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ABSTRACT: We employ our recently introduced tensor-hyper-
contracted (THC) second-order Møller−Plesset perturbation
theory (MP2) method [Bangerter, F. H., Glasbrenner, M.,
Ochsenfeld, C. J. Chem. Theory Comput. 2021, 17, 211−221] for
the computation of hyperfine coupling constants (HFCCs). The
implementation leverages the tensor structure of the THC
factorized electron repulsion integrals for an efficient formation
of the integral-based intermediates. The computational complexity
of the most expensive and formally quintic scaling exchange-like contribution is reduced to effectively subquadratic, by making use of
the intrinsic, exponentially decaying coupling between tensor indices through screening based on natural blocking. Overall, this
yields an effective subquadratic scaling with a low prefactor for the presented THC-based AO-MP2 method for the computation of
isotropic HFCCs on DNA fragments with up to 500 atoms and 5000 basis functions. Furthermore, the implementation achieves
considerable speedups with up to a factor of roughly 600−1000 compared to previous implementations [Vogler, S., Ludwig, M.,
Maurer, M., Ochsenfeld, C. J. Chem. Phys. 2017, 147, 024101] for medium-sized organic radicals, while also significantly reducing
storage requirements.

1. INTRODUCTION
Ever since the advent of modern computers in the 1990s,
Møller−Plesset perturbation theory (MPn)1 has been a good
compromise in the family of quantum chemical methods, being
sufficiently accurate for many applications while still being
computationally affordable.2 As opposed to coupled cluster
theory (CC), MPn lacks infinite-order corrections present in the
cluster operator expansion of the CC models, which generally
makes MPn less accurate.2 However, when going from energies
to gradients and molecular properties, MPn, especially second-
order MPn (MP2), was shown to yield accurate hyperfine
coupling constants (HFCCs)3−7 and relative nuclear magnetic
resonance (NMR) shifts.8−12 However, MP2 is sensitive to spin-
contamination in the Hartree−Fock wave function, which can
be improved upon when used in its orbital-optimized variant4 or
as part of double-hybrid density functionals.13

Furthermore, when comparing MPn and CC at the same
expansion orders, for example, MP2 and singles and doubles CC
(CCSD), MPn comes with a scaling advantage, both in the
prefactor and the scaling exponent. Nonetheless, canonical
MP2, as well as the associated first and second derivative,6,11 still
scale with the fifth power of the molecule size, thereby severely
restricting the accessible chemical space. To alleviate this
limitation several formulations of the MP2 derivatives have been
proposed.

Early work from Pulay and Sæbø14,15 on local correlation was
applied to the computation of MP2 gradients.16,17 Following up
on this, in recent years the domain-based local pair natural
orbital (DLPNO) formulation of MP2 by Neese and co-

workers18−20 was extended to first and second derivatives.
Conceptually related is the divide-expand-consolidate (DEC)
formulation of MP2 by Jørgensen and co-workers,21,22 which
likewise was extended to the computation of molecular gradients
in a linear-scaling and massively parallel manner.23,24 Instead of
exploiting locality in the correlation space, the equations of the
MP2 first6,25 and second derivative11 can be reformulated
entirely in terms of atomic orbitals (AOs). However, for an
efficient implementation and the reduction of the scaling
prefactor, an orbital localization by pivoted Cholesky decom-
position (PCD) of the associated pseudodensities is essential.6

Besides ensuring low-scaling and efficiency, for derivative
calculations of electron correlation methods in general, it is
pivotal to efficiently manage the available memory and disk
space. Compared to the energy equations, the associated
gradients and higher derivatives often not only include electron
repulsion integrals (ERIs), in either atomic or molecular orbital
basis, but can also include partially transformed ERIs and
derivatives thereof, for example, with respect to the magnetic
field in NMR calculations. Since canonical ERIs are fourth-order
tensors, their memory requirements prohibitively scale with the
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forth power of the number of basis functions and saving multiple
such tensors quickly becomes unfeasible. To reduce the memory
footprint of the ERIs, tensor decomposition methods,
particularly the resolution-of-the-identity (RI) ansatz,26−29

have been broadly applied in the context of MP2 deriva-
tives.5,6,12,30 However, with increasing molecule size, even the
third-order RI tensors eventually exceed the available disk space
of conventional high performance computing nodes. To
overcome this storage limitation, further reduction of the
dimensionality of the ERIs is desirable. This can be achieved by
the recently introduced tensor hypercontraction (THC)
factorization of Martıńez and co-workers,31−34 which in general
terms approximates a fourth-order integral tensor (μν|ô|λσ),
where ô is a singular two electron interaction kernel, by five
second-order tensors.35 In the least-squares formulation of THC
(LS-THC),31 four of these tensors are simply obtained by
evaluation of the basis functions at real-space grid nodes and the
singular ô operator is replaced by the LS-fitted Z matrix. If ô is
the Coulombic 1/r operator, a factorization of the regular ERIs is
achieved, which has been employed in reduced scaling
formulations of exact exchange,36 different orders of
MPn,31,33−41 the random phase approximation (RPA),42

complete active space perturbation theory (CASPT2),43 and
various flavors of CC theory,44−46 as well as equation-of-motion
CC (EOM-CC) theory.47 Recently Matthews35 thoroughly
investigated amplitude factorizations within MP3, as a stepping
stone toward CCSD, and noted that the LS-THC factorization
of nonlocal integrals, such as the exchange integrals, incurs an
additional error.

The applicability of THC for the computation of molecular
gradients is largely unexplored. Song et al.39 derived equations
for the analytical gradient of THC-AO-MP2 with application to
geometry optimizations and ab initio molecular dynamics
(AIMD) simulations. As commonly the derivation of gradient
equations of electron correlation methods is rather involved,
Song et al.48 also proposed an automatic differentiation scheme
for the automated generation of working equations for gradients
of THC-based correlation methods.

