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reveal lung adenocarcinoma-specific diagnostic 
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Abstract 

Background: DNA methylation can regulate the role of long noncoding RNAs (lncRNAs) in the development of lung 
adenocarcinoma (LUAD). The present study aimed to identify methylation‑driven lncRNAs and mRNAs as biomarkers 
in the prognosis of LUAD using bioinformatics analysis.

Methods: Differentially expressed RNAs were obtained using the edge R package from 535 LUAD tissues and 59 
adjacent non‑LUAD tissues. Differentially methylated genes were obtained using the limma R package from 475 LUAD 
tissues and 32 adjacent non‑LUAD tissues. Methylation‑driven mRNA and lncRNA were obtained using the MethylMix 
R package from 465 LUAD tissues with matched DNA methylation and RNA expression and 32 non‑LUAD tissues with 
DNA methylation. Gene ontology and ConsensusPathDB pathway analysis were performed to identify functional 
enrichment of methylation‑driven mRNAs. Univariate and multivariate Cox regression analyses were performed to 
identify the independent effect of each variable for predicting the prognosis of LUAD. Kaplan–Meier curve analysis of 
DNA methylation and gene expression might provide potential prognostic biomarkers for LUAD patients.

Results: A total of 99 methylation‑driven mRNAs and 17 methylation‑driven lncRNAs were obtained. Univariate and 
multivariate Cox regression analysis showed that 6 lncRNAs (FOXE1, HOXB13‑AS1_2, VMO1, HIST1H3F, AJ003147.8, 
ASXL3) were retrieved to construct a predictive model associated with overall survival in LUAD patients. Combined 
DNA methylation and gene expression survival analysis revealed that 4 lncRNAs (AC023824.1, AF186192.1, LINC01354 
and WASIR2) and 8 mRNAs (S1PR1, CCDC181, F2RL1, EFS, KLHDC9, MPV17L, GKN2, ITPRIPL1) might act as independent 
biomarkers for the prognosis of LUAD.

Conclusions: Methylation-driven lncRNA and mRNA contribute to the survival of LUAD, and 4 lncRNAs and 8 mRNAs 
might be potential biomarkers for the prognosis of LUAD.
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Background
Lung cancer is the leading cause of cancer-related death 
worldwide [1]. Lung adenocarcinoma (LUAD) accounts 
for 45–55% of non-small-cell lung cancer (NSCLC), with 
a 5-year overall survival rate of less than 15% [2]. Due 
to the heterogeneity of lung adenocarcinoma, it is still a 

great challenge to develop successful individual-based 
treatment [3]. Therefore, there is an urgently need to 
identify effective and promising biomarkers in predicting 
the prognosis of LUAD.

Genetic aberrant expression is crucial for cancer etiol-
ogy, and the joint effect of both genetic and epigenetic 
changes facilitates the development of human cancer 
[4–6]. DNA methylation acts as the key element in epi-
genetic modifications and plays a significant role in the 
regulation of cellular functions and carcinogenesis [7–9]. 
Epigenetic modification, especially DNA methylation, 
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can provide a novel horizon to explore new biomarkers in 
predicting the prognosis of cancer [10–14]. A large num-
ber of studies have demonstrated that DNA methylation 
can regulate the expression of lncRNA, and this phenom-
enon may be associated with the prognosis of lung can-
cer [15]. For instance, the lncRNA AFAP1-AS1 acts as an 
oncogene in NSCLC, while its expression is tightly regu-
lated by DNA methylation, which might provide prog-
nostic and diagnostic values for NSCLC patients [16].

