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Abstract: Aquaporin 4 (AQP4) is the most abundant water channel in the central nervous system
(CNS). Its expression is confined to non-neuronal glial cells, predominantly to astrocytes that represent
a heterogeneous glial cell type in the CNS. The membrane of astrocyte processes, which align brain
capillaries and pia, is particularly rich in AQP4. Several isoforms of AQP4 have been described;
however, only some (AQP4a (M1), AQP4 c (M23), AQP4e, and AQP4ex) have been identified
in the plasma membrane assemblies of astrocytes termed orthogonal arrays of particles (OAPs).
Intracellular splicing isoforms (AQP4b, AQP4d, AQP4f, AQP4-∆4) have been documented, and most
of them are postulated to have a role in the cell surface distribution of the plasma membrane isoforms
and in the formation of OAPs in murine and human astrocytes. Although OAPs have been proposed
to play various roles in the functioning of astrocytes and CNS tissue as a whole, many of these still
need to be described. OAPs are studied primarily from the perspective of understanding water
permeability regulation through the plasma membrane and of their involvement in cell adhesion and
in the dynamics of astrocytic processes. This review describes the cellular distribution of various
AQP4 isoforms and their implications in OAP assembly, which is regulated by several intracellular
and extracellular proteins.

Keywords: aquaporin 4 (AQP4); astrocyte; glia; orthogonal arrays of particles (OAP); brain edema;
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1. Cellular Localization of Aquaporin 4 in Astrocytes

Aquaporin 4 (AQP4) is one of the three types of aquaporins (AQPs) that have been described
in astrocytes [1]. Besides AQP4, astrocytes also express AQP1 and aquaglyceroporin AQP9,
although in human astrocytes, the expression of the latter two is mainly detected in neuropathologic
conditions [1]. Most AQPs transport only water molecules, as is the case with AQP1 and AQP4,
but some, including AQP9, can also transport various non-charged solutes, including polyols, purines,
pyrimidines, urea, and monocarboxylates [1–4]. AQP4 is the predominant water channel in the brain,
and its expression is mainly confined to astrocytes, but its distribution and levels of expression vary
between different brain regions [3]. In the cerebral cortex, AQP4 expression is particularly abundant in
astrocytes aligning blood vessels [3]. A similar distribution along capillaries was detected throughout
the hippocampus, corpus callosum, cerebellum, and brain stem where AQP4 labeling was confirmed
around neuronal cell bodies [3,5]. Certain regions, such as osmosensory areas, do not show polarization
of AQP4 expression [6]. Nevertheless, the predominant pattern of AQP4 in the central nervous system
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(CNS) is highly polarized, especially in astrocytes in the proximity of or in contact with blood vessels,
the ependymal layer, and pia. Here, AQP4 is not distributed evenly in the plasma membrane; rather it
is restricted to the plasma membrane of astrocyte endfeet that are in contact with the aforementioned
structures [6,7]. Within these regions, AQP4 has a tendency to aggregate into higher order assemblies,
termed orthogonal arrays of particles (OAPs).

1.1. Arrangement of AQP4 in Orthogonal Arrays of Particles

OAPs or AQP4 supramolecular assemblies in the plasma membrane of astrocytes can be readily
detected experimentally by neuromyelitis optica (NMO) IgG antibodies applied to impermeabilized
cells [8]. NMO IgGs are specific marker autoantibodies that are generated in patients with NMO and
bind to the extracellular epitope of AQP4 [9–11]. Recently, it was revealed that a conformational epitope
of AQP4ex (i.e., extended isoform of either AQP4a or AQP4c) appears to be critical for the binding of
pathogenic human NMO-IgG autoantibodies to the perivascular astrocyte endfeet in the brain [12].
The commercially available AQP4 antibodies can label AQP4 only in permeabilized classically
immunolabeled cells because they bind to intracellular epitopes [8]. In isolated murine astrocytes,
both types of antibodies were tested, and only NMO-IgG labeling revealed typical plasmalemmal OAPs
that were first identified by electron microscopy and at that time described as square arrays [8,13–15].
OAPs are morphologically diverse structures, composed of AQP4 tetramers that represent ~240 kDa
building blocks that build higher order OAPs that can reach an approximate molecular weight of
~1000 kDa [16]. The reported OAP size expressed as the diameter varies between 100 and 500 nm.
These values depend on several parameters, such as the microscopy technique of choice, whether the
endogenous or recombinant OAPs were measured, and the abundance of a particular isoform within
the OAPs. The diameters of endogenous OAPs in cultured neonatal rat astrocytes were between 150
and 650 nm (average ~300 nm) when imaged by total internal reflection fluorescence microscopy [14,15],
~170 nm when observed by structured illumination super-resolution microscopy [8], and their area
covered 2142± 829 nm2 (which corresponds to a circle with a diameter of ~52 nm, or a square with a side
length of ~46 nm) when recorded by direct stochastic optical reconstruction microscopy [17]. Recently,
it was discovered that AQP4 undergoes translational read-through characterized by a C-terminal
extension of translated AQP4 protein, which is an evolutionarily highly conserved trait [18]. In the
cerebrum and cerebellum, AQP4ex displays perivascular polarization, and it was demonstrated in U87
cell lines that AQP4ex localizes to the plasma membrane where it aggregates in OAPs [19]. The size of
OAPs containing AQP4ex isoforms AQP4-M1ex and AQP4-M23ex [19] have not been measured yet.
OAPs formed only from AQP4-M23ex show a reduced tendency for clustering in OAPs, implying a
functional role of the C terminus extension in OAP formation and dynamics [19].