When it comes to applying tensor factorizations, be it RI or
THC, two possible routes to molecular gradients can be taken:
The first approach is to differentiate the RI- or THC-
approximated energy equation, then the associated gradient
describes the slope of an approximated potential energy surface
(PES). The second approach is to take the gradient of the
canonical energy and insert the approximation into the exact
gradient; this way an approximate gradient is used to move along
the exact PES.

The latter can lead to an unwanted buildup of errors during
the course of a simulation, when used in molecular dynamics
simulations. However, when used in conjunction with thermo-
stats constant energy is traded for constant temperature, and
depending on the extent of the gradient error, this approach can
still be applicable but must be tested for the chosen gradient.
The first approach was taken by Song et al.39 for their THC-
based MP2 molecular gradient, whereas in the present work, the
gradient equations with respect to a perturbation, that the basis
functions are independent of, are derived by inserting the THC
factorization into the equations of the exact gradient. As will be
discussed in section 2.4, the resulting equations are identical to
the ones obtained by differentiating the THC-AO-MP2 energy
equation. As a representative case of these kinds of
perturbations, we apply our recently developed low-scaling
LS-THC algorithm41 to the AO-MP2 energy derivative with

respect to the nuclear magnetic moment, for the computation of
HFCCs on the MP2 level of theory.

We present ways to efficiently treat the Coulomb- and the
exchange-like part of the most expensive intermediate of the
derivative within the LS-THC approximation. We demonstrate
the low-scaling behavior of our THC-ω-RI-CDD-MP2 deriva-
tive method for various chemically relevant systems. We also
show that THC-ω-RI-CDD-MP2 significantly outperforms our
previous implementation of ω-RI-CDD-MP26,30 for the
computation of isotropic HFCCs.

2. THEORY
2.1. Notation. Throughout this publication we make use of

the following indices:
• μ, ν, λ, σ: atomic orbital indices belonging to the AO basis

{χμ} of size Nbf.
• α, β, γ, δ: auxiliary basis indices belonging to the density

fitting basis {χα} of size Naux (usually Naux ≈ 3·Nbf).
• P, Q, R, S: grid point indices belonging to the LS-THC

grid of size Ngrid (usually Ngrid ≈ 3·Naux).
• i, j: occupied molecular orbital indices belonging to the

MO basis {ϕi} of size Nocc.
• a, b: virtual molecular orbital indices belonging to the MO

basis {ϕa} of size Nvirt (Nvirt ≫ Nocc).
• η, η′: spin indices, for either α- or β-electrons, with η′ ≠ η.
• κ: index of the Laplace quadrature points for the MP2

energy denominator with weights ωκ (usually integration
with 5−8 points is sufficiently accurate).

• k: index of the nucleus under consideration.
2.2. Review of the AO-MP2 Gradient. The unrestricted

AO-MP2 energy with a Laplace transformation49−51 for the
energy denominator is given as

E
1
2

( )AO MP2
,

=
{ } (1)

with

( ) ( ) ( ) ( ) ( )= | + | |

(2)

for which the transformed ERIs are given by

P P P P( ) ( )| = |
(3)

and P̲ and P̅ are the usual pseudodensities, given by

P C e C

P C e C

i
i

t
i

a
a

t
a

i

a

( )

( )

=

=
(4)

To obtain the AO-MP2 gradient, eq 1 has to be differentiated
with respect to a perturbation ξ. Since the focus of this work is on
HFCCs, as an example for a property for which the basis
functions are independent of the perturbation�here ξ′�the
following derivation is restricted to this special case. An in-depth
derivation of the AO-MP2 gradient equations, as well as a
comparison to the MO-MP2 gradient, is available in refs 6 and
25.

In order to obtain the gradient of the AO-MP2 energy, eq 1 is
differentiated with respect to ξ′

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00118
J. Chem. Theory Comput. 2022, 18, 5233−5245

5234

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00118?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


E 1
2

( )AO MP2

,

=
{ } (5)

with

R
P

R
P( )

2 ( ) 2 ( )= +
(6)

and intermediates R̲ and R̅ given by
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(7)

The above R intermediates can be thought of as the contraction
of all perturbation-independent parts of the gradient. Note that
eq 5 only involves the derivative of the pseudodensities and no
integral derivatives, as the basis functions are taken to be
independent of ξ′. In order to avoid the evaluation of the
derivatives of the perturbed occupied and virtual pseudoden-
sities, these intermediates are expanded in terms of the regular
occupied and virtual densities Pocc and Pvirt as
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Thus, the derivatives of eq 8 are given by
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By further making use of the identity

P S P S 1occ virt+ = (10)

the perturbed virtual density can be related to the perturbed
occupied density as

P Pvirt occ=
(11)

Note again that eq 11 does not contain the derivative of the
overlap matrix S, due to S being independent of ξ′. By making
use of the above relations for the densities, eq 6 becomes
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Cyclic permutation under the trace was applied above to obtain
terms of the general form
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which can be solved for Y by recursion, as detailed in refs 25 and
12. Let Y̅η be the solution of eq 13 with A ≡ τκ Pocc

η Fη and B ≡
Pocc

η R̅η, and let Y̲η be the solution with A ≡ − τκ Pvirt
η Fη and B ≡

Pvirt
η R̲η. Then, by making use of the other transformations

outlined above, the derivative from eq 6 can be rewritten as
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where intermediate G ( )[ ] resembles the Fock matrix with
( ) substituting for the density matrix; that is,

G ( ) ( ) 2( ) ( )[ ] = [ | | ]
(17)

Note that the first term in eq 15 only includes the derivative of
the core Hamiltonian matrix as the integrals in the Fock matrix,
from which this term originates from, are independent of ξ′.

Equation 15 permits an elegant solution for the perturbed
density, avoiding the need to solve coupled-perturbed self-
consistent field (CPSCF) equations for all perturbations ξ′, by
means of applying a AO-based Z-vector-like method25 originally
proposed by Handy and Schaefer.52 The implicit first derivative
of the occupied density can therefore be efficiently obtained by
applying the density matrix-based Laplace-transform unre-
stricted CPSCF (DL-UCPSCF) method by Beer and
Ochsenfeld.53 The intricacies of this method are detailed in
refs 53, 25, and 6.

