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SUMMARY

We show that an imaginary magnetic field (IMF), which can be generated in non-Hermitian systems

with spin-dependent dissipations, can greatly enhance the s-wave pairing and superfluidity of spin-

1/2 fermions, in distinct contrast to the effect of a real magnetic field. The enhancement can be attrib-

uted to the increased coupling constant in low-energy space and the reduced spin gap in forming

singlet pairs. We have demonstrated this effect in a number of different fermion systems with and

without spin-orbit coupling, using both the two-body exact solution and many-body mean-field

theory. Our results suggest an alternative route toward strong fermion superfluidwith high superfluid

transition temperature.
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INTRODUCTION

Searching for strong fermion superfluids and their underlying mechanisms has been one of the central

tasks in condensed matter and cold atomic physics. In cold atoms, a prominent example for strong

superfluid is the unitary Fermi gas, where the s-wave scattering length diverges and the interaction en-

ergy solely scales with the Fermi energy (DeMarco and Jin, 1999; Giorgini et al., 2008; Zwierlein, 2014).

Apart from resonant interaction, several other factors have also been shown to induce strong pairing and

superfluidity, such as low dimension (Feld et al., 2011; Sommer et al., 2012; Murthy et al., 2018), large

effective range (Hazlett et al., 2012; Ho et al., 2012; Qi and Zhai, 2012), highly symmetric spin-orbit

coupling (Vyasanakere and Shenoy, 2011; Vyasanakere et al., 2011; Gong et al., 2011; Hu et al., 2011;

Yu and Zhai, 2011; Cui, 2012; Zhang et al., 2012a, 2012b; Wu and Yu, 2013; Wang and Greene, 2015;

Guan and Blume, 2016), etc. On the contrary, the presence of a magnetic field or spin imbalance is

generally believed to reduce and even destroy the pairing superfluidity, especially when the spin gap

overcomes the pairing strength.

In this work, we report another efficient tool for generating strong pairing superfluid, namely, an imaginary

magnetic field (IMF). Experimentally, the IMF can be realized in non-Hermitian atomic systems by laser-

assisted spin-selective dissipations (Li et al., 2019; Lapp et al., 2018). Consider the spin-1/2([;Y) system; the

IMF can be equivalently achieved by applying a laser field uniquely to spin-Y atom, which is resonantly

coupled to a highly excited atomic state and causes loss. This spin-dependent loss can be described by a po-

tential iGsz up to a constant energy shift (��iG/2), where G determines the loss rate. Such potential exactly

plays the role of an imaginary Zeeman energy due to an imaginary magnetic field B = iG. Here we show

that the IMF can greatly enhance the s-wave pairing and superfluidity of spin-1/2 fermions, behaving just

oppositely to a real magnetic field (RMF). Consider a Rashba spin-orbit-coupled (SOC) fermion system as

an example; we find that even a small IMF can induce an exponential enhancement of the two-body binding

energy in weak coupling regime and the enhancement equally holds for the pairing superfluid of many fer-

mions in all interaction regimes. We further demonstrate that the IMF-enhanced pairing commonly exists

in several other typical fermion systems, with different types of SOCand evenwithout SOC. The enhancement

canbe attributed to the increased coupling constant in low-energy space and the reduced spin gap in forming

singlet pairs when an IMF is present. These results, which are detectable in current cold atoms experiment,

suggest an alternative route toward strong fermion superfluid with high superfluid transition temperature.

RESULTS AND DISCUSSION

To demonstrate the effect of an IMF, we start with a concrete model of spin-1/2 fermionsð[;YÞwith Rashba

SOC. The single-particle Hamiltonian inmomentum (k) space can be written as (Z= 1 throughout the article)

h0ðkÞ= eks0 +a
�
kxsx + kysy

�
+Bsz ; (Equation 1)
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Figure 1. Single Particle Physics under Rashba SOC and IMF/RMF

(A) Real parts of single-particle spectra under a Rashba SOC and an IMF (solid lines) or an RMF (dashed lines). Here we

take kz = 0, and IMF/RMF with the same strength jBj = 0:35E0. Inset: exceptional ring (red solid circle, with radius kct) and

the location of energy minimum (blue dashed circle, with radius kmin
t ) in (kx,ky) plane in the case of IMF.

