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Abstract

Objective

Glucolipotoxicity is a major pathophysiological mechanism in the development of insulin

resistance and type 2 diabetes mellitus (T2D). We aimed to detect subtle changes in the cir-

culating lipid profile by shotgun lipidomics analyses and to associate them with four different

insulin sensitivity indices.

Methods

The cross-sectional study comprised 90 men with a broad range of insulin sensitivity includ-

ing normal glucose tolerance (NGT, n = 33), impaired glucose tolerance (IGT, n = 32) and

newly detected T2D (n = 25). Prior to oral glucose challenge plasma was obtained and

quantitatively analyzed for 198 lipid molecular species from 13 different lipid classes includ-

ing triacylglycerls (TAGs), phosphatidylcholine plasmalogen/ether (PC O-s), sphingomye-

lins (SMs), and lysophosphatidylcholines (LPCs). To identify a lipidomic signature of

individual insulin sensitivity we applied three data mining approaches, namely least abso-

lute shrinkage and selection operator (LASSO), Support Vector Regression (SVR) and

Random Forests (RF) for the following insulin sensitivity indices: homeostasis model of

insulin resistance (HOMA-IR), glucose insulin sensitivity index (GSI), insulin sensitivity

index (ISI), and disposition index (DI). The LASSO procedure offers a high prediction accu-

racy and and an easier interpretability than SVR and RF.
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Results

After LASSO selection, the plasma lipidome explained 3% (DI) to maximal 53% (HOMA-IR)

variability of the sensitivity indexes. Among the lipid species with the highest positive

LASSO regression coefficient were TAG 54:2 (HOMA-IR), PC O- 32:0 (GSI), and SM

40:3:1 (ISI). The highest negative regression coefficient was obtained for LPC 22:5

(HOMA-IR), TAG 51:1 (GSI), and TAG 58:6 (ISI).

Conclusion

Although a substantial part of lipid molecular species showed a significant correlation with

insulin sensitivity indices we were able to identify a limited number of lipid metabolites of

particular importance based on the LASSO approach. These few selected lipids with the

closest connection to sensitivity indices may help to further improve disease risk prediction

and disease and therapy monitoring.

Introduction

Metabolic syndrome represents a cluster of metabolic and cardiovascular abnormalities includ-
ing obesity, hypertension, hyperglycemia and dyslipidemia. A common pathophysiological
mechanism linking these traits is insulin resistance which in turn is closely associated with
abnormalities in glucose and lipid metabolism.

Intracellular lipid oversupply may lead to cellular damage that underlies diabetes [1–3]. So-
called glucolipotoxicity with accompanying insulin resistance is followed not only by distur-
bances in tissue fat metabolism but is also reflected in alterations of various circulating plasma/
serum lipid subspecies [4–7]. Recently, we demonstrated that hypertension, an integral part of
the metabolic syndrome, was specifically associated with decreased levels of free cholesterol
and ether lipids [8].

The objective of this study was to apply shotgunmass spectrometric analysis [9, 10] for the
comprehensive and quantitative estimation of the plasma lipidomic profile in a total of 90 male
individuals with a broad range of insulin sensitivity including NGT (n = 33), IGT (n = 32) and
newly detected T2D (n = 25). The collection of high dimensional data which contains a large
number of potential covariates, yet a very limited sample size is often called “small n and large
p problem”. This requires specific statistical data miningmethods for detecting independent
associations betweenmolecular lipid species and insulin sensitivity indices including
HOMA-IR, GSI, ISI, and DI. Here, we demonstrate that LASSO selection procedure was a valu-
able tool to detect distinct lipidomic signatures of the four investigated insulin sensitivity
indexes. Their close associationwith different insulin sensitivity indices may link these molecu-
lar markers with subtle changes of glucose tolerance.

Research Design and Methods

Subjects

The study comprised 90 white male subjects who were attending the PRAEDIAS (Prevention
of diabetes) study at the Dresden University Hospital Carl Gustav Carus. In brief, subjects who
were at risk for development of diabetes owing to a family history of T2D, obesity and/or
hyper-/dyslipoproteinemia were examined. Clinically overt diabetes was an exclusion criterion.
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The study was conducted in accordance with the guidelines proposed in the Declaration of
Helsinki. All subjects signed a written consent to participate in the study. The study was
approved by the local competent authority the Ethik-Kommission an der Technischen Univer-
sität Dresden (EK 139092001).