To conclude, eqs 5 and 15 yield the first derivative of the AO-
MP2 energy with respect to a perturbation ξ′. More specifically,
if ξ′ was an external electric field then eq 5 would yield
permanent dipole moments, and if ξ′ was equal to the nuclear
magnetic moment Mk of a given nucleus k then the isotropic
contribution to the HFCC of nucleus k in the absence of spin−
orbit coupling would be obtained. The latter property will be
used as a sample property for the newly developed THC-ω-RI-
CDD-MP2 derivative method presented in section 2.4.
2.3. RI-CDD-MP2 HFCCs. The computational bottleneck of

obtaining the AO-MP2 gradient in eqs 5 and 15 are the integral
contractions in the formation of the R matrix intermediates
given by eq 7. Because forming the R-matrices involves the same
contraction with the pseudodensities as the AO-MP2 energy,
the computation of the gradient will a priori also have quintic
scaling. As is common practice when dealing with these kinds of
integral contractions, the RI approximation can be inserted into
eq 7 to lower the computational cost as well as the memory
requirements by avoiding the fourth-order ERI tensors. To
further lower the prefactor of the integral transformations a PCD
of the pseudodensities can be used, which is known as the
Cholesky-decomposed pseudodensity (CDD) approach. The
CDD method produces a set of so-called Cholesky pseudo-MO
coefficient matrices L̲ and L̅ according to
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which are used analogously to the regular MO coefficients. The
combined RI-CDD approach leads to a reformulation of the
integrals incorporated in the R intermediates as

i a j b B B( ) i a j b, ,| =
(19)

with

B L L ( )( )i a i a,
1/2= | |

(20)

In combination with QQR-type integral screening the RI-
CDD-MP2 gradient method was shown to yield cubic scaling for
the computation of molecular gradients and HFCCs.6 To
further reduce the scaling, Vogler et al.30 employed the
attenuated Coulomb metric54,55 in the RI approximation as
well as the scaled-opposite spin (SOS)56 approximation, which
removes the same spin contribution entirely. Still, the expensive
formation of the R intermediates has to be done for every
Laplace point and thus constitutes the predominant part of the
wall time for the evaluation of the MP2 gradient with respect to a
perturbation ξ′, even with the ω-RI-CDD-SOS-MP2 meth-
od.6,30

2.4. THC-CDD-MP2HFCCs. ERIs are ubiquitous in electron
correlation methods and their transformation and contraction
usually represents the bottleneck of the calculation. This is
especially the case when many different ERIs, that is, fully and
partially transformed into the MO space or contracted with a
perturbed density matrix, are needed, and their formation has to
be carried out repeatedly, such as inside a Laplace expansion or
during the iterative solution of amplitude equations. Since the
scaling behavior of these operations is dependent on the
dimensionality of the representation of the ERI tensor, a most
compact representation is desirable. Of particular interest is thus
the THC factorization, which in its AO formulation
approximates an ERI as

X X Z X X( )
PQ

P P PQ Q Q|
(21)

and�in LS-THC�the X-matrices are simply obtained by
evaluation of basis functions at the THC grid.31 The analytical
expression of theZ-matrix can be shown to be the solution to the
normal equations associated with the least-squares equation of
finding the THC factorization (see the Supporting Informa-
tion). As has been shown previously,33,34,36,39,41−43 the THC
factorization can achieve major savings in computation time for
intermediates involving ERI contractions, by reducing the
representation of the ERIs to only second-order tensors. In this
work, we make use of our recently reported low-scaling THC
method41 based on the ω-RI approximation for the ERIs
contained in Z and natural blocking (NB).57,58 However, in
contrast to our work on THC-MP2 energies,41 in the present
work the AO ERIs are fitted, since the gradient for calculating
the MP2 HFCCs is based on our RI-CDD approach to the
computation of AO-MP2 energy gradients.6 It is important to
note here, that while the equations for the THC-based gradient

method are derived by inserting the THC factorization into the
equations of the RI-CDD-MP2 gradient with respect to ξ′, there
is no difference to directly differentiating the THC-AO-MP2
energy equations. This is the case, because neither X nor Z
depend on the perturbation ξ′ in the AO-THC formulation.
This independence would not be given if either the MO-THC
approach was used or for the more general derivative with
respect to ξ, which would necessitate the derivatives of the THC
tensors. In other words, by simply inserting the THC
factorization into eq 7 the derivative of the THC-ω-RI-CDD-
MP2 energy with respect to ξ′ is obtained.

To reduce the computation time needed for forming the
expensive R-matrices of the UMP2 gradient, the AO-THC
factorization is inserted into eq 7 in its RI-CDD formulation to
yield
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where X̲ and X̅ are the collocation matrices X transformed into
the occupied and virtual Cholesky pseudo-MO basis,
respectively. In MP2 it is often advisable to treat Coulomb-
and exchange-like contributions separately,58 thus the R-
matrices are partitioned intoRC, the Coulomb-like contribution,
and RX, the exchange-like contribution.

