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A B S T R A C T

Background: The outbreak of Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection has
become a global health emergency. We aim to decipher SARS-CoV-2 infected cell types, the consequent host
immune response and their interplay in lung of COVID-19 patients.
Methods: We analyzed single-cell RNA sequencing (scRNA-seq) data of bronchoalveolar lavage fluid (BALF)
samples from 10 healthy donors, 6 severe COVID-19 patients and 3 mild recovered patients. The expressions
of SARS-CoV-2 receptors (ACE2 and TMPRSS2) were examined among different cell types. The immune cells
infiltration patterns, their expression profiles, and interplays between immune cells and SARS-CoV-2 target
cells were further investigated.
Findings: Compared to healthy controls, ACE2 and TMPRSS2 expressions were significantly higher in lung epi-
thelial cells of COVID-19 patients, in particular club and ciliated cells. SARS-CoV-2 activated pro-inflamma-
tory genes and interferon/cytokine signaling in these cells. In severe COVID-19 patients, significantly higher
neutrophil, but lower macrophage in lung was observed along with markedly increased cytokines expression
compared with healthy controls and mild patients. By contrast, neutrophil and macrophage returned to nor-
mal level whilst more T and NK cells accumulation were observed in mild patients. Moreover, SARS-CoV-2
infection altered the community interplays of lung epithelial and immune cells: interactions between the
club and immune cells were higher in COVID-19 patients compared to healthy donors; on the other hand,
immune-immune cells interactions appeared the strongest in mild patients.
Interpretation: SARS-CoV-2 could infect lung epithelium, alter communication patterns between lung epithe-
lial cells and immune system, and drive dysregulated host immune response in COVID-19 patients.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

The Coronavirus disease 2019 (COVID-19) pandemic, caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
poses a tremendous global challenge. SARS-CoV-2 belongs to corona-
viruses family which are single-stranded and positive-sense RNA
viruses characterized by club-like spike on their surface [1]. SARS-
CoV-2 binds to the surface expressed proteins, angiotensin-convert-
ing enzyme 2 (ACE2), to entry into cells which is similar as SARS-CoV
[2-4]. In addition to ACE2, the expression of serine protease TMPRSS2
on target cells is required for activation of viral spike (S) proteins to
facilitate viral entry [4]. It is thus important to investigate ACE2- and
TMPRSS2- expressing cell types and their expression level in the lung
of COVID-19 patients.

Although SARS-CoV-2 could be recognized by the host immune
system to mount an antiviral response [3,5], imbalanced immune
responses have been observed in most patients, as exemplified by
high neutrophil to lymphocyte ratio [6-9]. Moreover, a large number
of severe COVID-19 patients suffered cytokine storm with markedly
release of proinflammatory cytokines such as interleukin 6 (IL-6),
interleukin 10 (IL-10) and tumor necrosis factor (TNF)-a, leading to
the progression of acute respiratory distress syndrome (ARDS) and
potentially death [6,10]. However, it is still unclear how SARS-CoV-2
infection contributes to dysregulated immune response in the lung of
COVID-19 patients.

In this study, we comprehensively evaluated the single cell sequenc-
ing data from bronchoalveolar lavage fluid (BALF) samples of 19 subjects
(6 severe COVID-19 patients, 3 recovered COVID-19 patients with mild
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Research in context

Evidence before this study

The Coronavirus disease 2019 (COVID-19) pandemic, caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), becomes a global threat to humanity. In severe COVID-19
patients, excessive proinflammatory responses and impaired
host immune system are observed which could result in the
progression of acute respiratory distress syndrome (ARDS) and
even death. In-depth investigation of SARS-CoV-2 infected cell
types, the consequent host immune response, and the commu-
nication patterns between infected cells and immune system
could facilitate the identification of COVID-19 patients and their
optimal treatments.