After overnight fasting subjects underwent a comprehensive clinical and metabolic charac-
terization including an oral glucose tolerance test (OGTT, 75g oral glucose challenge). Accord-
ingly, study participants were grouped: plasma glucose at time point 0 (PG0)<6.1 mmol/l and
2h post challenge (PG120)<7.8 mmol/l—NGT; PG120 = 7.8–11.1 mmol/l—IGT;
PG120>11.1 mmol/l—T2D. Subjects included into the latter group were diagnosed by their
first pathological OGTT. Notably, they had no clinical symptoms and no medication of diabe-
tes mellitus.

Blood samples for lipid profiling were taken at time point 0 of OGTT. EDTA plasma was
prepared by centrifugation at 4°C and 3000g for 10 min, immediately shock-frozen in liquid
nitrogen and stored at -80°C until analysis.

Conventional clinical chemistry

Plasma total cholesterol, HDL and LDL cholesterol, triglycerides, free fatty acids, glucose, insu-
lin, C-peptide, leukocytes, C-reactive protein (CRP), and HBA1c were measured by routine
clinical chemistry as previously described [8].

Calculation of insulin sensitivity indices

The sensitivity indices HOMA-IR, ISI, and DI were estimated as describedpreviously [11]. GSI
was introduced recently by Kazama et al. [12] and is calculated from plasma glucose and insu-
lin levels at 0, 30, 60, 90 and 120 min OGTTby a formula based on an autoregressive model,
see also S1 Table.

Shotgun lipidomics analysis

Chemicals and lipid standards. Common chemicals and solvents were of ACS or LC–MS
grade (purity> 99.0%) and purchased from Fisher Scientific (Loughborough,United King-
dom), Sigma–AldrichChemie GmbH (Munich, Germany), Fluka (Buchs St. Gallen, Switzer-
land) or Merck (Darmstadt, Germany). Synthetic standards from Avanti Polar Lipid Inc.
(Alabaster, AL) were used for quantification (S2 Table).

Lipid extraction. EDTA blood plasma samples were extracted similar to previously pub-
lishedmethods [8, 13]. Briefly, in a 1.5 ml “Eppendorf Safe-Lock” tube (Eppendorf (Hamburg,
Germany)) 5 μl of plasma were mixed with 700 μl of MTBE/methanol 10:3 (v/v) containing
internal standards (S2 Table). The mixture was vortexed for one hour at 4°C. 140 μl water were
added and the tube vortexed for another 15 min at 4°C. After centrifugation for 5 min at
13.400 rpm on a Minispin centrifuge (Eppendorf, Hamburg, Germany), 500 μl the upper
organic phase were transferred into 1.5 ml borosilicate vials and stored at −20°C until analysis.

Mass spectrometricanalysis. Shotgun Lipidomics measurements were performed similar
to previous methods (doi: 10.1002/jms.2031). Briefly, 5 μl of plasma extract were diluted in
100 μl chloroform/methanol/2-propanol 1/2/4 (v/v/v) containing 7.5 mM ammonium formate.
Measurements were performed on a QExactive mass spectrometer (Thermo Fisher Scientific,
Bremen, Germany) equipped with a robotic nanoflow ion source TriVersa (Advion BioSci-
ences Ltd, Ithaca NY) (similar to [9]). Dual polarity acquisitions were performedwith ioniza-
tion voltage ± 0.95 kV and the gas pressure to 1.25 psi. FTMS spectra (m/z 400–1200,
AGC = 1e6, IT = 500ms) were acquired at the targeted resolution of 140k atm/z 200 in both
polarity modes. Each lipid extract was twice analyzed. Cholesterol was quantified by targeted
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FTMS/MS+ (AGC = 5e4, IT = 3s) at the targeted resolution of 140k atm/z 200 (as described
elsewhere).

Performance control. A series of control blood plasma (sample volume: 1.25, 2.5, 5.0,
10.0, 15.0 μl) was measured to prove detection linearity of quantified lipid species for the
expected total lipid concentrations of 2.0–28.3 mM. For the analyzed samples of this screen the
total lipid concentration in blood plasma varied from 5.6–18.7 mM.Within the tested concen-
tration range the adjusted R2 was greater 0.98 for the quantified lipid analytes.