2.4.1. THC R-Matrices: Coulomb-like Contribution. The
Coulomb-like parts R̲C and R̅C are given by
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(23)

and can�in analogy to the THC-MP2 energy�be efficiently
computed using sparse linear algebra.41 In doing so, R̲C and R̅C

are especially efficient to compute, as their formation only
involves BLAS level 3 operations. For an efficient implementa-
tion it is important to realize, that for large enough molecules
and appropriate ordering of the THC grid points, the collocation
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matrices X become sparse, while the Z-matrix, being the
representation of the long-ranged 1/r operator, will always
remain dense. By closer inspection of eq 23, it can be noticed,
that the X-matrices corresponding to the MOs of the ket of the
decomposed ERI and the Z-matrix are identical for all terms.
Therefore, these matrices can be collected in an intermediate Dη

given by Algorithm 1, where intermediates A and B are given by

A X X

B X X

,

,

j
j
Q

j
S

b
b
Q

b
S

QS, , ,

QS, , ,

=

=
(24)

and represent the occupied and virtual pseudodensity in the grid
basis, respectively. Additionally, the Λ-factorization of the Z-
matrix, i.e., Z ≡ ΛΛT, is used to lower the prefactor of this
step.34,41

As forming intermediate D requires a series of dense matrix−
matrix-multiplications, this step will require the majority of the
computation time for R̲C and R̅C. However, Algorithm 1 has to
be performed only once per Laplace point and electron spin.
The final contribution to the R-matrices can then simply be
obtained by a Schur product and two matrix−matrix-multi-
plications given by Algorithm 2.

The effects of Algorithms 1 and 2 can be best understood by
visualizing the underlying tensor contractions in a tensor
network diagram, as given in Figure 1. For an introduction of
tensor network diagrams, also in the context of THC, refer to the
work by Schutski et al.46 Algorithms 1 and 2 are then pieced

together with the algorithm for the exchange-like part, detailed
in the next section, for the final Algorithm 4 in section 2.4.3.

2.4.2. THC R-Matrices: Exchange-like Contribution. Usually
when higher than second-order tensors arise, the associated
tensor contractions are either carried out with the tensors
reshaped into matrices or batched over the dimensions
exceeding matrix dimensionality in so-called tensor slices. For
an efficient contraction when iterating over tensor slices it is
advisable to make use of an underlying structure to reduce the
dimensions of the slices, either by matrix decomposition of the
slice or by neglecting noncontributing elements. If whole rows
and columns are excluded based on some significance criterion,
one arrives at the natural blocking (NB) formalism57,58 for
tensor contractions. NB relies on significance lists, which in
general terms describe which pairs, of a general index pair i and j,
contribute to a tensor contraction involving these indices.
Mathematically speaking these lists are sets and thus can, in set-
builder notation, be represented as

j j j Ai i ij NB{ } = { | | | > } (25)

where A is a screening matrix involving indices i and j, and εNB is
the NB screening threshold. To avoid confusion, we use ji as a
shorthand notation for the set of all significant j for a particular
index i and {ji} for the set of all ji. If two elements in a set {ji} are
identical, it technically becomes a multiset, as elements in sets
are only allowed to have a multiplicity of 1. In set terminology,
the set {i}j is the transpose of {j}i and can analogously
determined from AT as

i i i Aj j ji NB{ } = { | | | > } (26)

or directly from {ji}. Another important quantity is the number
of significant pairs Nij, which is defined as

N iij
i i

j
j j

= | |
{ } (27)

NB and THC work particularly well together for exchange-like
contractions of ERIs, as within the THC formalism the
necessary screening matrices can easily be constructed as
outlined in the following. The following prototypical exchange-
like ERI contraction from the THC-CDD-MP2 energy
expression will serve as an example:

i a j b i b j a

X X Z X X X X Z X X

( )( )

PQRS
i
P

a
P PQ

j
Q

b
Q

i
R

b
R RS

j
S

a
S

| |

·
(28)

Two types of indices are present in the above equation, the
orbital indices i and j (occupied space) as well as a and b (virtual
space) and the THC auxiliary indices P, Q, R, and S. In the
following discussion we use the LS formulation of THC, but the
statements also hold for other THC variants. Thus, there are

Figure 1. Tensor network representation of the contractions performed by Algorithms 1 and 2 for the formation of a Coulomb-like contribution R̅C,η.
By symmetry, R̲C,η can be formed analogously, but with intermediates A and B interchanged. Tensors contracted in ensuing steps are highlighted.
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three general types of index pairs: orbital−orbital, orbital−grid,
and grid−grid index pairs. The set of significance lists for orbital-
grid type pairs is especially easy to construct, since it can be
directly derived from the collocation matrices X. For example,
the set of all significant grid points P for a given occupied orbital i
can be constructed as

P P P Xi i i
P

NB{ } = { | | | > } (29)

Significant orbital−orbital pairs are also easily obtained from the
collocation matrices; for example, the set of significant virtual
orbitals a for a given occupied orbital i can be built as

a a a X Xi i
P

i
P

a
P

NB{ } = { | | || | > }
(30)

The screening criterion from eq 30 can also be interpreted to
yield only ia pairs, for which the orbitals have significant overlap
and which produce non-negligible charge densities. For the
development of low-scaling exchange-type contractions it is
important to make use of the exponential coupling between all
orbital indices. Orbital i couples to orbital a in an exponentially
decaying fashion in the bra of the first ERI in eq 28. Likewise,
orbital j also couples to orbital a in an exponentially decaying
fashion in the ket of the second ERI. Thus, there is indirect
exponential coupling between orbitals i and j via orbital a and the
set of significant orbitals i for a given orbital j can be derived from
the sets {aj}, which is identical to {ai}, and {ai}:

i i i a aj j i j{ } = { | } (31)

With the significance lists given by eqs 29, 30, and 31, an
asymptotically linear scaling algorithm for the exchange-like
energy contribution to MP2 can be devised. The algorithm is
detailed in the Supporting Information and close to linear
scaling is demonstrated. Here, however, the focus lies on the
exchange-like parts of the R-matrices, which are conceptually
similar, but different in that two AO indices remain
uncontracted. The tensor contractions necessary for forming
the RX parts can again best be understood from the tensor
network diagram in Figure 2.