MethylMix, an algorithm implemented in the R pro-
gramming environment, identifies disease-specific hyper- 
and hypomethylated genes [17]. Currently, few studies 
on methylation-driven genes have been reported [18]. 
Recently, a study based on using MethylMix to explore 
methylation-driven genes for predicting the progno-
sis of LUAD was reported; however, they only obtained 
information about methylation-driven mRNA [19]. In 
this study, DNA methylation and RNA-Seq data were 
extracted from The Cancer Genome Atlas (TCGA) data-
base, and we used the MethylMix R package to obtain 
LUAD-specific methylation-driven lncRNA sequences. 
Furthermore, a Cox survival predictive model with 6 
lncRNAs was constructed to predict the diagnosis and 
prognosis of LUAD. Finally, the combined effect of DNA 
methylation and gene expression survival analysis was 
examined, which might provide a novel insight to explore 
methylation-driven lncRNA and mRNA for predicting 
the prognosis of LUAD.

Methods
Data retrieving and analyzing
Methylation and RNA-Seq expression data were 
retrieved from LUADs from the TCGA database. The 
methylation data were downloaded from 475 cancer 
tissues and 32 noncancer tissues from the Illumina 
Human methylation 450k platform. The RNA-Seq data 
(level 3), including mRNA and lncRNA expression, 
were retrieved from 535 cancer tissues and 59 noncan-
cer tissues from the IlluminaHiSeq_RNASeq platform. 
First, on the basis of “limma R” packages in R with 
absolute fold change (log 2) > 0 and adjusting the false 
discovery rate (FDR) to a P value < 0.05, we obtained 
aberrant methylated genes. The methylation difference 
of the mean of the 3000  bp (base pair) sites upstream 
of the gene was analyzed to identify the differential 
level of methylation in the gene promoter [19–22]. We 
analyzed the differential level of methylation in the 
promoter of genes by using the limma R package [23]. 
Then, based on the “edge R” packages in R with absolute 
fold change (log 2) > 3 and adjusting the false discovery 
rate (FDR) to a P value < 0.01 to correct the statistical 
significance of multiple experiments, we retrieved dif-
ferentially expressed mRNA and lncRNA. MethylMix 

is a kind of R statistical package for integrating DNA 
methylation data and RNA expression data to identify 
methylation-driven genes in kinds of cancers [17, 24–
26]. Filtering or eliminating missing value genes is the 
preprocessing common step when running MethylMix 
R software [17]. In this present manuscript, we filtered 
or eliminated missing value genes and intersected DNA 
methylation data with RNA expression data for match-
ing. Finally, there were a total of 465 LUAD samples 
with matched DNA methylation and RNA expression 
and 32 non-LUAD samples with DNA methylation data 
for entering the MethylMix R package. Then, calculated 
the correlation between DNA methylation level and 
RNA expression to find significantly negatively related 
genes, a beta mixture model was constructed for the 
degree of methylation of samples, Wilcoxon rank test 
was used to calculate differential methylation in LUAD 
and adjacent non-LUAD samples. Finally, the methyl-
ation-driven mRNA and lncRNA was obtained. Since 
the data were directly obtained from the TCGA data-
base, no approval was required from the local ethics 
committee.

Functional enrichment analysis of methylation-driven 
mRNA in LUAD
To determine the function represented in the methyl-
ation-driven mRNA, we used the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID) 
(http://david .abcc.ncifc rf.gov/) to perform a functional 
and enrichment analysis on the methylation-driven 
mRNA by using GO and ConsensusPathDB analysis. In 
the GO analysis, a P value of less than 0.05 was consid-
ered statistically significant. Furthermore, the GOCircle 
and GOChord plotting functions of the GOplot R pack-
age were used to allow data from expression analysis and 
data from functional annotation enrichment analysis. 
ConsensusPathDB (http://cpdb.molge n.mpg.de/) is an 
online software program that includes binary and com-
plex signaling, gene regulatory and drug-target interac-
tions, and biochemical pathways. P < 0.05 was considered 
statistically significant.

Construction of a differentially methylated, lncRNA-related 
predictive model in LUAD
We identified the differentially methylated lncRNA 
associated with overall survival with P < 0.05 to act as 
prognostic methylation lncRNA candidates for mul-
tivariate Cox regression analysis. On the basis of the 
median risk score, LUAD patients were divided into 
two cohorts, high-risk cohorts and low-risk cohorts. 
Receiver operating curves were used to test the effect of 
the lncRNA signature (high risk vs low risk) on overall 
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survival. We analyzed the receiver operating curve by 
calculating the area under the curve (AUC) under the 
binomial exact confidence interval to reveal prognostic 
biomarkers for predicting survival in LUAD.