Added value of this study

By analyzing single-cell RNA sequencing data of bronchoalveo-
lar lavage fluid samples from COVID-19 patients and healthy
donors, our study revealed high expression of SARS-CoV-2
receptor ACE2 and TMPRSS2 in lung epithelial cells of COVID-19
patients, in particular club and ciliated cells. SARS-CoV-2 infec-
tion induced pro-inflammatory genes expression and inter-
feron/cytokine signaling in these cells. In severe COVID-19
patients, remarkably high neutrophil but low macrophage cells
in lung were observed along with excessive expressions of
cytokines. Moreover, SARS-CoV-2 infection altered the commu-
nity interplays among lung epithelial and immune cells, and
the dysregulated cytokine/receptor interactions were corre-
lated with severity of COVID-19.

Implication of all the available evidence

Our study identified critical cell type, dysregulated immunity
and their interactions in the lung of SARS-CoV-2 infection, thus
provided new insight into the mechanisms underlying of SARS-
CoV-2 infection in COVID-19 patients.
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symptoms and 10 healthy donors) to uncover cell types with ACE2 and
TMPRSS2 expression in the lung infected with SARS-CoV-2. We further
investigated the patterns of immune cells infiltration and their expres-
sion profiles across the different severity of infected patients as compare
to the healthy controls. We finally evaluated the crosstalk between lung
epithelial cells and immune cells.

2. Methods

2.1. Data availability

Single cell RNA sequence (scRNA-Seq) data were retrieved from
published resources, including bronchoalveolar lavage fluid (BALF)
from 6 severe and 3 moderate COVID-19 patients [11], and 10 healthy
transplant donors. Bulk RNA-Seq data in three SARS-CoV-2 treated
cell lines were obtained for validation purpose, including primary
human bronchial epithelial cells (NHBE), Calu-3 and A549-ACE2
(with vector expressing human ACE2) [12]. All relevant data were
downloaded from Gene Expression Omnibus under the accession
number GSE145926, GSE151928 and GSE147507.

2.2. scRNA-Seq data analysis

We re-analyzed the data from a count quantification matrix due
to the un-available per-cell annotation. Cells with mitochondrial
gene proportion higher than 15% were filtered out. For each individ-
ual dataset, raw count matrix was first normalized and the top 2000
most variable genes were chosen. For each cell, we divided the gene
counts by the total counts and multiplied by 10,000, followed by nat-
ural-log transformation. High variable genes were determined using
FindVariableFeatures in Seurat pipeline [13]. To remove batch effects,
following recommended batch-effect correction workflow of Seurat
(v3.2.2), we scaled each dataset, selected 2000 high-variable genes as
input to compute the integration anchors (FindIntegrationAnchors),
and then integrated (IntegrateData) the batches using the anchors.
Multiple datasets were then integrated via searching the “anchors”
among them [13], enabling us to explore shared cell types presented
across different datasets and conditions. The integrated data were
scaled followed by principal component analysis (PCA), and we
retained the top 30 principal components (PCs) for further analysis.
To visualize the cells, we applied the t-distributed stochastic neigh-
bor embedding (t-SNE) on the top PCs. The selected PCs were also
used for computing nearest-neighbour graphs and for clustering the
cells. To re-annotate the cells, we identified the conserved markers
for each cluster across different conditions, by comparing with all
remaining clusters using FindConservedMarkers method in Seurat
pipeline. Markers specific for major cell types were listed below:
EPCAM (epithelial), PTPRC (immune), PECAM1 (Endothelia), and
PDGFRA (Firboblasts). To identify different immune cell types, we re-
clustered non-epithelial cells into 22 subclusters. For epithelial and
non-epithelial clusters, we annotated cell identity by the expressions
of known marker genes [14]. MAST [15] algorithm was used to iden-
tify the altered genes under SARS-CoV-2 infection for the epithelial-
related (EPCAM+) and immune-related (CD45+) clusters, respectively.
2.3. Regulatory network inference

We constructed gene regulatory networks using SCENIC
(pySCENIC, v0.11.2) [16] to predict transcription factors (TFs) activi-
ties for scRNA-seq data. Briefly, TFs and target genes co-expression
modules were firstly inferred via regression-based network inference
using GENIE3. Subsequently, those modules were pruned via motif
enrichment analysis by cisTarget. After the putative modules (regu-
lon) were defined, the method AUCell was used to score individual
cell for the relative biological activity of regulon.
2.4. Cell-cell interaction analysis using CellPhoneDB