Total triacylglycerol and cholesterol concentrations, as specifiedby lipidomics, were corre-
lated with quantities obtained by standard enzymatic methods on a MODULAR analyser
(Roche, Indianapolis, IN). The specified concentrations correlated well for total triacylglycerol
(relative error = -5.48 ± 8.77%, adj. R2 = 0.9754, slope = 1.0151) and total cholesterol (relative
error = 7.61 ± 5.44%, adj. R2 = 0.9362, slope = 0.9833). The data comparison uncovered 1
experimental outlayer in 91 analyzed plasma samples. For this sample total triglyceride differed
by 7.9x; total cholesterol by 1.6x.

Data processing. FTMS and FTMSMS spectra were interpreted by LipidXplorer software
as described [9, 14]. 198 species from 13 major lipid classes were quantified across the plasma
samples (S2 Table).

Annotation of lipid species. Lipid species were annotated according to common rules
(DOI 10.1194/jlr.M033506). Abbreviation of tri- and diacylglycerolswere different to avoid con-
fusion with colorimetric specifiedquantitities for same lipid classes. Further, sphingolipid
hydroxyl groups are assigned by separate counter following the double bond counter. Brief
description of short annotation for lipid species:<lipid class abbreviation><number of chain
carbon atoms>:<number of chain double bonds>:<number of hydroxyl groups (if present)>.

Desaturase activities. The ratios of product-to precursor fatty acids in plasma cholesterol
esters were used to estimate desaturase activities:Δ5-desaturase (D5D): arachidonic acid (FA
20:4 n-6)/dihomo-γ-linolenic acid (FA 20:3 n-6); Δ6-desaturase (D6D): γ-linolenic acid (FA
18:3 n-6)/linoleic acid (FA 18:2 n-6); Δ9-desaturase (D9D): palmitoleic acid (FA 16:1 n-7)/pal-
mitic acid (FA 16:0).

Statistical analysis. The initial statistical analysis focused on detecting group effects on the
lipid species as well as the lipid classes. As the group variable contains the NGT, IGT and T2D
groups an ANOVA was used to identify differences in group means after having log-trans-
formed and normalized the lipid values. In total, 202 p-values were returned that were cor-
rected for multiple testing using the Benjamini-Hochberg procedure which is a preferred
correction procedure analyzing high dimensional data. As an ANOVA is only able to deter-
mine whether one of the group means significantly differs from the others, these calculations
were followed by pairwise t-Tests in order to conclude which of the group means differ signifi-
cantly. Here we also used a Benjamini Hochberg correction to account for multiple testing.
Similarly, correlations of each insulin sensitivity index and lipid species was estimated using
the Spearman coefficient followed by correlation tests. As the tests were performed for each of
the lipids in combination with each of the insulin sensitivity indices this also produces a multi-
ple testing problem which was again addressed by a Benjamini-Hochberg correction.

In order to estimate the influence of lipids on four insulin sensitivity indices (HOMA-IR,
GSI, DI and ISI) in a multivariate sense we only included either all lipid species or all lipid clas-
ses as covariates in our models. The analysis was corrected for age, BMI,WHR and systolic
blood pressure including these covariates in the models explaining each of the four insulin sen-
sitivity indices.

The huge number of covariates, however, makes it impractical to use standard parametric
procedures such as linear regression from a technical point of view having only observed90
individuals, on the other hand the interpretation of such a model would be almost impractical
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due to a huge number of estimated regression coefficients. In practicemany features may be
irrelevant and only a few covariates will actually influence the response. Including irrelevant
features to a model would then lead to overfitting as these variables can be considered as noise
variables that will cover the signal which would cause better fits on training samples and poorer
performances on test samples. Hence, including irrelevant features would lead to a model that
would not be able to generalize the trend in the data due to the noise variables.