Combined methylation and gene expression survival 
analysis
To further explore the effect of methylation level and 
gene expression level of the same methylation-driven 
key gene on LUAD patient prognosis, we performed 
a combined methylation and gene expression sur-
vival analysis to identify potential methylation-driven 
mRNAs and methylation-driven lncRNAs for pre-
dicting the prognosis of LUAD patients. Therefore, 
a Kaplan–Meier curve was performed. P < 0.05 was 
regarded as statistically significant.

Results
Identification of methylation-driven mRNA and lncRNA 
in LUAD
A total of 99 mRNAs and 17 lncRNAs were identified 
to be associated with DNA methylation using Meth-
ylMix criteria. The methylation-driven mRNAs and 
IncRNAs are shown in Tables  1 and 2, respectively. 
We constructed a mixed model and performed a Wil-
coxon rank test for determining differential methyla-
tion (logFC > 0, P < 0.05, Cor < − 0.3). Figure  1 shows 
that two methylation-driven mRNAs (ZNF454 and 
ZNF471) (Fig. 1f, g) and two methylation-driven lncR-
NAs (TUSC8 and LINC00676) (Fig. 1h, i) have signifi-
cant negative correlations between methylation and 
gene expression levels. In Fig.  1, the distribution of 
the methylation degree shows that ZNF454 (Fig.  1b), 
ZNF471 (Fig.  1c), and LINC00676 (Fig.  1e) are hyper-
methylated in LUAD patients and hypomethylated 
in the normal group, while TUSC8 (Fig.  1d) is hypo-
methylated in LUAD patients and hypermethylated in 
the normal group. A heat map of methylation-driven 
mRNAs and lncRNAs is shown in Fig. 2a, b. A flow dia-
gram of the exploration of methylation-driven mRNA 
and lncRNA in LUAD is shown in Fig. 1a.

Enrichment analysis of methylation-driven mRNAs in LUAD
Gene ontology analysis showed that there were 5 GO 
terms (regulation of transcription, DNA-templated; tran-
scription factor activity, sequence-specific DNA bind-
ing; nucleic acid binding; transcription, DNA-templated; 
metal ion binding) with significant differences (P < 0.05), 
and the highest GO biological process was “GO:0006355 
regulation of transcription, DNA-templated” (Fig. 3a, c). 

The GOChord plot shows the top 30 methylation-driven 
mRNAs with their related GO terms (Fig.  3b). Figure  4 
shows that 11 pathways (Generic Transcription Path-
way, Benzene metabolism, RNA Polymerase II Tran-
scription, Gene expression (Transcription), Platinum 
Pathway, Pharmacokinetics/Pharmacodynamics, Phase 
II—Conjugation of compounds, Sulfation Biotransfor-
mation Reaction, Estrogen metabolism, Glutathione-
mediated detoxification, Cytosolic sulfonation of small 
molecules, Drug metabolism—other enzymes—Homo 
sapiens (human)) were considered statistically significant 
(P < 0.05). Furthermore, pathway analysis showed that 
the methylation-driven mRNAs were most enriched in 
the Generic Transcription Pathway, RNA Polymerase II 
Transcription and Gene expression (Transcription) path-
ways (P < 0.01) (Fig. 4). The pathway analysis is shown in 
Table 3.  