A systematic analysis of cell-cell communication was performed
by CellPhoneDB package (www.cellphonedb.org), which explores the
ligand-receptor interactions based on expression of ligand / receptor
between different cell types (clusters). We chose the receptors and
ligands expressed in more than 10% of the cells in the specific cluster
for subsequent analysis. To minimize the effects with unequal cell
numbers, all cell clusters were randomly down-sampled to the size
of 100, which was closed to cell number of the smallest cluster. This
procedure was repeated 100 times and the average receptor expres-
sion level of a cluster and the average ligand expression level of the
interacting cluster were calculated. P < 0.05 was considered as signif-
icant cell�cell interaction.
3. Functional analysis

Functional enrichment analysis was used to identify classes of
molecules (genes or proteins) that were over-represented in a set of
pre-defined molecules and predicted its association with disease
phenotypes. We performed this method to uncover potential biologi-
cal function shift under SARS-CoV-2 infection through mapping the
molecules into known molecule sets by WebGestalt [17].

http://www.cellphonedb.org
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4. Bulk RNA-Seq data analysis

RNA-seq reads were mapped onto the human reference (GRCh38
with gene annotations GENCODE v30) by HISAT2 (version 2.1.0) with
the default options. The number of reads mapped to each of genes
was counted by using featureCount (version v1.6.4). Gene expression
levels were calculated as FPKM (Fragments per Kilobase of transcript
per Million mapped reads) by rpkm method in edgeR. Differentially
expressed genes (DEGs) were determined using DESeq2.

5. Statistics

The statistical analyses used have been described in each subsec-
tion. SCOPIT [18] was carried out to determine the minimum number
of cells that were required for analysis. Randomisation, blinding,
inclusion/exclusion criteria were not applicable for this study, and
available single cell RNA sequence (scRNA-Seq) data of BALF samples
from COVID-19 patients and healthy donors were retrieved from
published resources for analysis. In this study, we applied a flexible
generalized linear model, MAST [15], to characteristic bimodal
expression distributions in the scRNA-seq data. We detected the con-
served markers among t-SNE clusters (FindConservedMarkers) and
differentially expressed genes among groups (Healthy, Severe and
Mild) for different cell cluster(s) (FindMarkers). To account for multi-
ple testing, P values were adjusted using bonferroni correction.

6. Role of funding source

Funders of this study had no role in study design, data collection,
data analyses, interpretation, or writing of the report.

7. Results

7.1. Lung epithelial cells express higher ACE2 and TMPRSS2 in COVID-
19 patients

To examine the expressions of SARS-CoV-2 entry genes, ACE2 and
TMPRSS2, in different cell types of human lung after SARS-CoV-2
infection, single-cell RNA sequencing (scRNA-seq) data of lung bron-
choalveolar lavage fluid (BALF) from 3 recovered mild cases and 6
severe cases (GSE145926) [11], as well as 10 healthy donors
(GSE151928) [19] were retrieved from NCBI database. Unsupervised
analysis identified 23 distinct cell clusters (Fig. 1A and Figure S1),
including epithelial (EPCAM+) and immune (PTPRC+) cell populations
(Figure S2). ACE2 and TMPRSS2 were primarily expressed in lung epi-
thelial cells (Fig. 1B), in line with other studies [20,21]. Among lung
epithelial populations, a relative high percentage of ACE2 or TMPRSS2
positive cells were shown in club and ciliated cells which may act as
primary target cells of SARS-CoV-2 infection (Fig. 1C). Notably, the
percentages of ACE2 or TMPRSS2 positive cells among these two types
of lung epithelial cells were all significantly higher in BALF samples
from either severe or mild COVID-19 patients as compared to healthy
controls (Fig. 1D). In keeping with this, the ACE2 or TMPRSS2 mRNA
expression level was significantly higher in COVID-19 patients com-
pared to healthy controls in club and ciliated cells (Fig. 1E). However,
the correlation between increased ACE2 and TMPRSS2 expressions in
the lung epithelial cells from COVID-19 patients and SARS-CoV-2
infection needs further in-depth investigation, considering the small
sample size in this study and the treatment administrated to these
patients.