(B) Location of energy minimum, kmin
t , as a function of jBj for IMF (solid line) and RMF (dashed line). Inset shows the

corresponding threshold energy (in the real part) xth. For IMF, kmin
t shows a discontinuity and accordingly xth shows a kink

at jBjc = 0:5E0. In all plots, the units of momentum and energy are, respectively, k0 and E0. (Color online.)
here ek = k2/(2m); s0 and sx,y,z are, respectively, the identity and Pauli matrices; a is the strength of Rashba

SOC, which naturally defines a momentum scale k0 = 2ma and an energy scale E0 = 2ma2; and B can be real

or imaginary, respectively, denoting an RMF or an IMF. The eigen energies of (1) are

xk;G = ekG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2k2t +B2

q
; (Equation 2)

where G is the helicity index and kt =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x + k2y

q
. Note that in writing Equation 1 with an imaginary B, we

have utilized the effective non-Hermitian Hamiltonian reduced from the Lindblad equation, by neglecting

a term that induces quantum jumps between diagonal density matrixes in different particle-number

sectors. It has been argued that such process will not affect the physical quantities produced with a given

particle number (Nakagawa et al., 2018; Zhou and Yu, 2019).

Equation 2 results in distinct single-particle spectra for IMF and RMF, as displayed in Figure 1A. For RMF, all

xk;G are real, and a gap is opened at k = 0, whereas for an IMF, xk;G are complex (conjugate to each other)

for kt<kcthjBj=a and purely real for kt>kct. Right at kt = kct, both the two levels and two eigenstates

coalesce, forming an exceptional ring in (kx,ky) plane; see the red solid circle in the inset of Figure 1A.

Note that as the size of this ring does not depend on kz, in 3D k-space it forms an exceptional surface as

of a straight cylinder along z. In Figure 1B, we plot the location of energy minimum, denoted by kmin
t , as

varying jBj. For RMF, kmin
t continuously decreases to zero as increasing B. For IMF, kmin

t first increases

with jBj following� ðk0=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 4jBj2=E2

0

q
, as shown by the larger blue dashed circle in the inset of Figure 1A,

whereas at a critical jBjc = 0:5E0, it jumps to zero, signifying a first-order transition. Accordingly, at the tran-

sition point the energy threshold (xth) moves from finite kmin
t to k= 0 and exhibits a kink, as shown in the inset

of Figure 1B.

Nowwe come to the two-bodyproblem,where two fermions interact under contact potentialU = gdðrÞPS = 0;

here r is the relative motion, PS=0 is the projection operator of spin singlet state jS = 0i = j[Yi�jY[iffiffi
2

p , and the

bare couplingg can be related to the s-wave scattering length as via 1=g = m=ð4pasÞ� 1=V
P
k

1=2ek. The two-

body results are shown in Figure 2.

In Figure 2A, we plot the two-body binding energy Eb as a function of 1/as for IMF and RMF with the same

amplitude jBj. When compared with the zero B case, the application of an IMF will enhance jEbj at all cou-
plings, whereas RMF always reduce jEbj. The picture is more clearly shown in Figure 2B, where Eb is plotted

as a function of jBj at given 1/as. We can see that on increasing jBj from zero, in RMF case the bound state

quickly vanishes with Eb/0, whereas the IMF can support deeper bound state (with decreasing Eb) until jBj
reaches jBjc , when the single-particle threshold xth displays a kink (see Figure 1B). To highlight the

dramatic effect of IMF in favoring bound states, in Figure 2C we plot the minimum Eb (at jBj = jBjc ) as
functions of 1/as, when compared with that without IMF. We can see that the IMF effect is visible in all inter-

action regimes from weak to strong couplings. For instance, for a weak coupling 1/(ask0) = �1, at jBjc we

have jEbj=E0 = 0:115, about 20 times larger than the value (0.005) at B = 0.
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Figure 2. Two-body Bound State under Rashba SOC and IMF/RMF

(A) Two-body binding energy Eb with Rashba SOC as a function of 1/as for IMF (blue solid line) and RMF (red dashed line)

with jBj=E0 = 0:3, when compared with B = 0 (gray line).

(B) Eb as a function of jBj for IMF (blue solid) and RMF (red dashed line) given a fixed 1/(ask0) = �0.5. Green dash-dotted

line shows fit to Equation 4 for IMF (B2<0). Under IMF, Eb reaches minimum at jBjc .
(C) Minimum Eb under IMF (blue solid line) as function of 1/as, when compared with the zero B case (gray line).