1.2. Cellular Distribution of AQP4 in Astrocytes

In addition to the predominant plasma membrane distribution, AQP4 isoforms are also distributed
intracellularly, as shown by several studies on isolated murine astrocytes [8,13,20–22]. Whether at
least some of them also have an intracellular distribution in the intact tissue, and to what extent,
remains to be resolved. Immunochemical labeling in combination with forced expression of different
recombinant AQP4 isoforms in isolated murine astrocytes revealed that they are distributed in the
plasma membrane, as well as in distinct assemblies within the cytoplasm, resembling vesicular and
organelle structures (Figure 1). For example, AQP4a (M1) and AQP4 c (M23), which were the first
to be examined for their plasma membrane distribution and demonstrated to aggregate in clusters
~100 nm (AQP4c) and ~30 nm (AQP4a) in size [17], have never been investigated in detail for their
possible cytoplasmic distribution. Of the nine AQP4 isoforms (AQPa–f, ∆4, AQP4[a and c]ex) [12,22],
seven have been screened for their intracellular distribution in astrocytes. Among these seven isoforms,
AQP4e and AQP4ex distribute to the plasma membrane, but AQP4e also shows a strong vesicular
pattern in the cytoplasm [8,12,21]. Immunolabeling and vesicle mobility recordings in rat astrocytes
revealed that AQP4e is expressed in highly dynamic vesicles, including endosomal compartments,
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and co-localizes also with the Golgi apparatus [21]. Similarly, in rat astrocytes and cell lines, AQP4b,
AQP4d, and AQP4f isoforms co-localize with the Golgi apparatus and/or with early and late endosomal
compartments; in addition, AQP4b and AQP4d have been detected in mobile vesicles [12,21,23].
AQP4-∆4 isoform, first identified in skeletal muscle and brain, shows a broad cellular distribution
with distinct localization in the endoplasmic reticulum of rat astrocytes, but not in the Golgi apparatus,
with weak staining present in the plasmalemma [22]. In comparison with AQP4 isoforms located in the
plasmalemma, knowledge of the role of exclusively intracellular isoforms is even more rudimentary.
The roles of particular isoforms and their aggregations (OAPs) are reviewed in the following.
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Plasma membrane isoforms aggregate in OAPs. A patch of the plasma membrane containing OAPs 
and an individual AQP4a tetramer is enlarged in the dotted section. The core isoform in OAPs is 
isoform c (M23), isoform a (M1) assembles into OAPs through interlinking to c (M23). OAP 
localization of isoform e has been demonstrated in rat astrocytes and OAP localization of isoform ex 
has been demonstrated in human astrocytes. Isoform a (M1) is also present at the plasma membrane 
as individual tetramers, as depicted in the inset. 
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Figure 1. Cellular distribution of known AQP4 isoforms in astrocytes. Nine AQP4 isoforms have
been identified in astrocytes: a (M1), b, c (M23), d, e, f in rat astrocytes and a (My1), c (M23),
ex (note that both AQP4a and AQP4c are also expressed in the extended form) and ∆4 in human
astrocytes. AQP4 isoforms a, c, and ex were detected at the plasma membrane, e was detected at
the plasma membrane and in intracellular compartments, and other isoforms are solely intracellular,
co-localizing with the Golgi apparatus (b, d, f), endoplasmic reticulum (∆4), early endosomes (b, d),
and lysosomes (b, d). Plasma membrane isoforms aggregate in OAPs. A patch of the plasma membrane
containing OAPs and an individual AQP4a tetramer is enlarged in the dotted section. The core isoform
in OAPs is isoform c (M23), isoform a (M1) assembles into OAPs through interlinking to c (M23).
OAP localization of isoform e has been demonstrated in rat astrocytes and OAP localization of isoform
ex has been demonstrated in human astrocytes. Isoform a (M1) is also present at the plasma membrane
as individual tetramers, as depicted in the inset.

2. Regulation of OAP Size and Water Permeability by Distinct AQP4 Isoforms

2.1. Composition and Dynamics of OAPs

OAPs are aggregations of several AQP4 isoforms in the plasma membrane distinctively observed
in astrocytes [24]. AQP4 monomers are first assembled into tetramers, which represent dynamic
building blocks of OAPs that are highly variable in size, shape, and isoform composition [2,16,17,25].
For instance, one of the previously published models meticulously links the molecular interactions
of different molar ratios of AQP4a and AQP4c with the OAPs [25]. These are not static structures,
but mobile entities prone to constant rearrangements within the plasma membrane [26]. Isoform AQP4c
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(M23) has an inherent ability to spatially interact through the N terminus, and thus it forms the central
core of OAPs; AQP4a (M1) can incorporate into OAPs only in the presence of isoform AQP4c [27–29],
similar to AQP4e (Mz) [8,16,29]. A model based on experimental data suggest that the core of OAPs is
formed by the heavily cross-bridged AQP4c (M23) isoform, and AQP4a (M1) attaches at the outer rim of
OAPs, restricting its ability for further assembly and hence also confining its size and shape [25,27,28].
OAPs composed of only the AQP4c isoform are larger than those assembled from AQP4a and AQP4c
combined [25,26,28,30–32]. On a similar note, the Mz isoform, expressed in rat but not in healthy
human brain, impairs OAP size by affecting the ratio of AQP4c (M23)/AQP4a(M1) [33]. Adding to the
complexity, OAPs are smaller in astrocytes devoid of AQP4ex [12]. Table 1 summarizes reported direct
and indirect effects of respective AQP4 isoforms on OAPs.

Table 1. AQP4 isoforms affect the abundance and size of OAPs directly and indirectly.

