
      

      
                                                                                                 http://dx.doi.org/10.14336/AD.2021.1207       

 

*Correspondence should be addressed to: Dr. Cheng Yuan, Department of Gynecological Oncology, Zhongnan Hospital, Wuhan 

University, Wuhan, China. Wuhan, Hubei 430071, China. E-mail: 2018203030071@whu.edu.cn.  
 

Copyright: © 2021 Bai R & Yuan C. This is an open-access article distributed under the terms of the Creative Commons Attribution 

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
 

ISSN: 2152-5250                                                                                                                                                                                     1267 
                  

 

  

Review 

 

Kita-Kyushu Lung Cancer Antigen-1 (KK-LC-1): A 

Promising Cancer Testis Antigen 
 

Rui Bai1, Cheng Yuan2* 

 

1Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 

China. 2Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China. 
 

  [Received October 28, 2021; Revised December 6, 2021; Accepted December 7, 2021] 

 
ABSTRACT: Cancer has always been a huge problem in the field of human health, and its early diagnosis and 

treatment are the key to solving this problem. Cancer testis antigens (CTAs) are a family of multifunctional 

proteins that are specifically expressed in male spermatozoa and tumor cells but not in healthy somatic cells. 

Studies have found that CTAs are involved in the occurrence and development of tumors, and some CTAs trigger 

immunogenicity, which suggests a possibility of tumor immunotherapy. The differential expression and function 

of CTAs in normal tissues and tumor cells can promote the screening of tumor markers and the development of 

new immunotherapies. This article introduces the expression of Kita-Kyushu lung cancer antigen-1 (KK-LC-1), 

a new member of the CTA family, in different types of tumors and its role in immunotherapy. 
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1. Introduction 

 

Cancer testis antigens (CTAs) are a class of proteins 

encoded by 276 genes that are only expressed in the testes, 

not in any other normal tissues [1-3]. Approximately half 

of the CTA genes are encoded on the X chromosome, so 

they are called CT-X genes [4, 5]. These CTAs belong to 

the typical testicular restriction type and are more 

immunogenic than non-CT-X genes located on autosomes 

[6].  

CTAs were first reported in 1977 and have been 

found to be abnormally expressed in a variety of cancers, 

including melanoma, head and neck cancer, lung cancer, 

liver cancer, gastric cancer, ovarian cancer and breast 

cancer [7-13]. CTAs are not only closely related to the 

stemness of tumor cells, tumorigenicity, mobility, 

metastasis and the drug resistance of cancer cells [3, 14-

25], but they also show high tumor specificity and 

sensitivity [26-30]. Because of these characteristics, 

CTAs are considered to be tumor-specific markers that 

can be used in cancer diagnosis and prognostication, and 

possibly as targets for cancer treatment [31-33]. 

The use of autologous typing is a turning point in the 

search for tumor antigens. Autologous typing is a method 

that uses autoantibodies and T cells of cancer patients to 

identify tumor cells and normal cells to determine whether 

the patient has a tumor-specific T cell response and 

antibodies [34]. Using this method, a series of tumor 

antigens were found, including viral oncoproteins, mutant 

proteins, fusion proteins, overexpressed proteins, 

differentiation proteins and cancer testis antigens.  

The first CTA was cloned by van der Bruggen and 

others in 1991 [35], and then BAGE [36] and GAGE [37] 

were discovered one after another. In 1995, Sahin U’s 
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team improved the identification of CTA through 

serological analysis of a recombinant cDNA expression 

library (SEREX) and used autologous patient serum to 

screen a phage display library derived from tumor cDNA 

[38]. This technology contributes to the discovery of a 

variety of tumor antigens, including NY-ESO-1, the most 

successful tumor immunotherapy target thus far [39]. 

Subsequently, to reflect the expression specificity of such 

tumor-associated antigens, CHEN et al. introduced the 

term "cancer/testis antigen", namely, CTA [40].  