(D) Coupling constants C between two threshold fermions as functions of jBj for IMF (blue solid line) and RMF (red dashed

line), and the inset shows threshold DoS r. Green dash-dotted lines show analytical fit (see text). (Color online.)
Physically, the enhanced bound state is associated with the IMF-increased coupling strength between low-

energy states. To demonstrate this, we rewrite the two-body equation (see Methods) as

1

g
=

Z
d 3rð 3Þ Cð 3Þ

E � 3
; (Equation 3)

where r(e) and C(e), respectively, denote the density of state (DoS) and the coupling constant for two par-

ticles at scattering energy e. The change of these two values as varying B directly determines the fate of

bound state. It can be more transparently seen through in weak coupling limit, where the bound state for-

mation is dominated by the low-energy scattering near E�2xth. In Figure 2D and its inset, we plotC and r at

threshold E = 2xth as varying jBj. We can see that whereas r keeps static constant, C can increase (decrease)

with jBj in the case of IMF (RMF). Indeed, at small B,C can be expanded asCðBÞ = Cð0Þð1� 4B2=E2
0Þ, consis-

tent with the numerical result shown in Figure 2D. Then based on Equation (3), we arrive at the following

expansion of Eb in weak coupling limit ((k0as)
�1/�N) and with small B (jBj � E0):

EbðBÞ=Ebð0Þexp
 

� 16B2

E2
0

1

k0jasj

!
; (Equation 4)

here Eb(0) is the binding energy at B = 0. Most remarkably, Equation 4 shows that by applying an IMF

(B2 < 0), jEbj can exponentially increase with a huge coefficient due to 1=ðk0jasjÞ[1. In contrast, applying

an RMF (B2 > 0) will exponentially reduce jEbj. We have confirmed that Equation 4matches well with numer-

ical results at small jBj, as shown by the dash-dotted line in Figure 2B.

Inspired by the two-body result, we now turn to the property of pairing superfluid for many fermions.

Under the mean-field Bardeen-Cooper-Schrieffer (BCS) theory, we introduce the paring order parameter

D= ðg=VÞPkLhc�kYck[iR and ~D = ðg=VÞPkLhcyk[cy�kYiR, where cks is the annihilation operator of a free

fermion of spin-s at k, and
���iRðLÞ refers to the right (left) eigenvector for the BCS ground state. By some

algebra, the thermodynamic potential U = H�mN can be diagonalized as

U=
X0

k

 X4
i = 1

Ekia
Ry
ki a

L
ki + 2ðek � mÞ

!
� D~D

g
: (Equation 5)
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Figure 3. Fermion Superfluid under Rashba SOC and IMF/RMF at a Given m = �0.05E0

(A) Thermodynamic potential U as a function of D for IMF (blue solid line) and RMF (red dashed line) with jBj = 0.3E0, when

compared with that with B = 0 (gray line).

(B) Pairing amplitude D as varying jBj for IMF (blue solid line) and RMF (red dashed line). In both (A,B), we take

1/(k0as) = �0.5.

(C) k-space exceptional surface for quasi-particles at resonance and with IMF strength jBj = 0.4E0. Inset shows the real

parts of quasi-particle energies evolving with kt at fixed kz = 0, which split at kct.

(D) kct as a function of 1/as at given jBj = 0.4E0. Horizontal dashed line shows kct for free particles. (Color online.)
Here a
Ry
ki (aL

ki) is the creation (annihilation) operator of the i-th right (left) quasi-particle with momentum k,

which satisfies the anti-commutation relation faRy
ki ;a

L
k0 jg = dkk0dij; the four quasi-particle energies follow

Ek =G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak +BkG2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AkBk � ðaktÞ2D~D

qr
; (Equation 6)

with Ak = ðek � mÞ2 + D~D; Bk = a2k2t + B2. In contrast to the case of RMF where all Eki are real, in the pres-

ence of an IMF they can be real or complex, depending on the values of k and other parametersD; ~D; m, etc.

As only the product D~Dmatters in the functionalU, but not individual D or ~D, in the following we will choose

a special case with D= ~D and minimize U (which is real) in terms of D to find the ground state.

InFigure3A,weshow the typical landscapesofU(D) forboth IMFandRMFwithagiven strength jBj. It canbe seen
that compared with the zero B case, the IMF (RMF) can shift the minimumofU to larger (smaller) D, and accord-

ingly Umin is further decreased (increased), indicating a stronger (weaker) fermion superfluid. In Figure 3B, we

further plot the ground state D, which indeed is an increasing function of jBj for IMF, contrarily to the case of

RMF. We have checked that these conclusions will not be qualitatively altered by the change of as and m.