AQP4 Isoform Species/mRNA Incorporation into OAPs Reference

AQP4a (M1)
Human, rat, mouse/basic mRNA;
posttranscriptional regulation defines the
amount of protein in the plasma membrane

Yes (through interaction with AQP4c (M23)) [17,25,27–32]

AQP4a (M1) ex Human, rat/extended mRNA through
translational readthrough Yes [19]

AQP4c (M23)
Human, rat/basic mRNA;
posttranscriptional regulation defines the
amount of protein in the plasma membrane

Yes (it is the core OAP constituent) [17,25,27–32]

AQP4c (M23) ex Human, rat/extended mRNA through
translational readthrough

Yes (modulates the size of OAPs by limiting
the number of added tetramers) [19]

AQP4e (Mz) Rat/basic mRNA Yes (through interaction with AQP4c (M23)) [8,23,29]

AQP4b Rat/mRNA isoform lacking exon 2 after
alternative splicing from AQP4a

No (indirect modulation of the abundance
of OAPs) [13,23]

AQP4d Rat/mRNA isoform lacking exon 2 after
alternative splicing from AQP4c

No (indirect modulation of the abundance
of OAPs) [13,23]

AQP4f Rat/mRNA isoform lacking exon 2 after
alternative splicing from AQP4c Not tested [23]

AQP4-∆4 Human/mRNA isoform lacking exon 4 after
alternative splicing from AQP4a

No (it may modulate the abundance and
size of OAPs by dominant-negative effect
exerted in endoplasmic reticulum through
protein–protein interactions with the
plasma membrane AQP4 isoforms)

[22]

Altered composition of the extracellular milieu can also affect OAP structure. Time-dependent
changes in the size of OAPs were demonstrated in rat astrocytes overexpressing AQP4e exposed to
hypoosmotic conditions mimicking brain edema [8]. In addition to the effect on OAP size, changes in
the density of OAPs containing AQP4e were noted, signifying probable changes in insertion/retraction
and redistribution of AQP4 isoforms within single OAPs [8]. Therefore, this particular isoform should
be taken into account in models of OAP assembly in murine astrocytes. Movements of the other
two plasma membrane isoforms have also been described. AQP4a (M1) appears to be more mobile
within the plasma membrane, moving more freely, and AQP4c (M23) inclines to immobility within the
plasmalemma [27,34].

2.2. Intracellular AQP4 Isoforms Can Affect the Organization of OAPs

In addition to plasma membrane movements, substantial rearrangements of AQP4 isoforms
have been identified within the cytoplasm, with the potential to affect the arrangements of plasma
membrane isoforms (see also Table 1). For instance, it was demonstrated that the abundance of AQP4
at the cell surface can be regulated by the AQP4-∆4 isoform [22]. It was confirmed that the full-length
AQP4 isoforms AQP4a and AQP4c interacted with truncated ∆4, which is retained in the endoplasmic
reticulum, and therefore these complexes were targeted for degradation [22]. Regardless of this
particular interaction, other interactions between AQP4 isoforms have not been confirmed in the
endoplasmic reticulum. As demonstrated previously [26,35], OAPs do not assemble in the endoplasmic
reticulum or in the Golgi apparatus. Obviously, for OAP assembly, we have to look at later stages in the



Cells 2020, 9, 2622 5 of 19

secretory pathway and possibly also in the endosomal pathway, which at a certain point is intertwined
with the secretory pathway. A recent study by Lisjak et al. [13] pointed out that the abundance of
OAPs and their assembly is likely affected by early endosomal compartments containing different
intracellular isoforms. The overexpression of AQP4b and AQP4d isoforms (splicing variants of AQP4a
and AQP4c, respectively), which are abundantly located in the early endosomes but do not localize
in the plasma membrane OAPs of rat astrocytes, reduced the abundance of OAPs. These changes
coincided with altered intracellular trafficking of vesicles that transport particular isoforms and also
with their substantial translocation into early endosomes in hypoosmotic conditions [8,13,21]. The role
of early endosome-mediated regulation of OAP size in astrocytes is steadily emerging, and this
organelle merits further attention also from this perspective.

2.3. OAPs and Water Permeability in Astrocytes

Water permeability through AQP4 channels in astrocytes may be regulated by several mechanisms
and the role of OAPs in this is still not entirely clear. Altered expression levels of plasma
membrane isoforms, delivery of isoforms via intracellular vesicles, phosphorylation of the channel,
and rearrangement of isoforms within OAPs have been described among the processes that affect water
permeability [1]. The role of AQP4 in the rapid regulation of astrocyte volume has been demonstrated for
plasma membrane isoforms that localize to OAPs: AQP4c (M23) and AQP4e (Mz) [8,36]. An astrocyte
cell line stably expressing AQP4c (M23) responded to hypoosmotic conditions with faster swelling
kinetics, which in turn triggers regulatory volume decrease (RVD) of cells, a fast process that enables
the original cell volume to be restored in response to swelling [36]. This kind of response is crucial for
the regulation of cell volume in physiologic conditions where constant changes in intracellular and
extracellular osmolarity induce cell swelling or shrinkage [37]. Similarly, overexpression of AQP4e
in primary rat astrocytes also enhanced the kinetics of cell swelling and of RVD in comparison with
non-transfected cells [8]. Although the plasma membrane isoforms were expected to affect water
permeability across the plasmalemma, including the newly discovered AQP4ex isoform [19], this was
not expected in the case of intracellular isoforms.

Therefore, one of the most conspicuous findings in recent years is the discovery that intracellular
isoforms may affect the assembly and abundance of OAPs and consequently water homeostasis of
astrocytes. When the truncated intracellular AQP4-∆4 isoform, which is not a functional water channel,
was co-transfected with the full-length AQP4, cells showed diminished water transport activity due to
a reduction in the plasma membrane expression of AQP4, triggered by a dominant-negative effect as a
consequence of heterodimerization between AQP4 and AQP4-∆4 in the endoplasmic reticulum [22].
Furthermore, purely intracellular AQP4d has been shown to indirectly affect astrocyte volume changes,
because astrocytes overexpressing AQP4d responded to the hypoosmotic milieu with faster swelling
whereas RVD remained unaffected [13].

3. Extracellular Matrix and Intracellular Plasma Membrane-Associated Proteins Regulate
Positioning of OAPs

Positioning of individual AQP4 channels and OAPs in the plasma membrane of astrocytes has
been receiving increasing attention in recent years, especially in connection with extracellular matrix
proteins and proteins that directly or indirectly bridge the plasma membrane and AQP4 (Figure 2).
While this is a highly relevant topic of research also in the view of numerous pathologies, it is still a
developing field and recent data are described below.