Construction of a predictive model of six differentially 
methylated lncRNAs in LUAD
Univariate Cox regression analysis was performed first 
to identify the prognosis associated with differentially 
methylated genes in LUAD, incorporating 10 methyla-
tion genes that were conspicuously associated with over-
all survival (P < 0.05). Next, multivariate Cox regression 
was used and showed that six lncRNAs were eventually 
selected to construct a predictive model. We used the 
linear combination of the expression of the 6 lncRNAs 
to construct the predictive model. The relative coeffi-
cients weighted in the multivariate Cox regression were 
as follows: survival risk score = (3.0040 × expression 
value of FOXE1 + 1.0226 × expression value of HOXB13-
AS1_2 + 1.0540 × expression value of VMO1 + 1.0050 × expres-
sion value of HIST1H3F + (− 3.0925) × expression value 
of AJ003147.8 + 1.4791 × expression value of ASXL3). 
The multivariate Cox analysis is shown in Table 4.

Risk groupings and ROC curve analysis
As shown in the heat map, the expression of six prog-
nostic methylation genes was profiled (Fig.  5a). Based 
on the median risk scores, a total of 449 samples of 
complete survival information were divided into a high-
risk group (n = 224) and a low-risk group (n = 225). We 
used the Kaplan–Meier curve with a log-rank statisti-
cal examination to perform survival analysis. As shown 
in Fig.  5b, patients in the low-risk group had conspicu-
ously better overall survival than those in the high-risk 
group (Fig.  5b). The receiver operating characteristic 
(ROC) curve was analyzed to test the influence on the 
6-lncRNA signature associated with overall survival in 
LUAD (Fig. 5c).
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Table 1 Methylation-driven mRNAs