7.2. SARS-CoV-2 leads to cellular transcriptome alterations in lung
epithelial cells

We next investigated cellular transcriptome alterations of lung
epithelial cells in response to SARS-CoV-2 infection. Profoundly
altered gene transcriptional expressions in club and ciliated cells
were present in severe COVID-19 patients (Figure S3). In club cells,
we detected 107 up-regulated and 65 down-regulated transcripts in
severe COVID-19 patients as compared to healthy control (adjusted p
� 0.01 and |log2Fold change (FC)| � 1) (Table S1). On the other hand,
162 up-regulated and 138 down-regulated transcripts (adjusted p �
0.01 and |log2Fold change (FC)| � 1) after SARS-CoV-2 infection were
identified in ciliated cells (Table S1). Over-representation analysis of
these candidate genes revealed that SARS-CoV-2 infection induced
interferon pathway and cytokine signaling in the lung epithelial cells
of severe COVID-19 patients (Fig. 1F). On the other hand, SARS-CoV-
2 was capable to suppress host protein translation in club cells
(Fig. 1F). Furthermore, comparative analysis of lung epithelial cells
transcriptome between mild and severe COVID-19 patients indicated
that T cell activation signaling such as MHC class II antigen presenta-
tion and Phosphorylation of CD3 and TCR zeta chains were induced
but the cytokine signaling was inhibited in mild patients as compared
to severe patients (Figure S4). Intriguingly, major histocompatibility
complex (MHC) class II genes, including HLA-DR, HLA-DQ, HLA-DP
and HLA-DM, were found significantly decreased in lung epithelial
cells of severe COVID-19 patients as compared to healthy controls
(Figure S3 and Table S1). This may partially explain the failure of T
cells induction and poor patient outcome. On the other hand, expres-
sions of MHC class II genes were restored in mild recovered COVID-
19 patients (Table S2).

7.3. SARS-CoV-2 infection drives lung immune response

We further studied the specification of immune cells fates in
response to SARS-CoV-2 infection. The non-epithelial cells were re-
clustered into 22 subclusters and different immune cell types were
identified (Figure S5), based on their typical markers [14]. As shown
in Fig. 1B and Fig. 2A, ACE2 or TMPRSS2 was almost not expressed in
the immune cells of BALF samples from COVID-19 patients, implying
that the immune cells might be not susceptible to SARS-CoV-2 infec-
tion. We next studied three macrophage subclusters (cluster 2, 3 and
6), two T & NK cells subclusters (cluster 4 and 5), as well as one neu-
trophils subcluster (cluster 0) which contained sufficient cell number
for analysis (Figure S6). Over-representation analysis of subcluster-
specific genes revealed activation of MHC class II antigen presenta-
tion signaling in Macrophage_2 and Macrophage_6; in contrast, Mac-
rophage_3 could carry out complement effector function (Fig. 2B).
We also investigated differential regulon activities of transcription
factors (TFs) among different epithelial and immune cell subtypes
using SCENIC, and multiple TFs associated with specific cell types
showed enriched regulon activity including TCF7L2 in macrophage
subclusters, and GATA3 and NFATC2 for T and NK subclusters
(Figure S7). By comparing different immune cell populations
between COVID-19 patients and healthy controls, we found a dysre-
gulated immune response in the lungs after SARS-CoV-2 infection
(Fig. 2C and S8). A massive increase of neutrophils was observed in
severe COVID-19 patients as compared with healthy controls, while
the level was restored to normal after the patients recovered
(Fig. 2C). Whilst macrophage number (cluster 3 and 6) was signifi-
cantly lower in severe COVID-19 patients compared to healthy con-
trols, they were restored in recovered patients (Fig. 2C). Meanwhile,
T/NK cells were only induced in recovered but not severe COVID-19
patients as compared to healthy controls (Fig. 2C).