3.1. Agrin

Agrin, an extracellular matrix protein, is a heparan sulfate proteoglycan and is a component
of the basal lamina of blood-brain barrier (BBB) microvessels. It has been shown to be implicated
in mechanisms that define the plasma membrane distribution of AQP4. This role of agrin was first
described in human glioblastoma samples [38,39] and was further addressed in a mouse model,
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where differences in the appearance of OAPs were demonstrated between wild-type and agrin-devoid
mice. Although astrocytes lacking agrin express OAPs in their endfeet, these are smaller, less dense,
and, at certain places in astrocyte membranes, they were also absent [40,41]. This effect of agrin is not a
consequence of altered overall expression of AQP4, because neither AQP4 mRNA nor AQP4 protein
levels were changed in agrin-null astrocytes [41]. Moreover, in agrin-null astrocytes, the level of AQP4c
(M23) protein expression remained higher than the expression of AQP4a (M1), which is similar to
wild-type astrocytes [40,41]. The reduced abundance of OAPs in agrin-devoid astrocytes detected by
immunocytochemical staining is therefore solely the consequence of post-translational processes.

The presence of exogenous agrin has been described to affect changes in cell volume in hypoosmotic
conditions [41]. Astrocytes, wild-type or those devoid of agrin, responded to hypotonic stress with
an increase in cell volume when they were grown on coating medium containing the neuronal agrin
isoform A4B8 but not when grown on coating medium devoid of agrin [41]. Wild-type astrocytes
expressing agrin showed a lower increase in cell swelling that agrin-null astrocytes, and fewer and
smaller OAPs were detected [41]. These data are in agreement with the increasing evidence that the
size and dynamic reorganization of OAPs play important roles in the water permeability of astrocytes,
and further strengthen the hypothesis that AQP4 expression and OAPs are important for cell volume
regulation in hypoosmotic conditions [8,36].

Although agrin acts as a key molecule important for increased density of OAPs in astrocyte
endfeet [38], it is only one of the proteins involved in the polarity and clustering of OAPs in
astrocytes (Figure 2).Cells 2020, 9, x FOR PEER REVIEW 6 of 19 
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Figure 2. Positioning of individual AQP4 tetramers and OAPs in astrocytes is affected by intracellular
and extracellular proteins. Agrin and laminin, components of the basal lamina, attach to α-dystroglycan,
which forms a complex with β-dystroglycan that stretches through the plasma membrane. In the
cytoplasm, it interacts with dystrophin, which binds to F-actin at one end and to α-dystrobrevin at the
other end. α-Dystrobrevin interacts with α-syntrophin, which is directly linked to the AQP4 channel in
the plasma membrane.
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3.2. Laminin

Laminin, another of the main structural proteins of the perivascular basal lamina, has also been
demonstrated to induce plasma membrane clustering of not only AQP4 but also β-dystroglycan and
Kir4.1 channels in hippocampal and cortical astrocytes [42,43]. Coating of growth substrate with laminin
affects the abundance of AQP4 expression at the plasmalemma, without affecting the size of OAPs [21,42].
Increase in the abundance of AQP4 in the plasma membrane, in particular of the AQP4c (M23) isoform,
is proposed to be regulated by dynamic redistribution from the plasma membrane, specifically through
inhibited entry into early endosomal compartments [44]. Laminin apparently reduces the endocytosis
of plasma membrane-localized principal OAPs forming AQP4c (M23) but not of AQP4a (M1) [44].
Laminin affects astrocyte plasmalemma in many ways; laminin was also shown to alter branching of
astrocyte processes in cell cultures [45]. The branching process is proposed to be closely governed by
direct and indirect interlinking of AQP4 on the laminin-dystroglycan-α-syntrophin axis [45]. Moreover,
the suppressed expression of APQ4 per se also affected the formation of astrocyte processes, in particular
the formation of second-order processes, via focal adhesion kinase phosphorylation [45].

In vivo studies supported the data obtained in cultured cells by showing that interaction between
perivascular laminin and α-dystroglycan enables AQP4 positioning in perivascular astrocyte endfeet,
which is also supported by a similar distribution of AQP4, α-syntrophin, and dystrophin–dystroglycan
complex [46,47]. The effect of laminin on the positioning of agrin in hippocampal rat astrocytes,
where laminin induced trafficking of endogenous agrin to the plasma membrane, also triggered
clustering of AQP4 and β-dystroglycan [43]. Neither laminin nor agrin affect the overall expression of
AQP4a (M1) or AQP4c (M23) isoforms, nor their ratio of expression [43], suggesting that clustering
into OAPs and their reorganization depend on their recruitment from the cell cytoplasm to the
cell surface and vice versa. The induced clustering of AQP4 triggered by addition of extracellular
laminin into growth medium significantly attenuated astrocyte swelling in hypoosmotic conditions [43].
Again, this finding corroborates the hypothesis that OAPs regulate the propensity of astrocytes to
the extent of cell volume changes. The size of OAPs in hypoosmotic conditions was not measured
after laminin-induced AQP4 clustering [43], but the size of OAPs was determined in primary cultured
rat cortical astrocytes, where they were more abundant and larger in hypoosmotic conditions [8,13].
The effects of laminin on AQP4 localization and function are in part relayed through protein kinase C
signaling in lipid rafts [48].

3.3. Dystrophin–Dystroglycan Complex

3.3.1. Dystroglycan

Agrin and laminin interact with a plethora of transmembrane proteins and cytoplasmic
proteins that dynamically interact with the plasma membrane protein pool. Among these proteins is
dystrophin–dystroglycan complex, composed of α- and β-dystroglycan, which is crucially involved
in the plasma membrane localization of OAPs in astrocytes. Whereas α-dystroglycan binds to agrin
and laminin [38,43,46,49], a plasma membrane-spanning β-dystroglycan directly and indirectly links
dystroglycan complex to the cytoskeleton and other intracellular components, such as dystrophin and
α-syntrophin [38,50]. These interactions further increase the number of components that may directly
or indirectly contribute to OAP positioning in astrocytes.