In the above discussion, we have shown the dramatic effect of non-Hermitian potential (the IMF) to inter-

acting fermions. In turn, the interaction effect can also alter the non-Hermitian property, in that the excep-

tional surface (ES) can be largely deformed from the free particle case. In Figure 3C, we show the k-space ES

of quasi-particles, which is determined by

AkBk = ðaktÞ2D~D: (Equation 7)

This equation predicts that two pairs of quasi-particles (see Equation 6) coalesce simultaneously at ES, with

two separate energies Ek = G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak +Bk

p
, as shown in the inset of Figure 3C. When compared with the free

particle case where ES is a straight cylinder along z (see Figure 1), here the ES can be deformed, as shown by

Figure 3C, and the deformation is pronounced at low-energy space where the pairing takes a dominant

role. Upon increasing the interaction strength, more and more momentum states will be strongly affected

by pairing and ES will get even more distorted and extend to larger kt, as manifested by the increasing kct
for quasi-particles shown in Figure 3D.
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Figure 4. Pairing and Superfluidity under 1D SOC with IMF/RMF

(A) Two-body binding energy Eb as functions of 1/as for IMF (blue solid line) and RMF (red dashed line) with jBj = 0:5E0,

when compared with that with B = 0 (gray line).

(B) Critical 1/as to support a two-body bound state as varying jBj for IMF (blue solid line) and RMF (red dashed line).

(C) Many-body pairing amplitude D as a function of jBj for IMF (blue solid line) and RMF (red dashed line). Here we take 1/

(k0as) = �0.5 and m = �0.05E0.

(D) Product of coupling constant C and DoS r for two threshold fermions as varying jBj. Green dash-dotted lines show

analytical fit (see text). (Color online.)
To this end, we have demonstrated the enhanced pairing and superfluidity by an IMF for fermions with

Rashba SOC. Next we show that such effect equally applies to other fermion systems, and in particular,

we choose two types of single-particle Hamiltonians as below:

ðIÞ h0ðkÞ= eks0 +akxsx +Bsz ;

ðIIÞ h ðkÞ= e s + bs +Bs
0 k 0 x z

When compared with the highly symmetric Rashba SOC as described by Equation 1, here we consider in

case (I) a 1D SOC that has much less symmetry and in case (II) a simple transverse field without any SOC.

Given their distinct structures, these three cases belong to the most typical situations for the non-trivial ef-

fect of IMF or RMF. In practice, case (I) with a real B has been realized using the two-photon Raman process

(Lin et al., 2011; Zhang et al., 2012a, 2012b; Wang et al., 2012; Cheuk et al., 2012; Qu et al., 2013), and the

transverse field in (II) and IMF in both (I,II) can be implemented, respectively, by the radio-frequency (RF)

field and laser-assisted dissipation.

For case (I), we have carried out the two-body and many-body calculations for the pairing and superfluidity

therein, which also show enhancement by IMF; see Figure 4. In particular, with an IMF, the two-body bound

state can form even in the weak coupling regime with 1/as<0, in contrary to the case of RMF where it can

only appear in the molecule side with 1/as>0 (Williams et al., 2013; Zhang et al., 2013; Kurkcuoglu and de

Melo, 2016); see Figure 4A. In Figure 4B, we plot the critical 1=acs for the bound-state formation as a function

of jBj, and we see that the larger the IMF is, the weaker is the coupling (i.e., smaller 1=acs ) required to afford a

bound state, whereas the RMF displays an opposite trend. Consistent with these two-body results, the

many-body calculation shows the IMF-enhanced pairing amplitude D, in contrast to the case of RMF;

see Figure 4C. The enhancement again can be understood from the analyses of low-energy coupling

strength C and DoS r. In this case, we have C(B) behaving the same as in Rashba SOC case, whereas

r(B) varies as �r(0) (1+2B2/E0
2), therefore r(B)C(B) = r(0)C(0) (1�2B2/E0

2), which increases (decreases)

with jBj for an IMF (an RMF) as shown in Figure 4D. Compared with the Rashba SOC case, here the magni-

tude of enhancement in 1D SOC is smaller due to the IMF-reduced DoS.