While Figure 2 only shows the R̅X part, the R̲X contribution
can be constructed analogously. First, intermediates A or B are
formed from the collocation matrices X̲ or X̅, respectively.
Second, the remaining collocation matrices, the Z-matrices and
intermediates A or B are contracted to the third-order tensor
intermediate D, where the symmetry of the tensors is used to
reduce the operation count. The idea for an efficient
implementation is then as follows: to avoid storing third-order
tensors, the contraction is batched over the occupied orbital
index common to both R̲ and R̅, and to reduce the cost of the
dgemm operations within the loop NB is applied. In this way
separate algorithms for R̲X and R̅X can be formulated, which are

presented in the Supporting Information. By closer inspection,
however, it can be seen, that both RX-matrices share the most
expensive to compute intermediate, which incorporates the Z-
matrix. Therefore, a joint computation as given by Algorithm 3 is
preferred.

First, according to eqs 29, 30, and 31 all necessary significance
lists are computed and then the precursor intermediates to R̲X

and R̅X, that is, the matrices E and F, are accumulated in a loop
over the common occupied orbital index j. Lines 12 and 21

Figure 2. Tensor network representation of the contractions performed by Algorithm 3 for the formation of an exchange-like contribution R̅X,η. By
symmetry, R̲X,η can be formed analogously, however, in Algorithm 3 a different approach is used to reduce the prefactor. Tensors contracted in ensuing
steps are highlighted.
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represent the bottleneck of the algorithm as their evaluation
formally scales as N N( )grid

3
occ . However, since all involved grid

indices P, Q, and R are connected to j through the significance
lists {Sj} (identical to {Qj}) and {Rj} (identical to {Pj}), the size
of the involved matrices in NB format is asymptotically constant.
Therefore, as Nocc grows linearly with the molecule size, the
formation of the RX-parts can be done in linear scaling time. For
this, appropriate thresholds have to be chosen for the formation
of the significance lists. Instead of using the same threshold for
all pairs, we identify three different types of lists: (1) grid-
occupied orbital index pairs, e.g., {Sj}, (2) grid-virtual orbital
index pairs, e.g., {bR}, where, in both cases, the orbital index is
coupled to the grid index directly by a collocation matrix, and
(3) virtual-occupied orbital index pairs, e.g., {bj}, which are
coupled in real-space over grid points. While the final algorithm
only requires the {Sj} and {Rj}/{Pj} lists, the selection of index
pairs included in {bR} and {bj} is still important, as the {Rj}/{Pj}
lists are built from these lists analogously to eq 31.

2.4.3. THC R-Matrices: Final Algorithm. Piecing together
Algorithms 1 and 2 for the Coulomb-like part and Algorithm 3
for the exchange-like part, the final algorithm for the formation
of the R-matrices is given by Algorithm 4.

Overall, Algorithm 4 has to be executed once per Laplace
point and is separated into a precontraction phase and the phase
for the actual formation of the contributions to R̲ and R̅. In the
precontraction phase intermediates Dη are formed, which
represent the most expensive part for the Coulomb-like terms,
as the subsequent calls to Algorithm 2 only contribute a Schur
product and two dgemm operations. These dgemm calls
contribute a negligible overhead compared with line 3 of
Algorithm 1, as the dimensions of the matrices involved are
reduced. In total, however, Algorithm 3 will dominate the
runtime for forming the R-matrices due to its formal N( )4

scaling.

3. COMPUTATIONAL DETAILS
The above-described THC-ω-RI-CDD-MP2 HFCC code is
implemented within our quantum chemistry package
FERMIONS++.59−61 For the THC-based HFCC calculations
the hand-optimized grids by Martıńez and co-workers38 were
used together with the Dunning cc-pVXZ (X ∈ {D, T}) basis
sets62 and the corresponding auxiliary basis sets. For the
phosphorus atoms in the DNA backbone, the fluorine grids were
used without loss of accuracy as reported in our work on THC-
MP2 energies.41 All calculations were carried out without the
frozen-core approximation. All preceding SCF calculations were
converged to an energy difference of 10−8 H and a FPS−SPF
commutator difference of 10−7 using DIIS acceleration.63 For
the gradient calculations seven Laplace points were used in the
expansion and the DL-UCPSCF algorithm was converged to an
error of 10−4 for all molecules of the benchmark set in section 4.
For all subsequent calculations on larger molecules, a threshold
of 10−3 was used. These settings were shown to yield errors
below 1 MHz.6,30 For the assessment of the accuracy of the
THC-ω-RI-CDD-MP2 HFCCs against other methods, the
standard orientation was used. For the THC factorization of the
ERIs an attenuation strength of 0.1 in the attenuated Coulomb
metric was used54,55 and the same general protocol for screening
based on integral partition bounds (IPBs)64 and NB, as in our
work on THC-MP2 energies, was followed, although adjusted to
fit ERIs in the AO basis.41 All timings are done on an AMD
EPYC 7302 (3.30 GHz) CPU node with 256 GB RAM and 1.7
TB of SSD disk space.

4. RESULTS AND DISCUSSION
First, the accuracy of the newly developed THC-ω-RI-CDD-
MP2 method for the calculation of isotropic HFCCs is assessed
against our reference ω-RI-CDD-MP2 implementation.6,30

Next, the thresholds necessary for the screening in the expensive
exchange-like contribution RX are optimized on a set of
medium-sized organic radicals. Finally, the scaling of the
THC-ω-RI-CDD-MP2 method is analyzed and timings are
compared to the ω-RI-CDD-MP2 reference for a set of
representative radicals.
4.1. Accuracy of THC-ω-RI-CDD-MP2 HFCCs. Through-

out this publication, our ω-RI-CDD-MP2 implementation for
the computation of HFCCs by Vogler et al.,6,30 which was
verified against the RI-MP2 implementation in the ORCA
program package,65 will serve as reference. The original
implementation, however, made use of the SOS approximation
and excluded the exchange-like terms. To enable a fair
comparison, the exchange-like terms were added analogously
to the earlier implemented RI-CDD-based AO-MP2 gradient,6

albeit with the attenuated Coulomb metric for the RI integrals.
For the comparison, first the accuracy of the presented THC-ω-
RI-CDD-MP2 method for HFCCs is assessed. The THC-ω-RI-
CDD-MP2 method is benchmarked using a set of 12 organic
radicals from a recent study7 on the effects of electron
correlation, molecular dynamic contributions, and solvation
effects on HFCCs. Mean absolute deviations (MAD), root-
mean-square deviations (RMSD), and absolute maximum
deviations (MAX) are given in Table 1. We note that we used
all 12 radicals for the comparison, even though, as Vogler et al.7