One of the important steps in confirming the participation of α-dystroglycan in the localization of
OAPs comes from experiments in which OAPs positively co-stained forα-dystroglycan and agrin [38,41].
Deletion of the dystroglycan gene reduces the expression of AQP4 protein in parenchymal brain
tissue and causes a selective loss of OAPs in perivascular astrocytes together with disorganization
of the membrane architecture of astrocyte endfeet [50]. In pathologic conditions, the expression of
dystroglycan molecules may also decrease. For example, in human glioblastomas, the expression
of α-dystroglycan is strongly reduced [51] and may coincide with decreased expression of agrin
and increased expression of matrix metalloproteinases 3 and 2/9 [52]. Loss of the extracellular
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matrix receptor β-dystroglycan also leads to deficient AQP4 polarization in astrocytic endfeet [53].
Displaced localization of OAPs is proposed to be mediated by the loss of astrocyte endfeet anchoring to
the basement membrane, which may even lead to edema formation, as demonstrated in experimental
autoimmune encephalomyelitis, an animal model of multiple sclerosis [53]. However, in the absence
of dystroglycans, a lower number of perivascular AQP4 molecules clustered into a few OAPs,
implying dystroglycan-independent mechanisms in OAP positioning. Intuitively, one of the first
assumptions would predict that the ratio of expression between the two most abundant plasma
membrane isoforms, AQP4c (M23) and AQP4a (M1), was altered in dystroglycan-null mice. However,
the protein ratio between the two was similar in wild-type and dystroglycan-null brain [50]. Therefore,
one needs to take into account post-transcriptional changes in AQP4 isoforms that facilitate OAP
formation and positioning, including other proteins that interlink with dystroglycan directly or
indirectly. Apparently, further research is needed to resolve the various roles of dystroglycans in the
formation and positioning of OAPs.

3.3.2. Dystrophin

Dystrophin, a component of the multi-protein dystrophin–dystroglycan complex, is a cytoplasmic
protein connected directly to β-dystroglycan via its amino terminal domain [54–56] (Figure 2).
In humans, reduction in AQP4 expression was detected in muscle samples from patients with muscular
dystrophy with different mutations in the dystrophin gene [57]. Similarly, dystrophin-deficient
mice displayed reduced AQP4 expression in astrocytic endfeet surrounding capillaries [58,59].
The hypothesis has been proposed that dystrophin is important for stabilizing the whole multi-molecular
complex that affects AQP4 positioning in the plasma membrane [38]. By affecting the positioning and
formation of OAPs [38], the function of dystrophin appears to be associated with swelling of astrocytic
perivascular processes and consequently with brain edema [58]. The shorter isoform of dystrophin,
glial dystrophin isoform Dp71, is the major dystrophin gene product responsible for anchoring AQP4
and the dystroglycan complex at the glial endfeet [15,60,61]. Even though interactions of AQP4 with a
dystrophin-dependent pool have been predominantly investigated thus far, dystrophin-independent
pools detected in the endfeet of subpial astrocytes and in granular layer astrocytes in the cerebellar
cortex imply that additional proteins may be involved in OAP positioning in astroglia membranes [60].

3.3.3. α-Syntrophin

Dystrophin interlinks (likely indirectly) with intracellular protein α-syntrophin [62], and this
connection contributes to complex interactions that regulate the positioning of OAPs in astrocytes.
The involvement of α-syntrophin in the distribution of AQP4 in astrocytes was first postulated from
an observation in α-syntrophin-null mice whereby perivascular and subpial astrocyte endfeet in the
cerebral cortex and cerebellum showed markedly reduced labeling of AQP4 [63]. Further corroboration
of the importance of α-syntrophin in the positioning of OAPs in the plasma membrane of astrocytes
came by demonstrating direct interaction of the AQP4 C terminus to α-syntrophin [59,63–65].
Prominent perivascular endfeet co-localization of AQP4 and α-syntrophin was also demonstrated in
rat brain [38]. Furthermore, the association between α-syntrophin and AQP4 was detected in AQP4
transfected U87MG human glioblastoma cells, which natively do not express AQP4 [7], and in human
astrocyte cultures [35].

In addition to AQP4c (M23), which was primarily proposed to be the linking partner of
α-syntrophin [65], AQP4ex was described recently and found co-localized with α-syntrophin in
HEK cells and mice [19,23]. In a CRISPR-Cas9-generated AQP4ex−/− mouse model, the prominent
localization of AQP4 in astrocyte endfeet was compromised simultaneously with decreasing expression
and cortical mislocalization of α-syntrophin [12]. Although the absence of α-syntrophin in α-Syn−/−

mice does not affect the total levels of AQP4c (M23) and AQP4a (M1) expression in the brain,
the polarization pattern of AQP4 in the astrocytic endfeet adjacent to the endothelial basal lamina in
the cerebral cortex is significantly diminished in astrocytes devoid of α-syntrophin [63,64,66]. On the
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same note, prominent AQP4 polarization in perivascular endfeet vanishes in various pathologic
conditions, such as human glioblastoma, where AQP4 redistributes throughout the cell membrane
together with α-syntrophin [38].

The lack of α-syntrophin expression affects water regulation properties of astrocytes, which further
substantiates the proposition that abundant localization of AQP4 in perivascular endfeet of astrocytes
is essential for the regulation of water homeostasis in the brain. Namely, perivascular and subpial
astrocyte endfeet have a swollen appearance in the brain of α-syntrophin-null mice, suggesting that
clearance of water in the brain is reduced [64]. Further studies on α-syntrophin-null mice revealed that
the AQP4 pool in perivascular astrocytes may control the rate of osmotically driven water entry [66].
In α-syntrophin-null mice, in which expression of the perivascular pool of AQP4 was specifically
abolished, a delay in the development of hypoosmotic brain edema was recorded [66].