We then explored the differential gene expression profiling of
immune cells in the lung between COVID-19 patients and healthy
controls. Differential gene expression patterns of neutrophil, macro-
phage and T/NK cells were demonstrated in severe COVID-19
patients, mild recovered COVID-19 patients and healthy controls
(Fig. 2D and S9). In severe COVID-19 patients, we identified a variety
of cytokines which were markedly increased in neutrophil, macro-
phage, and T/NK cells (CCL2, CCL3, CCL3L1, CCL4 and CCL4L2), and in



Fig. 1. High ACE2 and TMPRSS2 expression in lung epithelial cells from COVID-19 patients. (A) The t-SNE plot displayed the major cell types (epithelial, immune and others) in
23 clusters for bronchoalveolar lavage fluid (BALF) samples from 6 severe (S) and 3 recovered mild COVID-19 patients (M), as well as 10 healthy controls (HC). (B) The t-SNE plot dis-
played RNA expression of ACE2 or TMPRSS2. Right panel shows ACE2 or TMPRSS2 expression in lung epithelial cells from different groups using violin plot. (C) Dot plot of ACE2 or
TMPRSS2 expression for each cell-type of lung epithelial cells from different groups. Dot size represents the percentage of cells in individual clusters expressing a given gene. (D)
The pie chart shows the percentages of ACE2- or TMPRSS2- positive cells in club (cluster 14) and ciliated (cluster 15) cells. (E) Violin plot of expression values of ACE2 or TMPRSS2 in
different cell types of lung epithelial cells from different group. (F) The top 5 enriched signaling pathways of up-regulated (red) or down-regulated (green) genes in lung epithelial
cells after SARS-CoV-2 infection (severe vs. health). * P < 0.05; ** P < 0.01; *** P< 0.001.
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Fig. 2. SARS-CoV-2 infection induced imbalanced host immune response in severe COVID-19 patients. (A) Dot plot of ACE2 or TMPRSS2 expression for each cell-type of lung
immune cells from different groups. Dot size represents the percentage of cells in individual clusters expressing a given gene. (B) Top 5 enriched signaling pathways of markers
genes for macrophage (cluster 2, 3 and 6). (C) The percentages of different immune cell types of all CD45+ cells in BALF of severe (S), recovered mild COVID-19 patients (M), and
healthy controls (HC). (D) Heatmaps of transcript level of candidate genes in different immune cell types. * P < 0.05; ** P < 0.01; *** P < 0.001.
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neutrophil and macrophage (CCL7 and CXCL8) (Fig. 2D). The concomi-
tant high expression of these cytokines derived from dysregulated
immune cells attracted by SARS-CoV-2 infection suggested occur-
rence of cytokine storm in these patients. Of note, FABP4 was highly
expressed in macrophage_2 of healthy controls and mild patients as
compared to severe COVID-19 patients; by contrast, SPP1were highly
expressed in macrophages (cluster 2, 3 and 6) of severe COVID-19
patients (Fig. 2D). These observations were in line with previous
study [11]. Moreover, MARCO expression in macrophages was sup-
pressed in severe COVID-19 patients, implying that the lung alveolar
macrophages may fail to clean up neutralized viruses after SARS-
CoV-2 infection (Fig. 2D).



Fig. 3. SARS-CoV-2 infection resulted in abnormal epithelial-immune cell interaction in lung. (A-C) We evaluated intercellular communications based on expression of
ligand�receptor pairs among different cell types by CellPhoneDB. Club-immune cells (A), ciliated-immune cells (B), and immune-immune communications (C) in severe (S, n=6),
recovered mild (M, n=3) COVID-19 patients, and healthy controls (HC, n=10) were shown. Only significant interactions were calculated, and the number of interactions was depicted
in violin plot, or normalized against those of healthy controls in heatmap. (C) Heat map depicting different ligand�receptor interactions among different cell types. Interaction
strengths are color coded. [One-way Analysis of Variance (ANOVA) followed by Tukey multiple comparisons (A-C)]. * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001.
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7.4. SARS-CoV-2 caused abnormal epithelial-immune cell interaction in
lung

We next explored the intercellular communications within lung
based on expression of ligand�receptor pairs among different
epithelial and immune cell types by CellPhoneDB [22]. The number of
significant cell interactions (P < 0.05) was calculated. We found club-
immune cells interactions (Fig. 3A), but not ciliated-immune cells
interactions (Fig. 3B), were significantly increased in COVID-19
patients as compared to healthy controls. As to immune-immune