mRNA Normal mean Tumor mean logFC P Value Adjusted-P Cor Cor P-value

ECSCR 0.651549745 0.777875207 0.255663395 6.97E−21 1.03E−18 − 0.401694346 1.85E−19

TBX4 0.3491894 0.503087408 0.526799315 7.58E−21 1.12E−18 − 0.353891186 3.64E−15

TIE1 0.559830867 0.675047137 0.269997212 1.21E−20 1.79E−18 − 0.406629901 6.08E−20

NEFH 0.254444122 0.435542374 0.775464224 1.40E−20 2.07E−18 − 0.321798888 1.16E−12

ACVRL1 0.398975345 0.517535129 0.375357195 3.26E−20 4.82E−18 − 0.386877674 4.73E−18

USHBP1 0.419199887 0.525059456 0.324842471 3.63E−20 5.37E−18 − 0.323007247 9.42E−13

ERN2 0.264647925 0.387648278 0.550673914 3.92E−20 5.80E−18 − 0.450728621 1.20E−24

COX7A1 0.560388444 0.666059579 0.249224026 9.41E−20 1.39E−17 − 0.342569242 3.00E−14

SULT1C4 0.176980042 0.3113128 0.814778224 2.45E−19 3.62E−17 − 0.375338318 5.28E−17

ART4 0.531234199 0.652680788 0.297029548 2.53E−19 3.75E−17 − 0.425340294 7.44E−22

HIST1H3E 0.313889479 0.456138176 0.539214244 1.45E−18 2.15E−16 − 0.390470196 2.19E−18

ZNF492 0.077650427 0.196364234 1.33846642 1.18E−17 1.75E−15 − 0.378866342 2.55E−17

ZNF728 0.138731042 0.290955121 1.068506001 1.32E−17 1.95E−15 − 0.346356662 1.50E−14

S1PR1 0.33644215 0.424456445 0.33525806 4.34E−17 6.43E−15 − 0.375495078 5.11E−17

MUC13 0.657841786 0.551979674 − 0.253125507 4.44E−17 6.57E−15 − 0.402604202 1.51E−19

CCDC8 0.360671572 0.480500959 0.413853596 8.99E−17 1.33E−14 − 0.389064482 2.96E−18

ZNF578 0.281145557 0.394615614 0.489130794 1.12E−16 1.66E−14 − 0.459621578 1.11E−25

FES 0.424918825 0.49946057 0.233183531 2.74E−16 4.05E−14 − 0.370960412 1.29E−16

ASCL1 0.096716299 0.200703748 1.053236604 2.98E−16 4.41E−14 − 0.331763879 2.08E−13

ALG1L 0.461379719 0.287062126 − 0.684591589 3.14E−16 4.65E−14 − 0.466908378 1.49E−26

ELF3 0.462412193 0.359973363 − 0.361289285 4.47E−16 6.61E−14 − 0.45067724 1.22E−24

TMEM88 0.583625618 0.738189625 0.338948249 7.89E−16 1.17E−13 − 0.390308898 2.27E−18

GSTM5 0.356896303 0.481942079 0.433354815 1.13E−15 1.68E−13 − 0.353462769 3.95E−15

IRX1 0.098629887 0.220552417 1.161024783 1.21E−15 1.79E−13 − 0.344157687 2.24E−14

ZNF454 0.183616121 0.338501411 0.88246912 1.44E−15 2.13E−13 − 0.602235321 3.13E−47

TK2 0.615291641 0.702921916 0.192094042 1.71E−15 2.52E−13 − 0.365352213 3.94E−16

ZSCAN1 0.289768404 0.400355348 0.466380783 2.83E−15 4.19E−13 − 0.397488998 4.73E−19

ZNF677 0.220497196 0.315626597 0.517458471 2.86E−15 4.23E−13 − 0.527352048 1.21E−34

ZNF582 0.130372053 0.239679107 0.878469505 5.74E−15 8.49E−13 − 0.558968642 1.43E−39

DAPP1 0.510432574 0.394016678 − 0.373463704 1.29E−14 1.91E−12 − 0.490584559 1.57E−29

SRPX2 0.600591335 0.480798168 − 0.32095226 1.42E−14 2.10E−12 − 0.383430149 9.83E−18

CCDC181 0.283605585 0.41823899 0.560441617 3.23E−14 4.78E−12 − 0.319044754 1.84E−12

SULT4A1 0.24652482 0.348099193 0.497765567 7.69E−14 1.14E−11 − 0.358208198 1.59E−15

LRRC4 0.321370351 0.418618502 0.38139924 1.26E−13 1.87E−11 − 0.421045183 2.10E−21

ZSCAN23 0.12251013 0.209336095 0.772920046 1.57E−13 2.32E−11 − 0.362584137 6.80E−16

F2RL1 0.242790645 0.208656331 − 0.218584138 1.74E−13 2.57E−11 − 0.35941342 1.26E−15

ZNF334 0.17466699 0.256829933 0.556206371 2.31E−13 3.43E−11 − 0.459451082 1.16E−25

ZNF471 0.130738051 0.279080546 1.094002465 5.46E−13 8.07E−11 − 0.548011494 8.37E−38

HOXB2 0.34354942 0.513088034 0.578688733 6.70E−13 9.91E−11 − 0.491155695 1.32E−29

PRR19 0.666407262 0.728756031 0.129031796 9.23E−13 1.37E−10 − 0.420836129 2.20E−21

AGR2 0.669953934 0.554274136 − 0.273462209 1.68E−12 2.49E−10 − 0.51205684 1.93E−32

NQO1 0.702158099 0.525979398 − 0.416789616 2.08E−12 3.08E−10 − 0.425444078 7.26E−22

GIPC2 0.179310415 0.281572165 0.651045433 3.52E−12 5.21E−10 − 0.36721046 2.73E−16

OXT 0.553265288 0.656785573 0.247451026 4.61E−12 6.83E−10 − 0.519344744 1.77E−33

B3GALT2 0.534256964 0.658626901 0.301927631 6.78E−12 1.00E−09 − 0.477778193 6.83E−28

EFS 0.197613625 0.297157242 0.588544115 1.42E−11 2.10E−09 − 0.391422631 1.78E−18

RAB34 0.295528869 0.254270265 − 0.21693631 2.05E−11 3.03E−09 − 0.424411453 9.32E−22

ACTRT3 0.391186063 0.353188058 − 0.147418408 5.54E−11 8.21E−09 − 0.329154572 3.27E−13

CLDN8 0.727830255 0.618464903 − 0.234910297 9.70E−11 1.44E−08 − 0.328690081 3.55E−13
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Table 1 (continued)