pointed out, some molecules are spin contaminated. While the
latter certainly has an effect on the reliability of the results, when
comparing to experiment, it should not influence the
comparison of different methods.
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Table 1 shows that the mean errors for the THC-ω-RI-CDD-
MP2 method are below 1 MHz for both basis sets, while the
MAX error corresponds to atoms with high spin density, that is,
19F in the CF3 radical for the double-ζ basis set and 11B in the
BH3 radical for the triple-ζ basis set. While for these nuclei the
absolute error is larger, the relative error is still below 1%, as due
to their high spin density the HFCCs are large in magnitude.
The origin of these errors is mainly based on the following two
shortcomings: (1) Using the hand-optimized THC grids by
Martıńez and co-workers38 for AO-THC incurs additional
errors over MO-THC as these grids were optimized for fitting
MO-based ERIs, for which the orbital space is much more
compact compared to ERIs in the AO basis. This phenomenon
was observed similarly in our recent work on THC-ω-RI-CDD-
MP2 energies.41 (2) Since grid-based THC uses DFT-like
integration grids, THC-based properties are likewise prone to
not being rotationally invariant. In DFT the problem is alleviated
through larger grids, which THC cannot make use of without
forfeiting the reduction in computational cost compared to the
respective canonical method. However, we found that these
rotational errors are on the order of 0.01−0.05 MHz, depending
on the magnitude of the spin density on the respective nucleus.
Overall, we consider a mean deviation of less than 1 MHz to be
less than the method error of RI-MP2 and certainly accurate
enough, when compared against experimental results, where, as
shown by Vogler et al.,7 other effects like dynamic contributions
or solvation effects contribute significantly.
4.2. Threshold Optimization.After having established that

the presented THC-ω-RI-CDD-MP2 method provides reliable
HFCCs, the focus is now on optimizing the time complexity of
the underlying algorithm while preserving the accuracy. An
obvious point for optimization is the formation of the exchange-
like parts RX, for which Algorithm 3 has quartic scaling if no
screening is applied. However, as discussed in section 2.4.2, by
applying NB with carefully chosen thresholds, the formation of
RX should be possible with linear time complexity. As outlined in
section 2.4.2, different thresholds will be used in the screening
process for the different types of significance lists. We associate
the thresholds εSj, εbR, and εbj with the significance lists {Sj},
{bR}, and {bj}, respectively. Since εSj directly determines the
pairs included in {Sj}, and εbR/εbj only indirectly determine the
pairs in {Rj}, the optimization of these thresholds is simplified by
separately optimizing εSj and εbR/εbj. The thresholds are first
optimized for the smaller double-ζ basis set and later transferred
to the triple-ζ basis. For this, we chose a set of six medium-sized
radical molecules and supramolecular assemblies, which are
large enough for the screening to have effect. For further
information on this benchmark set see the Supporting
Information. Table 2 summarizes the errors and the resulting
average number of significant pairs N̅Sj in {Sj} for the
optimization of εSj.

While for threshold values of 10−6 through 10−4 the error
remains negligible, the screening shows an effect in that N̅Sj
indicates that only roughly a third of the pairs in {Sj} are
necessary for this accuracy. The mean errors grow roughly
linearly with loosening thresholds and remain sufficiently small
for a range of threshold values. For εSj ≥ 10−3 especially the
MAX error deteriorates above 1 MHz, while the MAD remains
below 0.1 MHz. For the optimization of εbR and εbj,
combinations of thresholds have to be considered, since they
determine, through eq 31, the significant pairs in {Rj}. The
results of this optimization are shown in Figure 3 as a heatmap.

From Figure 3 it can be seen, that the MAD is stable through a
wide range of threshold values, only significantly worsening
when choosing εbR > 10−2, irrespective of the value chosen for
εbj. The observation that even for looser thresholds, for example,
εbR = εbj = 10−2, still roughly 80% of the pairs in {Rj} are
significant stems from the fact that indices R and j are coupled
indirectly over a virtual orbital b. According to eq 31 a pair of
indices R and j is only considered insignificant, if they do not
share significant overlap with any virtual orbital b. Therefore, N̅Rj
will always be greater than N̅Sj for any sensibly chosen
combination of thresholds.

With the separate optimization of εSj and εbR/εbj as a starting
point, different combinations of these three thresholds were
tested. The best trade-off between accuracy and the number of
significant pairs appeared to be for the thresholds εSj = 10−3, εbR
= 10−2, and εbj = 10−2, for which the errors are summarized in
Table 3.

The chosen combination of thresholds provides good
accuracy for both basis sets, with the errors for the triple-ζ

Table 1. Errors of the HFCCs Obtained with the THC-ω-RI-
CDD-MP2 Method Compared to the ω-RI-CDD-MP2
Reference Implementation for the HFCC Benchmark Set
from Vogler et al.7 and the cc-pVXZ/cc-pVXZ-RI (X ∈{D,
T}) Basis Sets

basis set MADa RMSDa MAXa

cc-pVDZ 0.304 0.478 1.822
cc-pVTZ 0.092 0.167 0.675

aDeviations in MHz.

Table 2. Threshold Optimization of εSj: Errors of the HFCCs
and Average Numbers of Significant Pairs (N̅Sj) from the
Screening Benchmark Set, Obtained with the Chosen
Threshold for εSj (εbR = 0, εbj = 0, cc-pVDZ)

εSj N̅Sj
a MADb RMSDb MAXb

10−6 77.6 2.8 × 10−7 8.7 × 10−7 1.1 × 10−5

10−5 57.9 8.2 × 10−6 2.0 × 10−5 1.8 × 10−4

10−4 36.7 1.5 × 10−4 3.5 × 10−4 3.4 × 10−3

10−3 12.8 3.5 × 10−3 1.1 × 10−2 1.9 × 10−1

10−2 5.8 9.2 × 10−2 3.6 × 10−1 6.2 × 100

aRatio in %. bDeviations in MHz.