At present, the CTA database (www.cta.lncc.br/ 

index.php) includes more than 200 genes, and the number 

is still increasing. These tumor antigens mainly include 

mutated genes and overexpressed genes that are 

ubiquitous in tissues, as well as genes that are not 

expressed in normal adult cells but are expressed in cancer 

cells. At present, more than 730 CTAs have been 

identified, but it is still uncertain whether some CTAs 

identified by expression data are immunogenic [41-43]. In 

this article, we will introduce the characteristics and 

therapeutic prospects of Kita-Kyushu lung cancer 

antigen-1 (KK-LC-1), a newly discovered member of the 

CTA family. 

KK-LC-1, whose full name is Kita-Kyushu lung 

cancer antigen-1, also known as CT83 or cxorf61, was 

discovered by Takashi Fukuyama's team in 2006[44]. 

Takashi Fukuyama derived lung adenocarcinoma cell 

lines from the tumors of lung cancer patients, stimulated 

the regional lymph node cells of the patients, induced 

cytotoxic T lymphocyte (CTL) clones, and then identified 

new antigen coding genes by screening a cDNA library 

from allogeneic lung cancer cell lines.  

KK-LC-1 is located on chromosome Xq22 and 

consists of 556bp. It is not expressed in normal tissues 

except the testis but is highly expressed in lung cancer, 

gastric cancer and breast cancer. At present, it has been 

reported that KK-LC-1 plays a role in the immune 

response as a new antigen, but the structure and function 

of this gene are not fully understood. How this gene plays 

a role in diseases remains to be further studied. 

 

2. Expression and significance of KK-LC-1 in different 

tumors 

 

KK-LC-1 is abnormally expressed in different types of 

cancers, including lung cancer, gastric cancer, breast 

cancer and liver cancer [44-47], but the biological 

function and potential mechanism of KK-LC-1 in cancer 

are still unclear.  

 

2.1 Gastric cancer 

 

In 2015, Masahiko Watanabe's team found that KK-LC-1 

was highly expressed in gastric cancer, and the expression 

was higher than that of other CTAs, such as MAGE-A1, 

MAGE-A3 and NY-ESO-1 [48]. In 2017, Masahiko 

Watanabe's team found that the expression of KK-LC-1 in 

stage I gastric cancer was very high, suggesting that KK-

LC-1 can be used as a potential marker for the early 

diagnosis and treatment of gastric cancer [49]. In the same 

year, Noritada Kobayashi's team found that KK-LC-1 was 

highly expressed in gastric cancer caused by Helicobacter 

pylori infection, suggesting that Helicobacter pylori 

infection may induce the expression of specific CTAs 

[45]. In 2020, Yoshihito Takahashi's team found that the 

expression of KK-LC-1 in gastric cancer was related to 

Helicobacter pylori infection and atrophy [50]. A 

combination of improved ABCD methods (serological 

detection of Helicobacter pylori (HP) antibodies and the 

pepsinogen (PG) method for risk stratification of gastric 

cancer) and KK-LC-1 detection may improve the 

accuracy of diagnosis. To better detect the expression of 

KK-LC-1, in 2019, Noritada Kobayashi's team 

synthesized a new antibody, Kmab34B3, which can 

successfully detect KK-LC-1 in gastric cancer cells and 

tissues [51]. 

 

2.2 Liver cancer 

  