mRNA Normal mean Tumor mean logFC P Value Adjusted-P Cor Cor P-value

AQP1 0.366569984 0.501482299 0.452110121 2.34E−10 3.46E−08 − 0.597245937 2.74E−46

SP8 0.202841356 0.297916967 0.554558466 2.69E−10 3.98E−08 − 0.317009628 2.58E−12

HORMAD2 0.350476203 0.461146819 0.395909658 3.14E−10 4.65E−08 − 0.457907737 1.76E−25

GALM 0.255948625 0.226747119 − 0.174770041 6.86E−10 1.02E−07 − 0.356239606 2.33E−15

RABGGTB 0.47835678 0.385164319 − 0.312612985 6.89E−10 1.02E−07 − 0.3330019 1.67E−13

KCNE3 0.256671142 0.314316199 0.292295525 7.52E−10 1.11E−07 − 0.350037722 7.53E−15

ZNF879 0.147629821 0.2000367 0.438280535 1.01E−09 1.50E−07 − 0.453856587 5.23E−25

ZNF257 0.157589016 0.245609973 0.640202155 1.28E−09 1.89E−07 − 0.359120932 1.34E−15

ZNF382 0.101492 0.295488981 1.541738316 1.35E−09 1.99E−07 − 0.391566521 1.73E−18

GSTM1 0.156396431 0.253910031 0.699109797 2.76E−09 4.08E−07 − 0.563212162 2.84E−40

PLAU 0.62150196 0.702145935 0.176011973 4.00E−09 5.92E−07 − 0.570934425 1.41E−41

PIGR 0.667952501 0.708575582 0.085176236 5.52E−09 8.16E−07 − 0.658618149 3.68E−59

CFTR 0.282943087 0.394972666 0.481240926 9.95E−09 1.47E−06 − 0.42150843 1.88E−21

SPDYC 0.704147468 0.724837107 0.041779213 1.76E−08 2.60E−06 − 0.47588325 1.18E−27

ZNF418 0.242511045 0.347906619 0.520649675 2.19E−08 3.23E−06 − 0.60435923 1.23E−47

KLHDC9 0.218223326 0.21602453 − 0.014610182 2.63E−08 3.90E−06 − 0.324984031 6.72E−13

ZNF69 0.117564379 0.142619404 0.278719274 2.66E−08 3.94E−06 − 0.321104504 1.30E−12

FAM84A 0.212175332 0.283041565 0.415757 3.53E−08 5.23E−06 − 0.335916441 9.96E−14

PPP1R14D 0.554947827 0.482097369 − 0.203027589 6.64E−08 9.82E−06 − 0.560710402 7.40E−40

TCP11 0.624104627 0.659912943 0.080487807 7.18E−08 1.06E−05 − 0.651746879 1.43E−57

ZNF300 0.328409005 0.415250076 0.338486746 9.38E−08 1.39E−05 − 0.472110183 3.46E−27

MPV17L 0.092385716 0.163253978 0.821376431 1.86E−07 2.75E−05 − 0.441792534 1.23E−23

KRT20 0.790374237 0.804070021 0.02478522 2.92E−07 4.33E−05 − 0.571800235 1.00E−41

GKN2 0.599299248 0.671212935 0.163493955 4.56E−07 6.76E−05 − 0.340697654 4.22E−14

ZNF502 0.329208879 0.402697069 0.290691725 6.68E−07 9.88E−05 − 0.663271171 2.91E−60

C17orf98 0.545496557 0.602566194 0.143549644 1.03E−06 0.000151843 − 0.529865333 5.12E−35