H. Chen et al. / EBioMedicine 70 (2021) 103500 7
cells communications, BALF samples of mild patients presented more
cells interactions than those of severe patients and healthy donors
(Fig. 3C). To understand whether these interactions correlated with
COVID-19 severity, we further looked into specific cytokine/receptor
interactions among epithelial and immune cells. We found occur-
rence of ANXA1/FPR2 and TNFSF13/TNFRSF1A interactions between
club and macrophage (or Neutrophil) cells, and CXCL2/DPP4 interac-
tion between club and T/NK cells in severe COVID-19 patients, but
not in mild patients or healthy controls, indicating that cytokine/
receptor interactions between lung epithelial and immune cells are
associated with severity of COVID-19 infection (Fig. 3D). Intriguingly,
SARS-CoV-2 might gain entry into host cells through DPP4, and inhi-
bition of DPP4 potentially benefits diabetes patients with COVID-19
[23]. Furthermore, we found that SARS-CoV-2 infection induced both
C3/C3AR1 and SAA1/FPR2 interactions between lung epithelial cells
(club and cilliated) with macrophage (or Neutrophil); loss of ANXA1/
FPR2 interactions among macrophages were observed in severe
COVID-19 patients; and TNFSF13/TNFRSF1A interaction appeared
between macrophages and T/NK cells in mild patients, but not in
severe patients or healthy donors (Fig. 3D). We further validated
ANXA1, C3, CXCL2, SAA1 and TNFSF13 expressions in lung epithelial
cells after SARS-CoV-2 infection. The result demonstrated that the
expression of ANXA1, C3 and SAA1 were all significantly higher in
lung epithelial cells of severe COVID-19 patients as compared to
healthy controls (Figure S10). An increase trend was observed for
CXCL2, but not TNFSF13, in lung epithelial cells after SARS-CoV-2
infection (Figure S10). In supporting this, SARS-CoV-2 infection sig-
nificantly increased the mRNA expression of C3, CXCL2 and SAA1 in
human lung cancer cell line A549 overexpressing ACE2, lung cancer
cell line Calu-3, and human normal bronchial epithelial cells (NHBE)
(Figure S10). Our findings suggest that the specific networks
between epithelial cells and immune cells were formed in lung after
SARS-CoV-2 infection which might contribute to severity of COVID-
19 infection.
Fig. 4. SARS-CoV-2 infection and host immune response in COVID-19 patients. In COVID-
ing ACE2 and TMPRSS2 in lung epithelium and actively replicate in host cells. This could lead
kines which subsequently attract both innate and adaptive immune cells including neutroph
Besides, the immune cells also release cytokines to attract more immune cells, creating a p
cytokines producing-immune cells in the lungs could increase the severity of COVID-19 patie
8. Discussion

In this study, we identified high expressions of ACE2 and TMPRSS2
in ciliated and club cells of lung epithelium in COVID-19 patients.
ACE2 and TMPRSS2 are two critical entry genes required for SARS-
CoV-2 infection [4]. The expression of ACE2 has been reported in a
variety of tissues including respiratory tract and gastrointestinal
mucosa [24]. ACE2 and TMPRSS2 mRNA were expressed in lung type
II pneumocytes, ileal absorptive enterocytes, and nasal goblet secre-
tory cells [21], and their protein expressions were detected in nasal
and bronchial epithelium [25]. Our study provides some novel infor-
mation on the cell types of lung epithelial cells expressing ACE2 and
TMPRSS2, and their expression levels in COVID-19 patients based on
single cell sequencing analyses. However, the expressions of ACE2
and TMPRSS2 were not found in immune cells in the BALF of COVID-
19 patients. In keeping this, no SARS-CoV-2 viral gene expression
was detected in peripheral blood mononuclear cell in three SARS-
CoV-2 patients [26]. Thus, lung epithelial cells are more susceptible
to SARS-CoV-2 infection as compared to immune cells.