For case (II), the situation is much simpler, as the spin (s) and orbit (k) are fully decoupled in the single-particle

level. Now there is only one factor left, i.e., the spin gap, to influence the pairing and superfluidity properties.
iScience 14, 257–263, April 26, 2019 261



From the spin spectrum eG = G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 +B2

p
, we define the spin gap asG =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 +B2

p
. Obviously, increasing jBj in

IMF and RMF cases will have different effects to G, i.e., in the former G increases, whereas in the latter G de-

creases, until becoming zero at jBj=b, where the exceptional point is located. Such behavior can directly influ-

ence the many-body superfluidity. Indeed, the mean-field BCS theory gives quasi-particle spectra as:

Ek =G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðek � mÞ2 +D2

q
GG; (Equation 8)

which shows that the spin gapG directly plays the role of an effectivemagnetic field heff in pairing problem. As it

is known that changing heff can result in a sequence of quantum phase transitions between normal and various

pairing phases across resonances (Sheehy and Radzihovsky, 2006; Pao et al., 2006; Hu and Liu, 2006; Parish et al.,

2007), such transitions can beequally inducedby changing the IMF strength jBj. For trapped fermions, this effect

directly leads to a tunable phase separation between normal and BCS pairing states, which can be measured

directly as previously in spin-imbalanced Fermi gas (Zwierlein et al., 2006; Partridge et al., 2006).

In conclusion, we have demonstrated the enhanced pairing and superfluidity by an IMF in a number of distinct

fermion systems with and without SOC, by which we expect the same IMF effect can extend to a wide class of

fermion systems.We have revealed the underlyingmechanism for such enhancement as the IMF-increased low-

energy coupling strength and IMF-reduced spin gap in forming singlet pairs. The remarkably opposite effects

generated by an IMF and an RMF could be detected in cold atomexperiments. In particular, the binding energy

ofmolecules can bemeasured by RF spectroscopy, and the pairing superfluidity can be probed bymomentum-

resolved RF spectroscopy (Stewart et al., 2007; Gaebler et al., 2010). Finally, although in this work we have only

concentrated on the ground-state property at zero temperature, our results immediately suggest an equally

strong superfluid at finite temperature and with a high superfluid transition temperature (Tc). This may also offer

an alternative perspective toward the high-Tc superconductor ever studied in literature.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Transparent Methods
In this section we provide more details about how to exactly solve the two-body

bound state and many-body superfluid.
Two-body bound state: The two-body problem can be solved by using the

Lippman-Schwinger equation |Ψ〉 = GEU |Ψ〉, where Ψ is the two-body wave func-
tion. We then arrive at the following equation for binding energy Eb = E − 2ξth:

1

g
= 〈S = 0|GE(0, 0)|S = 0〉,

where the Green function reads

GE(r, r′) =
1

2

∑
k;µν=±

〈r|kRµ ;−kRν 〉〈−kLν ; kLµ |r′〉
〈kLµ |kRµ 〉〈−kLν | − kRν 〉(E − ξkµ − ξ−kν)

.

Here |kRµ 〉 and |kLµ〉 refer to the left and right eigenvectors defined through h0|kRµ 〉 =

ξkµ|kRµ 〉 and h†0|kLµ〉 = ξ∗kµ|kLµ〉. In principle, for the case of IMF the expansion
in GE fails at the exceptional ring where there is only one eigenstate for each k.
Nevertheless, the integrand in GE behaves smoothly across the exceptional region,
and thus its presence has no effect to the two-body solution. For the case of RMF,
we have h0 = h†0, ξkµ = ξ∗kµ and |kRµ 〉 = |kLµ〉.
Many-body system: For the many-body pairing, under the mean-field theory we

can write the thermodynamic potential Ω as

Ω =
′∑
k

(
F †kΩ(k)Fk + 2(εk − µ)

)
− ∆∆̃

g
,

with Fk = (ck↑, c
†
−k↓, c

†
−k↑, ck↓)

T , and Ω(k) is
εk − µ+B ∆ 0 αk⊥e

−ıφk

∆̃ −εk + µ+B αk⊥e
−ıφk 0

0 αk⊥e
ıφk −εk + µ−B −∆̃

αk⊥e
ıφk 0 −∆ εk − µ−B

 .

Note that the summation over k in Ω is carried out only over half of k-space. By
diagonalizing the 4× 4 matrix at each k, we can obtain the form of Ω as Eq.(5) in
the main text, and the associated quasi-particle energy as Eq.(6) in the main text.

At zero temperature, we have Ω =
∑′

k

(∑4
i=1EkiΘ

(
−Re(Eki)

)
+ 2(εk − µ)

)
−

∆∆̃2/g, where Θ(x) = 1 if x > 0 and = 0 otherwise. The ground state of the system
can be found by minimizing Ω as a function of the product ∆∆̃, given as, µ, B all
fixed. In the main text we have chosen a special case with ∆ = ∆̃.
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