structural dynamics, including conformational changes. 
Therefore, by using this metric, it is possible to distinguish 
structures across different conformational states. The 
evolution of conformational cluster populations over time 
during the simulation was observed by using CPPTRAJ [12]. 
These clusters, representing molecular structures with similar 
shapes or conformations, offer insights into the dynamic 
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behavior of proteins, revealing their structural changes 
throughout the simulation duration. Based on these analyses, 
three conformations (utilized as replicas) were selected from 
each condition for FEP simulations. Due to the restricted 
amount of computation time available to us on the Karolina 
cluster, we were able to complete 33 positions of the total of 
159 positions with 16 replacements; PRO, GLY and another 
selected for each position were excluded. During the 
selections, the most chemically similar variant of the WT 
strain at that position was discarded. 
 

 
Fig. 3. Different parameters used to select conformations for FEP 

simulations. (A) Number of hydrogen bonds between inhibitor and DHFR 
along the trajectory; (B) SASA of apo, TMP-bound, 4'DTMP-bound systems 

during simulations; (C) development of conformational clusters with time 
calculated via CPPTRAJ; (D) chemical structures of the two drugs. 

D. Alchemical free energy perturbation calculations 
Alchemical FEP calculations involve the application of 

Zwanzig's method [13]. All calculations employ the 
CHARMM36 force field [11] and are made using NAMD3 
[14] program. With the development of NAMD3, it has 
become possible to run FEP simulations using a GPU and a 
lower number of CPU cores (8 – 16), which allows us to plan 
for running a large number of FEP simulations [15]. The 
protein is again soaked in a solvent box such that there is at 
least a 10 Å layer of solvent in every direction from any atom 
of the protein to the edge of the box. K+ and Cl- ions are added 
to neutralize charges and maintain a 150 mM physiological 
ionic strength. The protocol explained in detail in the literature 
was used [16]. Briefly, particle mesh Ewald sum was 
employed to control the electrostatics. Langevin piston was 
used for pressure control at 1 atm, and the temperature was 
maintained at 310 K as in the main MD simulation run. 
Switching was implemented with a cutoff of 13 Å and a 
switching distance of 10 Å. The timestep was set to 2 fs. The 
SHAKE algorithm was used for all bonds. Systems were 
minimized for 500 steps. The systems were run for l = 32 
windows in both forward and backward directions. To address 
singularities encountered during Lennard-Jones potential 
calculations, a soft-core potential was incorporated to truncate 
the function for l = 16 – 32. Sampling was performed from 
the classical MD simulations as described in the previous 
subsection to enhance coverage of potentially available 
conformational states. MD simulations were carried out in 
each window for 0.2 ns, with the initial 0.1 ns of each window 
discarded for equilibration. Results were analyzed using 
Bennett-acceptance ratio (BAR) method [17]. Three replicate 
FEP simulations for each mutational change are concatenated 
to reduce the error. 

E. Charge corrections 
 In FEP simulations, during the perturbation process, the wild-
type amino acid gradually disappears from its sequence 

position while the mutated amino acid simultaneously 
emerges in its place. The charge characteristics of both the 
wild-type (WT) and mutated amino acids are crucial during 
this transformation. As the system's charge shifts due to the 
mutation – such as transitioning from negative to positive or 
neutral to positive – K⁺ and Cl⁻ ions are removed to maintain 
the system's overall neutral charge. For example, when 
changing from a positively charged amino acid to a negatively 
charged one, two K⁺ ions are removed. Conversely, when 
shifting from a negatively charged position to a positively 
charged mutation, two Cl⁻ ions are removed to neutralize the 
system. In cases where transitions occur between neutral and 
charged states, only one ion is removed. The ions selected for 
removal are chosen randomly, ensuring they are located more 
than 20 Å from the protein. 