Thus, data mining tools were applied to the data at hand that permit a fair analysis of such
data. We used LASSO [15], Support Vector Regression (SVR, [16]) in combination with a p-
value based feature selection using correlation tests as well as a Benjamini-Hochberg correction
prior to applying the SVR and Random Forests for each of the four regression tasks. In order to
get an overviewon Random Forests as well as variable importance which are major outcomes
of this method we refer to Strobl et al. [17]. These three methods were validated using a cross-
validation technique calledMonte Carlo Cross Validation with 100 iterations [18]. After vali-
dation we selected the model that minimizes the mean absolute error on the test data as the
model with the lowest error is the most valid. However, it turned out that the LASSOmodel
either returned the lowest mean absolute error or performed as good as the other methods. In
the latter case we decided to proceed with the LASSOmodel as it was as valid as the other two
models, however easier to interpret.

Finally, we extracted the final models for each of the four sensitivity indices by running the
method that is the most valid according to the mean absolute error on the entire data set and
estimating the final regression coefficients as well as R-Squared statistics for all four regression
models.

Results

Baseline anthropometric data and glycemic status are presented in Table 1. Compared to NGT
individuals, patients with newly diagnosedT2D were older, had a significantly increasedWHR
and a higher systolic blood pressure. According toWHO criteria (RR�140/90) fifty one indi-
viduals were hypertensive (thirteenwith NGT, nineteen with IGT, nineteen with T2D). IGT
and diabetic subjects had higher HbA1c, plasma glucose, insulin and C-peptide levels. Insulin
sensitivity indices GSI, ISI and DI decreased, and HOMA-IR increasedwith increasing insulin
resistance among individuals (see Table 1). While all sensitivity indices were significantly dif-
ferent betweenNGT and T2D subjects, ISI and DI additionally differed significantly between
NGT and IGT individuals. As expected by us, the indices are closely related among themselves.
Correlation analysis revealed that, except DI and HOMA-IR as well as DI and GSI, the indices
were significantly associated (Spearman-rho correlation coefficients from -0.676 to 0.575).

Shotgun lipidomics allowed detection and absolute quantification of a total of 198 circulat-
ing lipid species covering 13 different lipid classes: CE (n = 13 species), PC (n = 27), TAG
(n = 56), LPC (n = 13), LPE (n = 6), SM (n = 25), PI (n = 11), DAG (n = 6), PC O- (n = 15), PE
(n = 10), PE O- (n = 11), Cer (n = 4), Chol (n = 1). Table 2 displays plasma concentration of
lipid classes in plasma of individuals in the NGT, IGT and T2D groups, where the content of
an individual lipid class was determined by summing up absolute concentrations of all identi-
fied species and is expressed as μmol/l. As shown in Table 2, cholesteryl ester were the most
abundant among blood plasma lipids, followed by phosphatidylcholines, triacylglycerols, and
free cholesterol consistent with a previous report [19].

Out of 13 lipid classes, eight (TAG, DAG, CE, Cer, PC, PI, PE, Chol) were significantly and
gradually increased in IGT and T2D subjects when compared with NGT individuals (Table 2).
Additionally, SMs were significantly increased in T2D individuals when compared to NGT
subjects. S3 Table shows the plasma concentrations of each lipid species in the three groups

Human Plasma Lipidomics and Insulin Sensitivity

PLOS ONE | DOI:10.1371/journal.pone.0164173 October 13, 2016 5 / 16



with distinct glucose tolerance and the p-values of differences betweenNGT, IGT, and T2D
individuals.

Fig 1 presents the relative errors of insulin sensitivity indices using three regression models
(LASSO, RF, and SVR) that included the common risk factors age, BMI,WHR, systolic blood
pressure, and 198 individual lipid species. As shown in Fig 1, differences between these three
approaches were only marginal. Due to better interpretability, however, in the present study
the LASSOmodel was applied for subsequent analyses.

Table 1. Baseline clinical data, glycemic status, and conventional lipid parameters of NGT, IGT, and diabetic (T2D) male subjects.