4. OAPs and Astrocyte Migration

4.1. OAPs in Migration and Adhesion of Astrocytes

The involvement of AQP4 expression in the potential for astrocyte migration was first observed
in cultured cortical astrocytes, where astrocytes devoid of AQP4 showed greatly impaired migration
compared with their wild-type counterparts [67]. At the same time, this finding was corroborated
by in vivo stab injury experiments where reactive astrocytes in AQP4-null mice migrated more
slowly toward the stab lesion [67,68]. Moreover, accelerated migration potential of astrocytes toward
hypo-osmolar medium was proposed to be related to AQP4-linked increased plasma membrane
permeability, which upsurges the transmembrane water fluxes that take place during cell movement [67].

Processes that affect the migration potential of astrocytes are complex and related to interactions of
AQP4 tetramers with the cytoskeleton, as demonstrated in astrocytoma cells [69]. An important notion
about the data obtained in astrocytoma cells is that, when they are grown in culture for several passages,
they greatly decrease the expression of AQP4; but when AQP4 is reintroduced, these cells exhibit
enhanced cell adhesion potential [70], which is an important feature in cell migration. Furthermore,
the migration potential of astrocytes appears to be affected differently by the aggregation potential of
particular AQP4 isoforms. Namely, the aggregation state of particular AQP4 isoforms had an important
effect on their subcellular localization in cultured AQP4−/− cortical astrocytes and glioblastoma cells [71].
For instance, AQP4a (M1), which is not able to assemble into OAPs per se and has the ability to move
freely in the plasma membrane, was detected not only in the soma of astrocytes but also extensively in
lamellipodia [71]. Enriched presence of AQP4a (M1) retained a more stable and longer-lasting shape
of lamellipodia, which facilitated astrocyte migration [71]. The leading edge of migrating cells with
abundant AQP4a (M1) is also the site of transmembrane osmotic pressure gradients generated by
activation of ion channels or exchangers [71]. On the other hand, AQP4c (M23), which forms large
OAPs, is localized in the cell body and endfeet of pericapillary astrocytes, seemingly does not affect
lamellipodia stability, but appears to be important for cell adhesion and polarization processes [71].
Together with isoform-specific changes in AQP4 localization and redistribution of AQP4 in high-grade
astrocytomas, mislocalization of inwardly rectifying K+ channel Kir4.1 was detected in low- and
high-grade astrocytomas and oligodendrogliomas [72]. This finding suggests that, in these cells, the
buffering capacity of glial cells may also be compromised, leading to water influx and causing cytotoxic
edema [72]. If the mechanisms of redistribution of AQP4 and Kir4.1 differ in low- and high-grade
gliomas, this may suggest that the mechanisms of clustering of AQP4 and Kir4.1 at the glial endfeet
membrane domains are also different [72].

4.2. OAPs and Glioma Invasiveness

Distinct localization patterns of AQP4 isoforms that are present in the human brain [71] imply that
different AQP4 isoforms may serve diverse purposes, including astrocyte mobility. Recent research
has shown that localization and the aggregation state of AQP4a (M1) and AQP4c (M23) most likely
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participate in the fate of glioma cells, where the two isoforms probably play different roles to either
enhance glioblastoma invasiveness or cease their proliferation potential [69]. Selective expression
of AQP4a (M1) enhanced migration of glioma cell lines and increased matrix methalloproteinase-9
activity, the overexpression of which is enhanced in multiple neurodevelopmental disorders [69,73].
The expression of AQP4c (M23) directed glioma cells to apoptosis through interactions mediated by
actin cytoskeleton, therefore reducing the invasive potential [69]. The protein expression of AQP4
in human glioblastoma is indeed upregulated in comparison with healthy brain tissue [52,74,75].
However, the ratio of expression between AQP4a (M1) and AQP4c (M23) appears to remain similar [52];
therefore, one has to look at additional levels that affect the incorporation of AQP4 into the plasma
membrane and their interactions within OAPs. These are post-translational processes demonstrated
to have the potential to modify certain stages of OAP formation, including delivery and retraction
of isoforms to/from the plasma membrane, rearrangements within the plasma membrane, and yet
poorly identified interactions with specific cellular organelles, such as the endoplasmic reticulum and
early endosomes. Interestingly, the abundance and the size of OAPs differ not only in comparison
with healthy cells but also between different stages of glioblastomas. High-grade astrocytoma tumors
are reported to express only a few typical OAPs, whereas low-grade astrocytomas express more
OAPs; this discovery is among the important steps in unraveling of the role of OAPs in astrocytoma
malignancy [52,74]. Functional rearrangements of OAPs in glioblastomas remain to be further evaluated
from the perspective of rearrangements of different AQP4 isoforms, because not all AQP4 molecules in
the plasma membranes of glioblastoma cells are arranged in OAPs [52,71].

5. Neurotransmitters and Hormones That Modify AQP4 Expression

In addition to extracellular matrix proteins and proteins interlinking with the dystrophin–
dystroglycan complex that guide positioning of OAPs in the plasma membrane of astrocytes,
external stimuli may also affect OAP arrangements. In addition to changes in osmolality and other
multifaceted processes that modify AQP4 expression and hence the distribution and the formation
of OAPs in traumatized brain, hormones are the most prominent factors for alterations in AQP4
expression (Table 2) and possibly also for rearrangements of OAPs in astrocytes. Changes in AQP4
expression, as a consequence of hormonal activity, which can trigger a variety of physiologic responses
in astrocytes, are described in the following sections.