By examining 60 pairs of liver cancer and paracancerous 

tissues, the researchers determined that KK-LC-1 is 

highly expressed in liver cancer and is closely related to 

the prognosis of liver cancer [47]. A series of phenotypic 

experiments were carried out by knocking down or 

overexpressing KK-LC-1. KK-LC-1 can promote the 

proliferation, invasion and migration of hepatocellular 

carcinoma cells. An animal model further verified the 

tumor-promoting effect of KK-LC-1 in vivo. In terms of 

the mechanism, the researchers found that KK-LC-1 can 

regulate the expression of the Notch1 intracellular domain 

(NICD1) and Notch1 effector Hes1. In vivo experiments 

also verified the correlation between KK-LC-1 and 

NICD1. Further exploration found that KK-LC-1, through 

interaction with presenilin-1, activates the Notch1 

signaling pathway and then it plays a role in promoting 

the growth, migration and invasion of liver cancer, thus 

triggering the tumorigenesis of liver cancer. Presenilin-1 

is the catalytic subunit of endosynthesis that can catalyze 

the Notch1 gene. These results suggest that high levels of 

KK-LC-1 may be an independent predictor of poor 

survival in liver cancer patients [47]. 

 

2.3 Breast cancer 

  

In 2018, Masahiko Watanabe's team analyzed the surgical 

specimens of 51 patients with breast cancer and found that 

KK-LC-1 could be detected in triple-negative breast 

cancer cases and all tumors without estrogen receptor 
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expression, and its expression level in tumor tissues was 

significantly higher than that in paracancerous tissues. 

KK-LC-1 can be used as a marker for the clinical 

diagnosis and immunotherapy of breast cancer [46].  

 

2.4 Lung cancer 

 

In 2018, a team from a university in China constructed a 

CTA map of stage III lung cancers requiring surgery 

through a comprehensive analysis of 10 kinds of CTAs of 

NSCLC [52]. The purpose of this study was to find the 

most appropriate CTA indicators to assist in decision-

making. At the same time, the CTA maps also had 

therapeutic potential for TCR-T cell treatment. 

Takeshi Hanagiri's team found that the positive rate 

of KK-LC-1 was 30.9% by examining clinical samples of 

surgical resection of non-small-cell lung cancer 

(NSCLC). The decreased expression of class I molecules 

indicates a poor prognosis among patients with positive 

CTAs and is an important obstacle to tumor antigen 

immunotherapy. This provides a new idea for the 

immunotherapy of CTAs, and the future synergistic 

therapy of CTAs and HLA may be a new breakthrough 

[53]. 

 

3. Application of targeted KK-LC-1 in tumor 

immunotherapy 

 

In view of the high immunogenicity and tumor specificity 

of CTAs, carcinogenic CTAs are sensitive targets for 

cancer immunotherapy [54-64]. In recent decades, several 

targeted immunotherapies for carcinogenic CTAs have 

been developed, and these immunotherapies have been 

tested in preclinical and early clinical environments. At 

present, most clinical studies have focused on the 

treatment of melanoma-associated antigen A (MAGEA) 

and New York esophageal squamous cell carcinoma-1 

(NY-ESO-1), including cancer vaccines targeting CTAs 

to prevent tumor occurrence and development, and 

monoclonal antibodies against CTAs and CAR-T 

designed based on CTAs [65-73]. Due to the late 

discovery of KK-LC-1, the reported treatments include 

vaccines, photodynamic therapy combined with new 

photosensitizers and TCR-T therapy (Fig. 1). 

 

 
 
Figure 1. Targeting KK-LC-1 for effective cancer immunotherapy. The strategies for 

effective cancer immunotherapy focused on KK-LC-1 include vaccines, photodynamic 

therapy, and TCR-T cells. The mechanism of CTA reactivation may be DNA methylation 

and histone modification. 

3.1 Vaccine 

 

The vaccine designed for DNA of MAGE-A in 2018 has 

shown anticancer properties in a number of clinical 

trials[74]. A clinical trial published in Nature in 2020 

showed that liposome RNA (RNA-LPX) vaccines based 

on MAGEA, and two other kinds of CTAs could induce 

strong cellular immunity [75]. Because KK-LC-1 is also 

https://pubmed.ncbi.nlm.nih.gov/?sort=date&size=20&term=Hanagiri+T&cauthor_id=23645764
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antigen-specific, we suspect that it is possible to 