Parameter NGT IGT T2D p-values

(n = 33) (n = 32) (n = 25) IGT/NGT T2D/NGT IGT/T2D

Clinical data

Age (years) 54±2 60±2 63±2 0.192 0.017 0.861

BMI (kg/m) 28.3±0.8 29.0±0.7 30.4±0.7 1.000 0.165 0.597

WHR 0.94±0.01 0.97±0.01 1.00±0.01 0.243 0.001 0.122

Blood pressure (mmHg)

systolic 131±3 143±3 151±4 0.016 0.000 0.430

diastolic 78±1 85±2 85±2 0.038 0.074 1.000

CRP (mg/l) 1.3±0.2 1.6±0.2 2.0±0.3 1.000 0.100 0.649

Leukocytes (GPt/l) 5.5±0.3 5.8±0.3 5.8±0.2 1.000 1.000 1.000

Glycemic status

HbA1C (mmol/mol) 36±1 40±1 44±1 0.011 0.000 0.010

Plasma glucose (mmol/l)

0 min 5.24±0.08 5.73±0.10 6.81±0.18 0.009 0.000 0.000

120 min 5.06±0.21 8.95±0.14 12.06±0.49 0.000 0.000 0.000

Insulin (pmol/l)

0 min 79.9±18.0 79.7±10.3 142.4±18.3 1.000 0.000 0.024

120 min 213.6±35.5 647.3±85.4 774.2±105.4 0.000 0.000 0.078

C-peptide (pmol/l)

0 min 841±71 870±43 1377±117 0.689 0.000 0.000

120 min 2200±166 3674±237 3979±279 0.000 0.000 1.000

Insulin sensitivity indices

GSIa 0.89±0.15 0.63±0.11 0.29±0.05 0.379 0.004 0.186

ISIb 6.93±0.76 3.08±0.14 2.19±0.11 0.000 0.000 0.655

DIc 9710±1648 2804±321 2151±267 0.000 0.000 1.000

HOMA-IRd 2.81±0.68 2.97±0.38 3.81±0.39 1.000 0.001 0.002

Conventional lipid parameters

Total cholesterol (mmol/l) 4.39±0.11 5.22±0.17 5.54±0.21 0.001 0.000 0.597

Triglycerides (mmol/l) 1.06±0.07 1.92±0.24 2.28±0.29 0.010 0.000 0.731

Free fatty acids (mmol/l) 0.40±0.03 0.49±0.03 0.61±0.17 0.035 0.000 0.018

HDL cholesterol (mmol/l) 1.40±0.05 1.28±0.06 1.19±0.09 0.340 0.034 0.849

LDL cholesterol (mmol/l) 2.58±0.09 3.19±0.14 3.48±0.20 0.005 0.000 0.447

Data are given as means ± SEM. Statistics by univariate analysis of variance with post-hoc Bonferroni test.
a–glucose insulin sensitivity index
b–insulin sensitivity index
c–disposition index
d–homeostasis model of insulin resistance

0 min and 120 min represents values before and after oral glucose challenge

doi:10.1371/journal.pone.0164173.t001
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To unravel potential associations between circulating lipids and insulin sensitivity markers,
we performed correlation analyses between lipids and four insulin sensitivity indices across all
individuals using Spearman’s nonparametric rank correlation coefficient followed by correla-
tion tests that have been adjusted for multiple testing using Benjamini Hochberg correction. As
demonstrated S4 Table, out of 198 lipid molecular species 126 correlated significantly with
either HOMA-IR, a marker of insulin resistance, and/or the surrogate sensitivity indexes GSI,
ISI and DI. The most striking (as evaluated by rho, p-value, and number of lipid species within
one lipid class) associations were found betweenHOMA-IR and TAGs (35 significant positive
correlations), and ISI and TAGs (33 significant negative correlations). GSI and DI were signifi-
cantly negatively associated with 21 TAGs and 14 TAGs, respectively. Therefore, it is not sur-
prising that a considerable amount of lipid classes was either significantly positively
(HOMA-IR) or significantly negatively (ISI, DI) related to insulin sensitivity indices, see S1
Fig. In this respect, the the causes for the comparably week performance of GSI remain to be
determined.

S2 Fig shows a heat map of the logarithmic lipid class values in the rows and patients in the
columns labelled according to their status of glucose tolerance (green = NGT, yellow = IGT
and red = T2D). Most of the T2D and NGT subjects could be well separated by the lipid class
values. They are either clustered on the left side of the heat map (T2D) or in the middle (NGT).
However, it was not possible to detect a cluster of IGT patients indicating IGT patients can not
be well separated fromNGT or T2D subjects based on lipid class values.