ZNF880 0.140875018 0.238786926 0.76130805 1.04E−06 0.000154315 − 0.560715099 7.38E−40

ZNF701 0.240700225 0.290476188 0.271182411 1.55E−06 0.000229592 − 0.408643207 3.83E−20

NR0B1 0.283614274 0.392651776 0.469320279 1.59E−06 0.000235507 − 0.320709703 1.39E−12

ZNF43 0.067179039 0.115788942 0.78541442 1.79E−06 0.000265629 − 0.375124186 5.52E−17

HCAR1 0.43400231 0.376162376 − 0.206347167 1.93E−06 0.000285658 − 0.401199574 2.07E−19

IRX2 0.289887257 0.40281496 0.474625351 3.59E−06 0.000530859 − 0.539421825 1.83E−36

TMEM63A 0.188744901 0.177446694 − 0.089051973 4.10E−06 0.000607535 − 0.345096982 1.89E−14

ITPRIPL1 0.294502802 0.374069204 0.345023839 4.14E−06 0.000613146 − 0.44960488 1.61E−24

LYZ 0.699231698 0.733682794 0.069385864 4.77E−06 0.000705417 − 0.424840466 8.40E−22

IFNLR1 0.246226199 0.232227751 − 0.084443891 9.60E−06 0.001421224 − 0.420673159 2.29E−21

TUSC1 0.13659181 0.18296341 0.421684184 9.60E−06 0.001421229 − 0.395587597 7.19E−19

MAGEB2 0.842482835 0.77366049 − 0.122946694 1.08E−05 0.001598591 − 0.352008819 5.20E−15

BVES 0.191406638 0.252664551 0.400582407 1.12E−05 0.001655808 − 0.321449081 1.23E−12

LRRIQ4 0.704379076 0.645150221 − 0.126716926 1.21E−05 0.001791741 − 0.38912631 2.93E−18

RASSF10 0.120420032 0.181039038 0.588225416 5.00E−05 0.007400364 − 0.328252794 3.83E−13

PRICKLE4 0.605330662 0.686379771 0.181283603 8.15E−05 0.012068682 − 0.318883347 1.89E−12

SYCP2 0.665037997 0.675303689 0.022099668 0.000123074 0.018214969 − 0.655943521 1.55E−58

WBP2NL 0.524579367 0.489275744 − 0.1005133 0.000184004 0.027232614 − 0.343246032 2.65E−14

BST2 0.422881206 0.380549863 − 0.152166944 0.000187292 0.027719241 − 0.589617095 7.07E−45

PLSCR4 0.17571366 0.196664014 0.162506649 0.000241916 0.035803514 − 0.365149084 4.10E−16

GBP4 0.149941894 0.137445221 − 0.125546784 0.000249246 0.036888372 − 0.316476516 2.82E−12

RPL7A 0.801995847 0.754500966 − 0.088072019 0.000275207 0.040730644 − 0.319271372 1.77E−12

ARHGDIB 0.327607353 0.313354218 − 0.064173323 0.000282085 0.04174863 − 0.552243 1.77E−38

CYB5A 0.127300153 0.141309476 0.150624055 0.000302943 0.044835593 − 0.371106098 1.25E−16
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Combined methylation and gene expression survival 
analysis in LUAD
The combined Kaplan–Meier curve analysis revealed that 
the combination of methylation and expression of lncR-
NAs AC023824.1, AF186192.1, LINC01354 and WASIR2 
had a conspicuous correlation with the prognosis of 
LUAD patients (Fig.  6a–d). The hypermethylation and 
low-expression survival rate of AC023824.1 was high, 
while the hypermethylation and low-expression survival 
rate of AF186192.1, LINC01354 and WASIR2 were low. 
The combined Kaplan–Meier curve analysis showed that 
the combination of methylation and mRNA expression 
of mRNAs CCDC181, EFS, F2RL1, GKN2, ITPRIPL1, 
KLHDC9, MPV17L, and S1PR1 were associated with 
overall survival of LUAD (P < 0.05) (Fig. 6e–l). The hyper-
methylation and low-expression survival rate of F2RL1 
was high. However, the hypermethylation and low-expres-
sion survival rates of EFS, CCDC181, GKN2, ITPRIPL1, 
KLHDC9, MPV17L, and S1PR1 were low (Fig. 6).