synthesize a vaccine against KK-LC-1. A new paper in 

2021 reported the design of a multiepitope vaccine against 

MAGEA3, MAGEA4, NY-ESO-1 and KK-LC-1 using 

reverse vaccinology for the first time [76]. The main idea 

is to draw the epitope map according to the CTA 

sequence, estimate the population coverage (PC) of the 

CD4+ and CD8+ epitopes, and then connect the candidate 

linear B cell (BL), CD4+ and CD8+ epitopes into a 

multiepitope structure (Mvax) using the flagellin domain 

as an adjuvant. After successful construction, the tertiary 

structure of Mvax was modeled and verified, and the 

antigenicity and cross-reactivity of Mvax was tested. It is 

critical that all epitopes contained in the vaccine dock with 

their human leukocyte antigen (HLA) conjugates to better 

act on the antigenic fragments presented by HLA. Finally, 

the researchers successfully designed a multiepitope 

vaccine targeting CTAs in NSCLC. Computer evaluation 

showed that Mvax has antigenicity, immunogenicity, 

stability and safety and is expected to be used in in vitro 

and in vivo studies. 

 

3.2 Photodynamic therapy 

  

Photodynamic therapy (PDT) is a noninvasive and highly 

selective tumor therapy, but its therapeutic effect has been 

limited by skin phototoxicity for a long time. Therefore, 

to overcome this disadvantage, it is best to selectively 

deliver photosensitizers to tumor cells with the help of 

specific antibodies against tumor-associated antigens. 

Some researchers developed and identified a new mouse 

monoclonal antibody (CT83 MAb7G4) against human 

CT83, which can effectively combine with the new 

photosensitizer gallium (III)5,10,15-tris (ethoxycarbonyl) 

corrole (1-Ga) to form the antibody-photosensitizer 

complex 7G4-1-Ga [77]. Enzyme-linked immunosorbent 

assays (ELISA), flow cytometry and cytotoxicity assays 

showed that 7G4-1-GA had high specificity for CT83. In 

addition, 7G4-1-Ga has a stronger cytotoxic effect on 

human tumor cells expressing CT83 than 1-Ga in vitro. 

These results suggest that a combination of anti-CT83 

monoclonal antibody and antibody-conjugated 

photosensitizer 1-GA may have good application 

prospects in tumors with high expression of CT83. 

 

3.3 TCR-T 

 

TCR-T is used to extract the α and β chain genes encoding 

TCR from effector T cells induced by tumor antigens. It 

is introduced to mature T cells by genetic engineering 

technology, and then transfused back into patients who 

lack tumor antigen specific response T cells, so that 

recipient T cells express antigen specific TCR and exert 

the function of effector T cells. At present, the cancer 

testis antigen NY-ESO-1 is mostly being studied in 

clinical research [78]. The expression of cancer testis 

antigen is very low in normal tissues, and the probability 

of off-target effects is low. It is an ideal target antigen for 

adoptive cellular immunotherapy [79]. NY-ESO-1 TCR-

T therapy was used in 20 patients with multiple myeloma, 

the clinical response rate was 80%, and TCR was 

continuously expressed in vivo for more than two years 

[21]. Eighteen patients with metastatic synovial sarcoma 

and 20 patients with melanoma were treated with TCR-T, 

and the clinical response rates were 61% and 55%, 

respectively [3]. Given that KK-LC-1 and NY-ESO-1 

have many similar features, we suspect that TCR-T can 

also be designed for KK-LC-1.  

In 2019, Bridget Marcinkowski et al. designed TCR-

T presented by HLA-A*01:01, targeting KK-LC-152-

60[80]. The researchers tested whether T cells transduced 

with KK-LC-1 TCR (KK-LC-1TCR-Ts) could recognize 

tumor cell lines expressing KK-LC-1 and HLA-A*01:01 

in vitro. In the overnight coculture test, TCR-T cells 

recognized cell lines expressing target antigens and HLA-

limiting elements and released interferon-γ. To evaluate 

whether KK-LC-1 TCR-T cells can mediate the antitumor 

response in vivo, researchers constructed a mouse 

xenograft model. The results showed that the model with 

low expression of KK-LC-1 on the surface of tumor cells 

was prone to relapse, and the model with high expression 

of KK-LC-1 could make the tumor regress after a single 

intravenous injection of KK-LC-1 TCR-Ts. These results 

suggest that KK-LC-1 TCR-Ts can prevent tumor 

progression both in vitro and in vivo. 