Figure 3. Threshold optimization of εbR and εbj: In each cell the MADs
(in MHz) of the HFCCs (top value) and the average numbers of
significant pairs (N̅Rj in %, bottom value) are given as an average from
the screening benchmark set (εSj = 0, cc-pVDZ).
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basis being somewhat larger. The latter could be improved
through a separate optimization of the thresholds for the triple-ζ
basis. However, in view of the fact that the mean errors are still
below 0.1 MHz, the thresholds optimized for the double-ζ basis
set seem to be suitable for the larger basis set as well.
4.3. Timings and Scaling. With the optimized screening

thresholds at hand, the scaling behavior of the THC-ω-RI-
CDD-MP2 method for the computation of HFCCs is analyzed
and compared to the previous ω-RI-CDD-MP2 implementa-
tion.6,30 For the assessment of the asymptotic scaling behavior,
HFCCs for a series of linear alkyl radicals CnH2n+1 are computed.
In Figure 4 the timings are shown together with the underlying
contributions from the most significant steps for both basis sets.

As is evident from Figure 4, the overall scaling behavior is
governed by the contribution from the exchange-like parts of R
(Algorithm 3), while the Coulomb-like terms (Algorithms 1 and
2) and the overhead from obtaining the THC factorization only
contribute marginally. For both basis sets, the THC-ω-RI-CDD-
MP2 method reaches subquadratic scaling, while the scaling is
also partly influenced by the Fock matrix builds in the Z-vector
step. The increased cost of the Z-vector step for larger fragment
sizes in the case of the double-ζ basis set is also the reason for the
overall scaling exponent slightly deteriorating beyond C140H281
to 1.62. To prevent this unfavorable scaling for the larger triple-ζ
basis set, the recommendations by Laqua et al.,66 which are
default settings in FERMIONS++, are followed, and the recently
presented seminumerical exchange method (sn-LinK) is used
for the exchange part of the Fock matrices. The latter makes the
overall scaling for the cc-pVTZ basis set almost entirely be
governed by Algorithm 3 (blue bars). Therefore, the scaling
reduces to close to linear for the largest fragment size
considered. The same is true for the cc-pVDZ basis set, for
which Algorithm 3 reaches an apparent asymptotic scaling of 1.3.

To go toward more chemically relevant systems and beyond
what was possible with our previous ω-RI-CDD-MP2
implementation, the scaling behavior for spin-labeled ad-
enine−thymine base pair stacks (AT)n is assessed.

Figure 5 (left) shows the scaling behavior for spin-labeled
DNA fragments up to seven repetition units or 5101 basis
functions. As expected, the onset for subquadratic scaling is for
greater fragment sizes compared to the alkyl radicals. Nonethe-
less, the scaling exponent decreases to 1.87 for (AT)6 → (AT)7.
Further reduction with increasing fragment size can be expected
based on the growth rate of the number of significant pairs in
{Sj} and {Rj}. In Figure 5 (right) the logarithm of the total
number of significant pairs is shown for all index pairs relevant
for Algorithm 3. The runtime of Algorithm 3 is mainly governed
by NSj and NRj and relies on only a constant number of grid
points being significant for a given occupied orbital, see section
2.4.2. If only a constant number of grid points is significant for a
given occupied orbital, then NSj and NRj will grow linearly with
increasing molecule size. The latter is demonstrated for NSj, that
is, the grid point-occupied orbital pair directly coupled by a
collocation matrix. NRj is inherently greater than NSj, since {Rj} is
formed from eq 31 with coupling of R and j over a virtual orbital
b. The latter is also the reason for the scaling exponent not quite
reducing to 1.0 and there being an onset for the close to linear
scaling. This also explains why Algorithm 3 reaches subquadratic
scaling for the DNA system, but not quite linear scaling.
Nonetheless, the THC-ω-RI-CDD-MP2 method also reaches
subquadratic scaling for the spin-labeled DNA fragments under
consideration and allows for the computation of HFCCs for
almost 500 atoms and more than 5000 basis functions.

While the asymptotic scaling exponent of a quantum chemical
method is certainly important for the treatment of large
(bio)chemical systems, the prefactor oftentimes determines
the applicability of a method for a certain problem. In other
words, a method can be linear scaling, but have a prefactor so
large, that calculations still remain unfeasible. Another aspect
which determines feasibility are memory/storage requirements,
oftentimes governed by the necessity to store ERIs or amplitude
tensors present in electron correlation methods. These aspects
are considered in the following for a comparison of the ω-RI-
CDD-MP2 method in its all-nuclei variant6,30 and the presented
THC-ω-RI-CDD-MP2 method for a collection of organic
radicals. An additional comparison against the selected-nuclei

Table 3. Errors of the HFCCs from the Screening Benchmark
Set, Obtained with the Chosen Thresholds (εSj = 10−3, εbR =
10−2, εbj = 10−2) for the THC-ω-RI-CDD-MP2 method
referenced against the same method with disabled screening

basis set MADa RMSDa MAXa

cc-pVDZ 0.004 0.011 0.189
cc-pVTZ 0.023 0.077 0.941

aDeviations in MHz.

Figure 4. Detailed timings for the computation of HFCCs with the THC-ω-RI-CDD-MP2 method (black) for linear alkyl radicals CnH2n+1 as well as
significant contributions from underlying steps (colored bars) for the cc-pVDZ (left) and cc-pVTZ (right) basis sets. The numbers between fragments
correspond to the scaling with respect to the preceding fragment.
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variant of ω-RI-CDD-MP2,30 which was proposed to alleviate
some of the shortcomings of the ω-RI-CDD-MP2 method, is
given in the Supporting Information. Here, the focus is on
typical applications on medium-sized organic radicals. Table 4

summarizes the estimated storage requirements Mest and the
wall times t for the radicals, as well as the speedups S relative to
the ω-RI-CDD-MP2 implementation. More information on
how the storage requirements are estimated is given in the
Supporting Information.