Fig 2 depicts the relationship of acyl chain carbons and acyl chain double bonds in TAGs
and correlation coefficients to HOMA-IR and ISI across all individuals. It shows the tendency
that TAGs of lower carbon number and double bond content were associated with increased
positive correlation to insulin resistance (HOMA-IR) and increased negative association to
insulin sensitivity (ISI). A similar relationship of TAG carbon number and acyl chain number
with insulin sensitivity surrogates was also found for GSI but not for DI. Moreover, correlation
analyses revealed a close positive association between ISI and ether lipids, LPCs and SMs and
predominantly negative relations of HOMA-IR to LPCs and SMs (see S4 Table).

Table 2. Circulating lipid status of NGT, IGT, and diabetic (T2D) male subjects.

Parameter NGT IGT T2D p-values

(n = 33) (n = 32) (n = 25) IGT/NGT T2D/NGT IGT/T2D

Mass spectrometric analysis (Sum lipid classes, μmol/l)

Triacylglycerols (TAG) 1065±87 1782±218 2237±323 0.045 0.001 0.440

Diacylglycerols (DAG) 39.6± 63.2±7.1 73.9±9.0 0.026 0.001 0.788

Cholesterylesters (CE) 3771±100 4330±122 4584±173 0.006 0.000 0.542

Ceramides (Cer) 4.95±0.26 6.22±0.37 7.31±0.47 0.032 0.000 0.132

Phosphatidylcholines (PC) 1074±26 1291±49 1377±45 0.000 0.000 0.455

Lysophosphatidylcholines (LPC) 273±7 302±15 290±11 0.203 0.944 1.000

Lysophosphatidyl-ethanolamines (LPE) 9.2±0.4 10.4±0.7 10.0±0.6 0.350 1.000 1.000

Ether-linked phosphatidyl-cholines (PC O-) 48.7±1.9 52.7±1.6 51.3±1.5 0.264 0.879 1.000

Phosphatidylinositols (PI) 37.2±1.4 49.0±2.8 53.6±2.9 0.001 0.000 0.573

Phosphatidylethanolamines (PE) 14.0±0.8 23.7±2.4 27.1±2.4 0.001 0.000 0.694

Ether-linked Phosphatidyl-ethanolamines (PE O-) 25.4±1.6 28.3±1.0 28.6±1.2 0.351 0.317 1.000

Sphingomyelins (SM) 352±8 372±9 389±15 0.489 0.050 0.802

Free cholesterol (Chol) 1047±32 1239±50 1350±62 0.011 0.000 0.340

Data are given as means ± SEM. P-values were adjusted by means of Benjamini-Hochberg procedure.

doi:10.1371/journal.pone.0164173.t002
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Insulin resistance is often accompanied with changes in desaturase activities In the present
study, D5D tended to decrease fromNGT to T2D individuals while D6D and D9D were
increased significantly in IGT and T2D subjects (Table 3). All desaturase activities showed sig-
nificant associations to three or more insulin sensitivity indices Table 4.

To identify a lipidomic signature of each investigated insulin sensitivity index, we applied
LASSO selection procedure. This model considered all measured lipid species simultaneously;
age, BMI,WHR, and systolic blood pressure were included in the model. After LASSO selec-
tion, the plasma lipidome contributed to 3% variability in DI, 45% variability in GSI, 52% vari-
ability in ISI, and to maximal 53% variability in HOMA-IR which was calculated using
R-Squared statistics.

Fig 1. Relative errors of insulin sensitivity indices HOMA-IR, ISI, GSI, and DI explained by lipid species and

age, BMI, WHR and systolic blood pressure. Three different selection methods were applied: LASSO, Random

Forests (RF), and support vector regression (SVR). Data are presented as boxplots plus median.

doi:10.1371/journal.pone.0164173.g001

Human Plasma Lipidomics and Insulin Sensitivity

PLOS ONE | DOI:10.1371/journal.pone.0164173 October 13, 2016 8 / 16



Fig 2. Spearman rank correlation of TAG species with different total acyl chain carbon numbers and double

bond content and the insulin sensitivity indices HOMA-IR and ISI.

doi:10.1371/journal.pone.0164173.g002

Table 3. Desaturase activities.