 

4. Potential regulatory mechanism of KK-LC-1 

 

CTAs are immunogenic proteins, so they can trigger 

cellular immunity and humoral immunity. Given that their 

expression in adult somatic tissues is greatly restricted and 

has immunogenic potential, CTAs are considered good 

candidate targets for cancer immunotherapy. CTA-based 

treatments include antibodies, vaccines and anti-CTA 

chimeric antigen receptor-modified T cells (CAR-Ts). 

Although several CTA-targeted therapies have achieved 

encouraging results in preclinical and early clinical trials, 

the anticancer effect of CTA-targeted immunotherapy is 

not ideal, so these immunotherapies have not yet been 

used in the clinic as first-line anticancer drugs [81-83]. 

Although immunotherapy for CTAs is theoretically 

feasible, it is difficult to implement immunotherapy due 

to the low and local expression of CTAs in tumors [84, 

85]. Therefore, we urgently need to explore the 

transcriptional regulation mechanism of CTAs in tumor 

cells to promote the expression of CTAs. It has been 

reported that the reactivation of CTAs is primarily due to 

changes in DNA methylation in the genome [5, 20, 86, 
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87]. Bisulfite sequencing showed that compared with the 

corresponding normal tissues, the promoter region of 

CTAs in many tumors was hypomethylated, resulting in 

increased protein expression [88, 89]. There are abundant 

CpG islands in the promoter region of the CTA genes, 

which is an important reason why these genes are 

sensitive to methylation regulation.  

Weber et al. proposed for the first time that the 

treatment of tumor cells with dexitabine, an inhibitor of 

DNA methyltransferase, can reactivate the expression of 

MAGEA1 [90]. This suggests that demethylation of 

genomic DNA can activate CTA expression. Later, it was 

gradually found that DNA demethylation could reactivate 

the expression of NY-ESO-1, KK-LC-1 and other CTAs 

genes [66, 91-96]. Researchers found that the DNA 

methylation level is negatively correlated with the 

expression level of KK-LC-1. Experiments with 5-aza-2'-

deoxycytidine (5-aza-dC), methylation-specific PCR 

(MSP), and bisulfite sequencing PCR (BSP) also 

confirmed this conclusion. 

In addition to DNA demethylation, which is 

considered to be the main factor in the activation of CTAs, 

histone acetylation also contributes to the transcriptional 

activation of CTAs and enhances the activation of tumor 

testis antigen genes by DNMTi [97]. Inhibition of HDAC 

alone could not activate the transcription of CTAs, but its 

combination with a DNA methyltransferase inhibitor 

could significantly enhance the transcription of CTAs. 

These strategies can effectively promote the expression of 

CTAs to enhance their immunogenicity, thus improving 

the response to T cell-based therapy [98]. 

Although epigenetic mechanisms play an important 

role in regulating the expression of tumor testis antigen 

genes, there is growing evidence that other nonepigenetic 

mechanisms also play a key role. At present, these 

mechanisms are not well understood, and the mechanisms 

currently recognized include sequence-specific 

transcription factors, signal transduction and activated 

tyrosine kinases. For example, two Ets binding sites are 

involved in the transcriptional activation of the MAGE1 

gene [99-101], tyrosine kinase affects the methylation and 

expression of the MAGE gene promoter [102-107], 

cAMP increases the expression of MAGE-A11 in prostate 

cells [108], SP1 increases the expression of NY-ESO-1 in 

lung cancer cells [109], and there is a loop regulation 

between p53 and tumor testis antigen [110]. BORIS itself 

is a member of the CTA family [111-114], which is 

reactivated by hypomethylation in cancer. It can bind to 

SET1A H3K4, a methyltransferase associated with 

histone transcriptional activity modification, and then 

regulate the expression of other members of the CTA 

family [115]. The mechanism of epigenetic reactivation 

of KK-LC-1 expression remains to be further studied. 