5.1. Dopamine

Increased levels of dopamine have been demonstrated to reduce proliferation of striatal astrocytes
and in downregulation of AQP4 expression [76]. However, these data need to be viewed with great
caution, because cells growing more sparsely showed larger effects than densely plated cells. How this
effect relates further to AQP4 functions in astrocytes in situ and in vivo remains to be investigated.
One of the possible consequences of AQP4 downregulation is reduced water permeability through
the plasma membrane, as observed in cultured rat cortical astrocytes [77], and reduced proliferation,
as seen in cultured striatal mouse astrocytes [76]. Dopamine treatment of mouse striatal astrocytes
selectively downregulated only the AQP4c (M23) isoform [76], which implies that altered dopamine
levels may affect the abundance of OAPs in astrocytes. This, as well as the general relationship between
dopamine and AQP4 expression and AQP4 function (i.e., water permeability, migration), remains to
be further investigated. In addition, the role of AQP4 in the brain also needs to be addressed from an
immunological perspective. The lack of AQP4 expression in the mouse model of Parkinson disease
(PD) was shown to abolish an increase in transforming growth factor-β1 (TGF-β1) [78]. TGF-β1 is a
key suppressive cytokine, playing a role in PD onset and development, and abolishing its increase in
the midbrain triggers stronger microglial inflammatory responses and greater losses of dopaminergic
neurons [78]. This effect was partially attributed to impaired generation of TGF-β1 by astrocytes lacking
AQP4 expression [78]. The lack of AQP4 expression was also related to stronger astrogliosis in the
midbrain of a PD mouse model triggered by administration of 1-metil-4-fenil-1,2,3,6-tetrahidropiridin
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(MPTP). At the same time, more prominent demise of the dopaminergic (DA) neurons was observed,
showing that mice lacking AQP4 were more prone to MPTP-induced neurotoxicity than their wild-type
littermates [79,80]. Moreover, it appears that the effect of AQP4 extends even further, acting more
selectively. In human PD brain and in wild-type mice brain, differences in the degeneration of DA
neurons are noticeable between the substantia nigra and the ventral tegmental area. These differences
in degeneration of DA neurons between different brain regions disappear in AQP4 knockout mice [81].

Table 2. Neurotransmitters and hormones affecting AQP4 expression.

Hormone AQP4 Expression Astrocytes/Species References

Dopamine Downregulated Striatal and cortical astrocytes/mouse [76,78]
Testosterone Upregulated Cultured cortical astrocytes/rat [82]

Progesterone Downregulated or Upregulated
(brain region specific)

Astrocytes in vivo, primary cultured
astrocytes/mouse, rat [83–85]

Estradiol Downregulated Cultured cortical astrocytes,
brain slices/rat [86,87]

Arginine vasopressin Increased immunoreactivity,
no changes in mRNA Whole brain, cerebellum/Rat [88]

5.2. Testosterone

Over the last decades, sex hormones have been increasingly recognized as important agents that
affect the functioning of several cell types and their functions in the CNS. In certain cases of acute
neurological injuries, the gender issue is important, as was observed in experimental models and
in humans [89]. Of several sex hormones that have been studied in relation to AQP4 expression,
testosterone is the least explored and has been demonstrated to dose-dependently increase the
expression of AQP4 mRNA and protein in cultured rat cortical astrocytes [82]. Testosterone-related
increase in AQP4 expression beneficially affected the osmotic fragility of astrocytes exposed to
hypoosmotic stress [82], demonstrating potentially beneficial effects of increased testosterone related
to the AQP4 channel. This effect could be related to alleviating cytotoxic edema by enhancing the RVD
potential of astrocytes [82]. When testosterone-related changes in AQP4 expression were tested in
testosterone-treated rats, an increase in AQP4 expression was measured at the basolateral membrane of
kidney collecting ducts [90]. The level of AQP4 expression related to increased testosterone levels was
not tested in the intact brain. Considering the important possible implications of testosterone action
in the CNS, this topic needs further attention to establish the effect of testosterone on AQP4-related
functions in astrocytes.

5.3. Progesterone

Progesterone is another sex hormone that can play an important role in several aspects of CNS
insult, such as traumatic brain injury (TBI) and stroke, having the potential for treatment of TBI and other
neural disorders in humans [91]. Progesterone has been demonstrated to have beneficial effects on the
survival of neurons after focal cerebral ischemia [92,93]. These protective effects are related to a decrease
in the pro-inflammatory responses [94] in which astrocytes crucially participate as regulators of innate
and adaptive immune responses in the injured CNS [95]. Astrogliosis that is triggered after CNS injury
was found to be decreased in the peri-infarct area of progesterone-treated mice, together with a decrease
in AQP4 expression [83]. In rat astrocytes, progesterone attenuated AQP4 mRNA levels and protein
expression and acted positively on cell viability in an astrocyte model of ischemia/reperfusion [84].
Positive effects of progesterone on brain damage were also demonstrated in neonatal rats with induced
hypoxic ischemia; downregulation of AQP4 expression and MMP-9 in progesterone-treated animals
had beneficial effect on alleviation of cerebral edema [96]. However, progesterone-induced changes in
AQP4 expression must be interpreted with caution, taking into account the time after progesterone
treatment and different brain regions, which may respond differently in the matter of AQP4 expression.
In a model of TBI, it was demonstrated that progesterone administration decreased AQP4 expression
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around the contusion and in the tissue bordering the lateral ventricular area, whereas it increased
AQP4 expression in the hypothalamic region with osmosensitive neurons [85]. These changes in AQP4
expression are possibly implicated in the formation and resolution of TBI-induced cerebral edema [85]
and deserve further attention at the level of expression of different AQP4 isoforms.

5.4. Estradiol

Neuroprotective effects of estradiol have been reported in several studies. Protective actions
of estradiol in neurodegenerative diseases and injuries are exerted by several complex mechanisms
that regulate the proliferation and survival of cells and their anti-inflammatory responses [97].
Protective effects of estradiol may also be related to the abundance of AQP4 in astrocytes; however,
further attention is needed in terms of stimuli, spatial and temporal mode of action of estradiol on
AQP4 expression in astrocytes. On the one hand, increase in AQP4 expression in astrocytes was shown
to be alleviated by long-term exposure to a higher dose of estradiol (1 week), whereas exposure to
estradiol for several hours did not show any significant trend in AQP4 expression [86]. On the other
hand, in a model of induced BBB disruption by intraparenchymal injection of lipopolysaccharide,
the increase in expression of AQP4 in perivascular astrocytes was detected within several hours and
was also lessened by treatment with estradiol [87].