A) Enzyme activity p-value

NGT IGT T2D NGT v. IGT NGT v. T2D IGT v. T2D

D5D 22.94 19.41 17.50 NS NS NS

D6D 0.364 0.523 0.487 0.001 0.002 NS

D9D 0.367 0.593 0.534 0.006 0.002 NS

doi:10.1371/journal.pone.0164173.t003
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For the four investigated insulin sensitivity indexes LASSO selected lipid species from 8
lipid classes: most represented were TAG species (10), followed by DAGs (3), LPCs (3), SMs
(3), LPEs (3), PCs (2), PC O-s (1), and PE-O-s (1). Of note, only four lipid species were selected
two or three times for different indices: DAG 38:5 –HOMA-IR, GSI and ISI, LPE 22:6
-HOMA-IR and GSI, TAG 46:0 -HOMA-IR and ISI, TAG 46:1 -HOMA-IR and DI, suggesting
that lipid metabolism is heterogeneously involved in mechanistic aspects of insulin resistance.

Fig 3 shows the regression coefficients of selected lipid species and anthropometric values
for HOMA-IR, GSI, and ISI. For HOMA-IR ten distinct lipid species were selected, the highest
positive regression coefficientwas obtained for TAG 54:2, the highest negative regression coef-
ficient for LPC 22:5. For GSI eight molecular species were selected including PC O- 32:0, high-
est positive regression coefficient, and TAG 51:1, highest negative regression coefficient.
LASSO procedure selected eight species for ISI with SM 40:3:1 having highest positive regres-
sion coefficient and TAG 58:6 having highest negative regression coefficient. LASSO selected
only one lipid species for DI—TAG 46:1, regression coefficient: -0.097. Age, systolic blood
pressure and BMI were selected for HOMA-IR, GSI, and ISI, while BMI and systolic blood
pressure were selected for DI.

Discussion

Lipid abnormalities have been shown to be causally involved in the pathogenesis of T2D and
its cardiovascular complications. In this respect, the key concept of glucolipotoxicity is increas-
ingly recognized as a potential molecularmechanismmediating insulin resistance and its clini-
cal consequences [20, 21]. Up to now, clinicians traditionally operate with integrated indices of
lipid metabolism including circulating free fatty acids, total cholesterol, and triglycerides.
Accurate plasma lipidomic profiling, however, suggests that the interaction between lipid com-
position and disease is subtle and might contribute to disease risk prediction and therapy mon-
itoring [8, 22–24].

Male subjects investigated in our study, showed a broad range of insulin sensitivity, that was
identified by four distinct surrogate markers. HOMA-IR is a simple but effectivemeasure of
insulin resistance in fasting steady state conditions while ISI is a more complex estimation of
insulin sensitivity incorporating glucose and insulin levels at the beginning (0 min) and end
(120 min) of OGTT and body weight. ISI and GSI have been shown to correlate well with the
insulin sensitivity index obtained from the euglycemic hyperinsulinemic clamp, the gold stan-
dard for measurement of insulin resistance [12, 25]. DI has been shown to be a valuable surro-
gate measure of ß-cell function reflecting the ability of the ß-cell to compensate for insulin
resistance. While the static sensitivity index HOMA-IR mainly reflects hepatic insulin sensitiv-
ity, dynamic indices, including both fasting and stimulated glucose and insulin levels, reflect
hepatic as well peripheral insulin sensitivity [26]. Consequently, different surrogate indices

Table 4. Correlation coefficients of desaturase activities to insulin sensitivity indices.

B) Spearman rho correlation coefficients to sensitivity indices (significance)

HOMA-IR GSI ISI DI

D5D -0.268 0.267 0.209 0.080

(0.011) (0.011) (0.050) (0.455)

D6D 0.244 -0.162 -0.426 -0.374

(0.021) (0.127) (0.000) (0.000)

D9D 0.273 -0.223 -0.373 -0.297

(0.010) (0.035) (0.000) (0.005)

doi:10.1371/journal.pone.0164173.t004
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capture different pathophysiological aspects of glucose intolerance [27, 28]. These differences
might be an explanation for the fact that LASSO selection procedure included distinct individ-
ual lipid species for each investigated insulin sensitivity index. Only DAG 38:5 was included in
three of four sensitivity indexes models: HOMA-IR (positive regression coefficient),GSI and
ISI (negative regression coefficients).Accumulating evidence suggests that lipid-induced