 

5. Discussion 

 

At present, the exploration of KK-LC-1 is based on 

clinical research. To further understand the mechanism of 

KK-LC-1, more basic research needs to be carried out. 

The starting point can be carried out from the following 

two aspects: 

There are antibodies available against NY-ESO-1, 

PRAME, and CT45. In 2019, Seth M. Pollack’s team used 

the antibody LV305 against NY-ESO-1 for the first time 

in the clinic, and the results showed good safety and 

antigen-specific responses [116]. From AS15 in 2015 to 

Pr20 in 2017, antibodies against PRAME have been well 

verified in animal models [117, 118], and the new anti-

PRAME monoclonal antibody developed in 2021 is more 

powerful and can recognize folded proteins on the surface 

of cell membranes [119]. In 2018, a report published in 

the journal Cell showed that CT45-derived HLA-I 

peptides can activate patient-derived cytotoxic T cells to 

kill and inhibit tumor progression [120]. Since KK-LC-1 

belongs to the CTA family, we believe that it is possible 

to design antibodies against KK-LC-1 in the future. 

In addition, an increasing number of studies have 

focused on a combination of targeted therapies against 

CTAs and immune checkpoint inhibitors[54, 121, 122]. In 

2016, Lindy G Durrant’s team found that the long-term 

survival rate of mice was significantly improved after 

treatment with a combination of the NY-ESO-1 vaccine 

SCIB2 and anti-PD-1/CTLA-4, suggesting the feasibility 

of combination therapy [123]. In the future, SCIB2 can be 

used in the clinic. For patients with a low tumor mutation 

load, SCIB2 alone may be effective, but for patients with 

a high tumor mutation load, the effect of combined 

therapy may be more significant. In 2019, Mikio Oka’s 

team found that patients with non-small-cell lung cancer 

treated with NY-ESO-1 and XAGE1 monoclonal 

antibodies combined with anti-PD-1 had better efficacy 

and longer survival, and the antibody titer was positively 

correlated with the efficacy of anti-PD-1 therapy [124]. 

Therefore, we believe that NY-ESO-1 and XAGE1 

antibodies are markers for predicting the efficacy of anti-

PD-1 in patients with NSCLC and can be included in 

clinical trials of immune checkpoint inhibitors as 

stratification factors in the future. In 2020, Baoen Shan’s 

team found that although esophageal cancer expressed 

MAGE-A11, the expression level was not high, thus 

limiting the effectiveness of immunotherapy. MAGE-

A11-derived CTLs can kill esophageal cancer cells 

expressing MAGE-A11 but have almost no killing effect 

on MAGE-A11-negative tumor cells [29]. At the same 

time, researchers found that PD-L1 can affect the 

antitumor function of CTLs. Therefore, they think a 

combination of DNA methyltransferase inhibitors and 

PDL1 inhibitors may be an effective approach. The results 
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of cellular and animal experiments also confirmed that 

combination therapy could produce a specific cellular 

immune response to esophageal tumors, a promising 

strategy for clinical applications. 

However, there is currently no literature reporting on 

a combination of KK-LC-1 and immune checkpoint 

inhibitors, and the simultaneous use of both may be a 

valuable method for clinical applications in the future.  

Concluding remarks. 

In summary, KK-LC-1 is a new target for 

immunotherapy and may become a valuable tumor-

related marker in the future. Immunotherapy and 

combination therapy against KK-LC-1 may create new 

opportunities for cancer treatment. In the future, these 

new treatment strategies may result in new breakthroughs 

in cancer immunotherapy. 
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