Regarding altered AQP4 expression in the development and reabsorption of brain edema,
several hypotheses have been proposed. On the one hand, the upregulation of AQP4 channels has
been proposed as beneficial in relieving the early phase of vasogenic edema [98] and on the other hand,
inhibition of AQP4 upregulation may dramatically improve clinical outcome in certain pathologic
stages [99]. Clearly, changes in the expression of AQP4 affected by estradiol and other sex hormones
should be considered by taking into account the appropriate time window and affected region in
neurotrauma. For example, the effect of estradiol on the reduction of astrocyte swelling in hypoxia- and
arginine vasopressin (AVP)-induced stress took place on an hourly basis, whereas changes in AQP4
expression followed in a matter of several days [86]. This is why the short-term effects of estradiol on
rearrangement of AQP4 isoforms in the plasma membrane should also be considered and investigated.
Current results suggest that the levels of AQP4a (M1) and AQP4c (M23) expression are reduced [86],
but the ratio between the two isoforms in conditions with or without estradiol was not compared,
which prevents us from stating a definite conclusion on the effects of estradiol on the abundance of
AQP4 in the plasma membrane.

In addition to cell volume regulation and the development of brain edema, other roles of estradiol
and other sex hormones of astrocyte function that are involved in recovery after neurotrauma (such as
migration, adhesion, proliferation) should be considered.

5.5. Arginine Vasopressin

The effect of AVP on swelling of astroglia cells was described three decades ago when it was
documented that AVP causes gradual persistent astroglial swelling [100]. Later, it was discovered that
this effect of AVP-induced astroglia swelling can be blocked by V1 antagonist [101]. The discoveries
that followed advanced our understanding of the function of the intrinsic vasopressin fiber system.
Several studies demonstrated that AVP, acting via V1a receptors, plays a crucial role in the regulation
of brain water and ion homeostasis [102], and V1a receptor is involved in the pathophysiology of
secondary brain damage after focal cerebral ischemia [103]. Furthermore, V1aR inhibitors are considered
potential therapeutic tools for treating cellular brain edema [104]. Inhibition of V1a receptors has
been shown to considerably reduce AQP4 upregulation in contusion areas of traumatized brain [105].
This change was mirrored in reduced brain water content in the traumatized hemisphere in the
presence of V1aR inhibitors [105]. Selective V1aR inhibition by the non-peptide antagonist decreased
brain AQP4 expression, brain edema, and astrocytic cell swelling [106]. In induced hyponatremia
(hypotonic dextrose and AVP), model rats showed increased immunoreactivity of AQP4, as observed
in immunoblots in the cerebellum, whereas mRNA expression remained unaltered after several hours
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of exposure [88]. This observation may reflect secondary conformational modifications of AQP4
protein, leading to enhanced antibody binding and other post-translational modifications of AQP4 [88].
Although electron immunomicrographs failed to reveal any substantial changes in cellular localization
of AQP4 [102], the possibility that vasopressin causes reorganization of the plasma membrane AQP4
molecules within the individual membrane compartments cannot be ruled out. Rearrangements of
specific plasma membrane isoforms within and between OAPs should be considered in further studies.

Large extracellular ionic fluxes of Na+ and K+ that occur rapidly after focal brain injury may
result in cellular edema [102]. Facilitation of water transport through astrocytic AQP4 in the presence
of AVP allows cells to better compensate for the build-up of extracellular osmotic gradients by K+

release from neurons [102]. Water fluxes are extremely rapid, indicating that they are mediated by
AQPs [102]. Thus, astrocytes fit perfectly with the hypothesis, supported by discovery in rat neocortical
brain slices that the glial network plays an important role as a draining system for spatial buffering of
extracellular K+ [107,108].

6. Conclusions

The increasing number of newly discovered AQP4 isoforms in astrocytes, combined with the
additional roles proposed for those that have already been studied for an extended period of time,
are advancing our knowledge about the various roles of AQP4 protein in the brain. Newly emerging
data on AQP4 isoforms that have been identified to date are calling for reconsideration of some
of the existing models of AQP4 functions. For example, in recent years, three additional plasma
membrane isoforms have been discovered. One of them, AQP4e, was identified in rats and shown
to localize in OAPs and to affect RVD in astrocytes. Therefore, an updated model of OAP structure
in rat astrocytes, involving (at least) three plasma membrane isoforms (AQP4c [M23], AQP4a [M1],
and AQP4e) needs to be designed. Two AQP4ex plasma membrane isoforms that were recently
identified in human astrocytes and revealed as crucial for binding NMO IgGs were also shown to
build OAPs. Hence, updated modeling of OAP organization and dynamics is also required for human
astrocytes. In addition to plasma membrane AQP4 isoforms, recently described intracellular isoforms
AQP4b, AQP4d, and ∆4, are also being revealed as modulators of the abundance and size of OAPs.
New discoveries about particular isoforms in OAP assembly and abundance, the role of isoforms that
are detected as single tetramers in the plasma membrane of astrocytes, and the role and dynamics
of intracellular isoforms extend our view of AQP4 channels as regulators of water homeostasis of
the brain. Cell adhesion and migration processes intimately linked to AQP4 isoforms are yet to be
unraveled in normal physiologic and pathologic conditions, such as acute neurotrauma and neurologic
diseases where particular isoforms and assembly in OAPs in the plasma membrane of astrocytes might
affect the development and the outcome of the particular pathologic conditions. Several intracellular
and extracellular matrix proteins are emerging as important factors for positioning and polarization of
AQP4 tetramers and OAPs at the plasma membrane of astrocytes. The role of these proteins and their
interactions with APQ4 channels in normal and pathologic conditions are still emerging and require
further attention to understand the larger picture of the changes that are taking place in traumatized
brain. Additionally, the consequences of hormone imbalance and the composition of the extracellular
milieu affecting ion homeostasis are crucial and need to be investigated in further studies.
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Abbreviations

AQP aquaporin
AVP arginine vasopressin
BBB blood-brain barrier
CNS central nervous system
MPTP 1-metil-4-fenil-1,2,3,6-tetrahidropiridin
NMO neuromyelitis optica
OAP orthogonal array of particles
PD Parkinson disease
RVD regulatory volume decrease
TBI traumatic brain injury
TGF-β1 transforming growth factor-β1
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