Fig 3. Strength and direction of LASSO regression coefficients for the insulin sensitivity indices

HOMA-IR, GSI, and ISI.

doi:10.1371/journal.pone.0164173.g003
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insulin resistance is at least partiallymediated by diacylglycerols that activate novel protein
kinase C isoforms with subsequent inhibition of insulin action in liver and skeletal muscle [29,
30]. Interestingly, DAG species, specificallyDAG 16:0/22:5 and DAG 16:0/22:6, were also asso-
ciated with increased blood pressure and the liability of incident hypertension, an integral part
of the metabolic syndrome [31].

Hypertriglyceridemia is an independent risk factor of T2D. In support of this, the present
study demonstrates a close association between TAG species and insulin sensitivity indices,
particularly HOMA-IR and ISI. We observed a signature in which TAGs with lower carbon
number and double bond content were associated with higher positive correlation to
HOMA-IR and negative association to ISI. A similar lipid pattern of TAG and HOMA-IR
association was also reported previously [32]. Rhee et al. [32] identified 6 TAG species that
were associated with increased risk of diabetes and 3 TAGs that were related to decreased risk
of T2D. In the present study, TAGs were among the most frequently selected lipid species
after LASSO procedure, especially for HOMA-IR (five positive regression coefficients—TAG
54:2, TAG 53:5, TAG 46:0, TAG 46:1, TAG 46:2) and for ISI (four negative regression coeffi-
cients—TAG 58:6, TAG 55:6, TAG 46:0, TAG 52:7) thus emphasizing the pathophysiological
importance of specific TAGs for insulin resistance. In conclusion, TAG and DAG plasma
profiling provides a more differentiated view on changes in lipid homeostasis of individuals
with glucose intolerance and, moreover, may improve diabetes risk prediction [33, 34].

Insulin resistance is characterized by specific changes in the fatty acid profile in plasma and
skeletal muscle membranes including increased palmitic (FA 16:0) and decreased linoleic (FA
18:2 n-6) acid [35, 36]. One mechanism for the shifted fatty acid pattern may include activation
of Δ6 and Δ9 desaturase by insulin [37]. Typically, insulin resistance is associated with an
increase of D6D and D9D activity as well as a decrease in D5D activity [36]. Similar results
were obtained in the present study. Consequently, D6D and D9D were significantly positively
related to HOMA-IR, while D5D was negatively associated to HOMA-IR (Table 4).

SMs are structural components of tissue membranes, important cellular messengers, and
are abundant in nerve cells. In the present study, a substantial part of SM molecular species
showed a strong negative relation to HOMA-IR and a significant positive association to ISI
and DI suggesting a positive role for SMs in insulin sensitivity. Accordingly, SM 40:3:1 had the
highest positive regression coefficient for ISI after LASSO selection.Our findings confirm pre-
vious investigations showing that that several SM species were downregulated in diabetes [33].
In contrast, Hanamatsu et al. [38] reported a positive correlation of several SM species in
serumwith HOMA-IR in obese individuals.

Ether phosphatidylcholines (PC O-) are suggested to have antioxidant and cardioprotec-
tive properties. Downregulation of PC O-s has been reported in hypertension [8] and Crohn’s
disease [39]. In addition, higher levels of PC O-s were associated with familial longevity [40].
Only sparse previous studies document an involvement of ether lipids in the pathogenesis of
T2D. Pietilainen et al. [41] found that PC O-s were associated with better insulin sensitivity.
In a targeted lipidomics study of a prediabetic pig model Renner et al. report a decrease of sev-
eral circulating PC O- species with time [42]. In support of this, our study documents the
highest positive regression coefficient of PC O- 32:0 for GSI. However, PC O-s did not play a
significant positive or negative role for the other insulin sensitivity indices HOMA-IR, ISI,
and DI.

In summary, using sensitive shotgun lipidomics, we demonstrate in the present study vary-
ing relationships of plasma lipid species to four distinct insulin sensitivity indices. After LASSO
selection the plasma lipidome explained up to 53% variability of the sensitivity indices. Close
association of insulin sensitivity indices with a large number of molecular lipid species reflects
the importance of changes in lipid homeostasis in the pathogenesis of T2D.
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