F. Positions selected 
Due to constraints in computational resources allocated to 

our project on the Karolina cluster, we adopted a selective 
approach in determining the positions to be investigated. 
These selections were informed by prior studies on DHFR. 
Initially, attention was directed towards positions identified 
through morbidostat experiments under trimethoprim 
selection, aiming to elucidate their potential impact on 
4’DTMP binding (positions 5, 20, 26, 28, 30, 94, 98, and 153) 
[2]. Subsequently, emphasis was placed on residues situated 
within cryptic sites identified in our earlier work (positions 59, 
69, 70, and 71) [7]. Furthermore, positions delineated as 
hotspots in the literature [18] were included in the analysis 
(positions 16, 33, 36, 48, 50, 73, 80, 83, 114, 121, 124, 127, 
and 131-132). Lastly, hinge regions (positions 87-88, 106-
107) of DHFR were incorporated into the study [19], along 
with mutations (positions 16, 19 [20], and 42 [21-24]) known 
to impact catalysis. Additionally, each position was mutated 
to 16 of the 19 possible positions, meaning that three 
replacements were omitted in each case. This omission was 
due to our optimization of cluster usage to multiples of 8, 
which allowed us to make the best use of the computing time 
available to us. These included mutations involving proline 
residues which are not reliably treated with FEP simulations 
at this time due to the unique situation of the ring that is 
bonded to the backbone being created or annihilated. In all 
cases, the glycine residue was also omitted due to its small 
size, which can lead to large error bars in the amino acid 
replacement process of FEP calculations[25]. The third 
position to be omitted was chosen based on the chemical 
properties of the amino acid being replaced. Hence, a total of 
33 amino acid positions were selected for single mutational 
scanning using FEP simulations. 

G. Computer time availability 
In this project, we were allocated 3,000 node hours on the 

Karolina-GPU high-performance computing (HPC) facility. 
The GPU-accelerated nodes of the Karolina HPC consist of 2 
× AMD EPYC™ 7763, 64-core, 2.45 GHz processors (a total 
of 128 CPU cores) and 8 × NVIDIA A100 GPUs, providing 
an optimal environment for conducting large-scale FEP 
simulations. We utilized the NAMD3 software to conduct 
FEP simulations, encompassing three stages: minimization, 
forward, and backward. These subprocesses were executed 
sequentially, with groups of eight FEP simulations running in 
parallel. Each FEP simulation required the use of 16 CPU 
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cores and one GPU from the Karolina-GPU HPC facility. This 
approach enabled the completion of 48 FEP simulations per 
day, thereby facilitating the investigation of mutational 
perturbations at three amino acid positions in one day. 

II. RESULTS AND DISCUSSION 

A. Pipeline developed for multiple free energy perturbation 
simulation for single-mutational scanning of a protein 

 We used NAMD3 software to conduct 1,584 simulations 
(33 positions × 16 mutations × 3 replicates) for each of the 
apo, TMP-bound, and 4'-DTMP-bound forms, totaling 4,752 
FEP simulations. Each FEP simulation consisted of three 
subprocesses: minimization, forward, and backward. We 
executed these three subprocesses sequentially, while 
concurrently running groups of eight FEP simulations in 
parallel. Tcl scripts were utilized to prepare each simulation 
on local computers. To execute this complex process on HPC, 
the submission file for workload manager was generated via a 
homemade Python script. To perform a single mutational 
scanning with FEP of a position for apo and ligand-bound 
forms, we uploaded ~1,500 files (1 GB) to the HPC. After the 
simulation execution, ~7,700 files (36 GB) were downloaded. 
File transfers and consistency checks were performed by 
assessing log files via terminal commands. We revised our job 
submission script due to a change in the workload manager, 
causing a delay in the completion of our simulations. Possible 
errors during the simulation were investigated through daily 
spot checks of simulation files. 

 Each FEP simulation utilized 16 CPU cores and 1 GPU 
from the Karolina-GPU HPC, enabling the investigation of 
mutational perturbations at one amino acid position per day. 
For each FEP simulation, we produced an equivalent of 125 ± 
22 ns-long simulations per day (ns/day) in the Karolina-GPU 
queue. The efficiency of the simulations varies based on the 
initial structures and mutations. Each simulation for a 
positional change is approximately 20 ns long, and it takes 
0.16 days to complete one FEP simulation. By running eight 
FEP simulations in parallel across multiple nodes, and 
accounting for the time lost between each batch of 
simulations, we were able to perform 144 (1 position × 16 
mutations × 3 replicates × 3 forms of DHFR) simulations per 
day. 