We further demonstrated that SARS-CoV-2 led to host cellular
transcriptome alterations in club and ciliated cells of COVID-19
patients, resulting in activation of interferon pathway and cytokine
signaling. These secreted signaling molecules serve to initiate host
immune response by recruiting various immune cells [27]. Intrigu-
ingly, reduced expressions of MHC class II genes such as HLA-DR,
HLA-DQ, HLA-DP and HLA-DM were identified in lung epithelial cells
of severe COVID-19 patients, and their expressions were restored in
mild recovered patients. MHC class II molecules play a key role in
adaptive immune responses, and are responsible for presenting path-
ogen-derived peptide to T cells [28]. As a consequence, massive infil-
tration of neutrophils, but not T cells, was observed in severe COVID-
19 patients. Moreover, the accumulated immune cells (neutrophils,
macrophage and T/NK cells) in the lung of severe COVID-19 patients
expressed significantly higher levels of cytokines including CCL2,
19 patients, the SARS-CoV-2 may infect ciliated cells, club cells, and basal cells express-
to activation of pro-inflammatory signaling and production of pro-inflammatory cyto-
ils, macrophages and T cells to the infection site to fight virus and virus-infected cells.
ositive feedback loop of cytokine creation. Massive accumulation of pro-inflammatory
nts.
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CCL3, CCL3L1, CCL4, CCL4L2, CCL7 and CXCL8, and finally formed a
cytokine "hurricane". Consistently, a recent study reported that CCL2
and CCL3 cytokines released by the lung may contribute to lung tissue
damage [29]. Thus targeting cytokines could benefit severe COVID-19
patients. We also noticed that macrophages of severe COVID-19
patients expressed less MARCO. MARCO is expressed on alveolar mac-
rophages and thought to promote protective innate immunity against
infection [30]. Thus the immune system of severe COVID-19 patients
failed to clean up SARS-CoV-2. Taken together, SARS-CoV-2 infection
could induce aberrant genes expressions, enriched pro-inflammation
signaling, and the dysregulated host immune response in the lung of
COVID-19 patients.

We went further to look into the intercellular communications
within lung using CellPhoneDB [22]. The interaction networks
between epithelial-immune cells or immune-immune cells were
quite different among healthy donors, severe and mild patients. We
revealed more club-immune cells interactions in lung of COVID-19
patients as compared to healthy controls. In addition, BALF samples
of mild patients presented more immune-immune cells communica-
tions than those of severe patients and healthy donors. In particular,
ANXA1/FPR2 interaction occurred between club and macrophage (or
neutrophil) cells, but diminished between macrophage and neutro-
phils in severe COVID-19 patients. ANXA1 is commonly highly
expressed in immune cells such as neutrophils and macrophages.
ANXA1 could bind to and activate FPR2 receptor, and exert anti-
inflammatory effects [31,32]. Therefore, the ANXA1/FPR2 interaction
switch, or loss of ANXA1/FPR2 interaction in macrophage/neutrophil,
may result in hyperinflammatory response in severe COVID-19
patients. Moreover, CXCL2/DPP4 interaction occurred between club
and T/NK cells in severe COVID-19 patients, but not in mild patients
or healthy controls. DPP4 is highly expressed on T cells and inhibition
of DPP-4 promotes accumulation of anti-inflammatory T cells and
anti-inflammatory cytokines [33]. Targeting DPP4 may ameliorate
severity of SARS-CoV-2 infection given that DPP4 could favor SARS-
CoV-2 entry into cells [23]. Our findings suggest that dysregulated
cytokine/receptor interactions in the lung could result in severity of
COVID-19 infection.

Our study has some limitations. First, the sample size used was
relatively small. Therefore we could not examine the correlation
between the patients’ demographic characteristics such as age, gen-
der and ethnicity, with aberrant gene expression profiling and dysre-
gulated lung immune response in the lung of COVID-19 patients.
Second, although our analysis indicated that SARS-CoV-2 infection
induced aberrant gene expression profiling of lung epithelial and
immune cells, and disrupted their interplays, validation studies using
cell line and animal models are needed in future.

In conclusion, SARS-CoV-2 infection induces aberrant gene
expression profiling and activation of pro-inflammatory signaling of
lung epithelium cells (ciliated and club) that expressing high levels of
ACE2 and TMPRSS2. Moreover, SARS-CoV-2 infection causes dysregu-
lated lung immune response and massive production of pro-inflam-
matory cytokines and disrupts the interplays of epithelial cells and
immune cells. All these contribute to severity of COVID-19 infection
(Fig. 4).
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