THC has a natural advantage over RI-based methods when it
comes to storage requirements. In THC-based methods the
largest tensors necessary to keep in memory or store on disk are
second-order tensors of dimension Ngrid × Ngrid. For RI-based
methods the dimensionality of the factorized representation of
the fourth-order ERI tensor increases to three with dimensions
Nocc × Nvirt × Naux in the MO basis. Therefore, THC-ω-RI-
CDD-MP2 is superior with an order of magnitude less storage
requirements, as can be seen from Table 4. Furthermore, the
THC-based method considerably outperforms ω-RI-CDD-

MP2 in terms of computation time with speedups up to roughly
600 for the double-ζ basis set and 800−1200 for the triple-ζ
basis set. The relative speedups are somewhat reduced when
comparing the methods for predominantly linear and very sparse
systems like linear alkyl radicals, signifying that the ω-RI-CDD-
MP2 uses the sparsity well in these model cases. For larger and
more globular structures, the computational savings with the
THC-ω-RI-CDD-MP2 method are significantly greater, in-
dicating that Algorithm 4 utilizes the sparsity well, even in
nonlinear systems. The latter, and the reduced memory
requirements make the THC-ω-RI-CDD-MP2 method attrac-
tive for the computation of HFCCs of large, globular systems, as
they are commonly encountered in proteins and enzymes.
Furthermore, due to the greatly reduced computational cost, the
method is applicable in double-hybrid functionals, where usually
the MP2 part is the computational bottleneck, while also
allowing for sampling of multiple points on the PES.

5. CONCLUSIONS AND OUTLOOK
In this work, we presented the THC-ω-RI-CDD-MP2 method
for the efficient and accurate computation of isotropic HFCCs
for large organic radicals. As usual for MP2 methods, the
exchange-like terms, here RX, govern the scaling and runtime of
the method. This issue was addressed through screening based
on the THC collocation matrices X in combination with natural
blocking for the tensor contractions. An asymptotically linear
scaling recipe for the contraction of exchange-like terms in THC
format is provided. This recipe is applied to the RX terms,
reducing the formal quartic scaling to effectively subquadratic, as
shown for linear alkyl radicals and spin-labeled DNA strands.
The THC-ω-RI-CDD-MP2 method furthermore highlights the
attractiveness of THC-based methods for derivatives of electron
correlation methods. Derivative calculations usually involve
more types of ERIs, for example, half-transformed integrals,
integrals with mixed spin in openshell calculations, or integrals
contracted with perturbed densities. This generally increases
storage requirements compared to single point calculations.
Furthermore, the computational cost of the method is strongly
increased due to additional ERI contractions. Both challenges
are overcome by using THC-factorized ERIs, for which only
second-order tensors have to be stored and integral trans-
formations and contractions can be easily reduced to simple

Figure 5. Detailed timings for the computation of HFCCs with the THC-ω-RI-CDD-MP2 method (black) for spin-labeled (AT)n radicals as well as
significant contributions from underlying steps (colored bars) for the cc-pVDZ basis set. Scaling behavior of the number of significant index pairs {Sj}
(red) and {Rj} (dark blue) for increasing fragment sizes (right). The numbers between fragments correspond to the scaling with respect to the
preceding fragment.

Table 4. Comparison of the Memory Requirements Mest,
Timings t, and Relative Speedups S of the THC-ω-RI-CDD-
MP2 Method with the Previously Implemented ω-RI-CDD-
MP2 Method

ω-RI-CDD-MP2 THC-ω-RI-CDD-MP2

system Nbf Mest/GB t/h Mest/GB t/h S

cc-pVDZ
C60H121 1445 201.0 101.8 11.7 0.7 145
TEMPOHd2O 1444 208.5 345.9 11.7 1.5 230

(glu)4 1074 90.0 380.2 5.9 0.7 540
PTMA3 1102 93.8 620.9 6.5 1.2 517
(AT)2 1566 286.0 1111.0 23.1 1.9 585

cc-pVTZ
C20H41 1174 66.1 363.3 8.7 0.6 606
TEMPO 582 8.2 160.1 2.1 0.2 891
Tyr 530 6.6 99.4 1.4 0.1 780
Thy 1260 86.6 1346.2a 8.7 1.1 1224
(AT)1 1982 340.4 2727.8a 20.7 3.1 880

aTimings are estimated conservatively based on the time taken for the
first Laplace point.
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dgemm operations. The advantages of THC-based gradient
methods are demonstrated for HFCC calculations on a range of
medium-sized organic radicals and spin-labeled DNA strands
with more than 5000 basis functions.

For future applications, the availability of THC grids has to be
improved, as ideally EPR-specific basis sets,67 and correspond-
ing THC grids, should be used for the calculations presented.
The grids used throughout this publications were hand
optimized38 and are only viable for the cc-pVXZ (X ∈{D,T})
basis sets. Furthermore, these grids were optimized based on
MO-THC-MP2 and not for AO-THC, as used throughout this
work. This incurs additional errors due to the larger fitting space.
Different techniques for the on-the-fly generation of THC grids
have been proposed, either based on PCD of the THC metric in
a larger parent grid basis,40 or based on centroidal Voronoi
tesselation (CVT),36 and could be applied for the calculation of
THC-MP2 HFCCs in future work.

Finally, the developed THC-ω-RI-CDD-MP2 method can
easily be used for the MP2 part of double-hybrid functionals and,
once appropriate grids are available, enable accurate HFCC
predictions for large molecules. Furthermore, due to the reduced
computational complexity and memory requirements, THC-ω-
RI-CDD-MP2, in conjunction with an appropriate double-
hybrid functional, is an attractive candidate for QM/MM HFCC
calculations.
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