 The pipeline is designed for general usage to perform 
mutational scanning of protein structures using FEP 
simulations. The scripts are easy to modify, and the generation 
of submission files is well documented on our GitHub page. 
By using the provided codes, it is possible to perform a large 
number of FEP simulations on a variety of HPC systems with 
different configurations. 

We note that while this protocol uses 6.4 ns for each 
alchemical transformation (ca. 20 ns per position in three 
replicates), one can modify the length of the simulations in 
proteins where the mutational effects are known to induce 
significant conformational changes in the protein, due to, e.g., 
a loop changing orientation preference or allosteric effects. 
This preference will depend on the availability of the  
computational resources. 

B. Information on benchmarks and energies for FEP 
simulations conducted based on amino acid charges 
We grouped our FEP simulations based on the charge 

differences between wild-type and mutated amino acids. For 

mutations involving a two-charge difference (e.g., negative to 
positive, +2, or positive to negative, -2), two ions are removed. 
For mutations involving a one-charge difference (e.g., neutral 
to positive, +1, neutral to negative, -1, and their opposites), 
only one ion is removed. No ions are changed for 
transformations involving residues with the same charge type. 

 To investigate the effect of an increased number of 
changes in the system on computing time, we analyzed the 
benchmark results of NAMD3 software and found that, on 
average, our FEP simulations run at approximately 120 ns per 
day (Figure 4). The number of atoms and interactions (van der 
Waals and Coulomb) affect the benchmark results; thus, the 
changing nature of the amino acids and the removal of 
different numbers of ions influence computation time. 
Mutations applied to neutral and positive residues exhibit 
similar behavior in terms of computational time. However, 
negative wild-type amino acids show greater deviation in 
benchmark values. Although both the charge and position of 
the residue influence computational time, a negative wild-type 
amino acid may have fewer interactions compared to other 
mutations, leading to the lower tail in the distribution of 
computational time usage. 

 
Fig. 4. The probability of the benchmark (ns/day) was calculated for each 
forward process of the FEP simulations. The benchmark values calculated 
for each simulation by the NAMD3 software were utilized across all 4,752 

simulations. The simulations were clustered based on the charge of the 
wild-type and mutated amino acids. 

 
 We further investigated the mutation energies for the apo 
and TMP/4’DTMP-bound forms. Our results indicate that 
mutations of the same type cause only minuscule changes on 
average, with a slight increase observed in neutral to negative 
mutations (Figure 5). The highest energies are associated with 
mutations from negative/positive to neutral and from negative 
to positive. Interestingly, positive to negative mutations 
exhibit only half the energy changes compared to negative to 
positive mutations, suggesting that the position of the residues 
also significantly impacts the energy changes (Figure 5). 
Additionally, favorable mutations with negative energy values 
occur only when mutating neutral amino acids (Figure 5).  

 The accuracy of a free energy calculation can be assessed 
by the reported variance in the reported free energy change 
value, with the expected variance for computing mutation or 
relative binding energies being approximately 1 kcal/mol [9]. 
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To evaluate the accuracy of the BAR-analyzed mutational 
energies for both apo and TMP/4'DTMP-bound forms, we 
visualized the distribution of variances (see Figure 6). We 
found that the average variance for all mutations is 
significantly lower than 1 kcal/mol. The highest variances are 
observed for charge-changing mutations (positive to negative 
and negative to positive), as these involve altering both the 
amino acid and two ions, leading to a higher accumulation of 
error in the FEP simulations (see Figure 6). Note that these 
variances are calculated separately for the mutational changes 
of the apo and TMP/4'DTMP-bound forms. When calculating 
relative binding energies and summing these values, the 
variance increases, though it remains around 1 kcal/mol.  

 
Fig. 5. The probability distribution of the mutation energy (kcal/mol) was 
calculated for each mutational change. The energy values calculated for 
each mutational change, calculated using the BAR method, were utilized 

for 1,584 mutation energies. The energy values were clustered based on the 
charge of the wild-type and mutated amino acids. 

 

 
Fig. 6. The probability distribution of the variance in the mutational energy 
cost (kcal/mol) was calculated for each change. The variances calculated 

for each mutational change by BAR method were utilized for 1,584 
mutation energies. The variance values were clustered based on the charge 

of the wild-type and mutated amino acids. 

 

C. Relative binding energies explains the mutational 
landscape of binding 
To further understand the effective drug, we calculated the 

relative binding energies. The DDG values calculated 
according to equation 3 are displayed in Figure 7. Negative 
energy values indicate favorable binding to 4’DTMP, while 
positive energy values correspond to favorable binding of 
TMP. When comparing the relative binding free energies of 
all positions for sixteen mutants, we have found that 4’DTMP 
is more effective at twenty-six out of the thirty-three positions 
typically surrounding the active site and dissipating 
throughout the enzyme. The positions that display mixed 
behavior (6 out of 33) may belong to a pathway through the 
signaling of I5 to cofactor site R98 connected with the 
constituents of FG loop. Finally, the only position where TMP 
is more effective is D69, an important player on the formation 
of the cryptic site we discovered in our previous work [7].  

 
Fig. 7.  Color coded representation of calculated free energy differences for 

4’DTMP and TMP (Equation 4). Blue indicates the mutants that have 
higher affinity toward 4’DTMP, and red towards TMP. Grey indicates the 
position of the amino acids in the WT protein, while black mutations are 

those that are omitted in this study. 
 

Our general observations are as follows: (i) Mutations in 
the binding site that provide access to the trimethoxy tail 
exhibit a greater affinity towards 4’DTMP; otherwise, TMP is 
stabilized. The catalytic loop residue M20 is special in that its 
mutation always favors 4’DTMP. (ii) Mutations at our 
previously identified cryptic site are sensitive, especially at 
positions 69 and 70 which mostly increase preference to TMP 
binding. (iii) Allosteric communication with distal sites 
permeates throughout DHFR, manifesting alternative 
communication pathways in the catalyst. Some positions that 
are strongly involved in this type of mechanism are D87, 
K106, D122, D131, D132 which were also delineated as 
hotspots in the literature [18] and F153 which was found to 
arise frequently in morbidostat experiments [2]. Finally, we 
note that FEP used for relative binding energy differences 
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assumes that the changes do not affect the binding mode of 
the ligand. For the drugs used in this work, TMP and 
4’DTMP, which have high (nanomolar) binding affinity, this 
is not a problem but should be further explored on a case-by-
case basis, especially if the experimental predictions and the 
computed differences diverge. 

We also computed the variances of relative binding 
energies for all single mutational changes across 33 positions, 
and our results indicate that the error values are, on average, 
lower than 1 kcal/mol (Figure 8). Overall, our FEP 
simulations investigating the relative binding energy changes 
upon single mutations demonstrate the desired precision [9]. 

 

 
Fig. 8.  The probability distribution of the variance of relative binding 

energy calculated for all single mutations across 33 positions. 
 

 
Fig. 9. The residues with the highest relative binding energies (25 out of 33 

positions) are visualized on the apo DHFR structure. Residues with a 
relative binding energy greater than an absolute value of 4 kcal/mol are 
colored magenta, while other amino acids are shown in gray. NADPH is 

shown in orange. 
 
We further investigated the minimum and maximum 

relative binding energies at each position to identify the most 
effective mutant with favorable binding. On average, the 
minima and maxima ranged from -4 to 4 kcal/mol across 33 
positions. We visualized the positions with the highest 
energies by selecting those with absolute values greater than 
4 kcal/mol (Figure 9). We found that 25 out of 33 positions 
exhibited high relative binding energies. Notably, position 
M20 favors only 4’DTMP, while other positions display both 

negative and positive relative binding energies, indicating 
that specific mutations can have significantly different effects 
depending on the position.  

This work lays the foundations for assessing the effects of 
point mutations on protein-drug affinities using alchemistry 
on HPC resources. With the increase in the available 
experimental data in this realm, it is imperative that 
automated schemes such as the one proposed here to set up 
MD simulation systems and codes for analyzing the large 
amount of collected output be available to researchers in a 
wide range of fields. 

 

DATA AND CODE ACCESSIBILITY  
The scripts are shared on our group’s GitHub page: 
https://github.com/midstlab/FEP_mutational_scanning 
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