Discussion
In recent years, with the increasing numbers of advanced 
diagnoses and poor prognoses in lung adenocarcinoma, it 
is pivotal to find more effective prognostic biomarkers to 

predict survival in LUAD. LncRNA-related studies have 
attracted the attention of various cancer fields. Accu-
mulating studies show that cancer-related lncRNAs may 
serve as diagnostic or predictive biomarkers of cancer 
and have a significant effect on the therapeutic treatment 
of cancer [27]. Emerging evidence shows that studies on 
the molecular mechanisms and prognostic biomarkers of 
LUAD associated with methylation-driven lncRNA and 
mRNA are still lacking.

In recent years, epigenetic alterations in DNA meth-
ylation, noncoding RNA expression, chromatin modeling 
and post-transcriptional regulators have been found to 
play significant roles in the regulation and development 
of lung cancer pathogenesis [28–32]. Some studies have 
shown that epigenetic changes in DNA methylation cause 
changes in the expression of lncRNA, which might provide 
a novel insight to explore new biomarkers for predicting 
the prognosis of human cancer [33–36]. For instance, anal-
ysis of microarray data on gene expression and methyla-
tion showed that the expressions of lncRNAs LOC146880 
and ENST00000439577 were regulated by DNA methyla-
tion, which might provide a new horizon to predict the 
diagnosis and prognosis of NSCLC [37]. Lu et  al. indi-
cated that MEG3 is significantly downregulated in NSCLC 

Table 2 Methylation-driven lncRNAs

lncRNA Normal mean Tumor mean logFC P-value Adjusted-P Cor Cor P-value

HOTAIRM1 0.250463518 0.44338384 0.823955709 2.68E−19 6.44E−18 − 0.326878646 4.85E−13

HOXB‑AS3 0.319686633 0.449195438 0.490684853 5.50E−18 1.32E−16 − 0.412913672 1.43E−20

HOXB‑AS1 0.335041907 0.484121893 0.531028779 1.17E−17 2.80E−16 − 0.459143798 1.26E−25

AF186192.1 0.153517115 0.289865274 0.916983002 1.36E−16 3.26E−15 − 0.432033057 1.44E−22

WASIR2 0.67568 0.534227796 − 0.33888511 3.03E−16 7.26E−15 − 0.38041164 1.85E−17

HOXC‑AS3 0.180457648 0.304425709 0.754429909 3.10E−15 7.45E−14 − 0.33684433 8.44E−14

LINC01354 0.507119955 0.656977352 0.373516594 2.20E−14 5.28E−13 − 0.491825621 1.08E−29

BARX1‑AS1 0.469474928 0.571905661 0.284729072 1.61E−13 3.87E−12 − 0.485400012 7.36E−29

AC005498.3 0.077393911 0.150762843 0.96198894 9.66E−11 2.32E−09 − 0.347615295 1.18E−14

AC147651.4 0.545827883 0.59134957 0.115565122 9.66E−11 2.32E−09 − 0.35424262 3.41E−15

LINC00676 0.65637148 0.770329464 0.230963053 2.88E−10 6.92E−09 − 0.652305415 1.07E−57

LINC01460 0.232370826 0.19315723 − 0.266653276 4.57E−09 1.10E−07 − 0.364997272 4.23E−16

AC023824.1 0.646522945 0.703429803 0.121704887 7.06E−09 1.69E−07 − 0.365841735 3.58E−16

LINC01535 0.227839948 0.292001828 0.357956684 4.99E−07 1.20E−05 − 0.371976592 1.05E−16

LINC00506 0.141670097 0.203560361 0.522921383 3.03E−05 0.000726506 − 0.330461443 2.61E−13

TUSC8 0.806078873 0.749074143 − 0.105812488 9.91E−05 0.002378923 − 0.713080072 2.02E−73

LINC00847 0.820916916 0.824558907 0.006386348 0.001130654 0.027135699 − 0.35046797 6.95E−15

Fig. 1 Identification of top hypermethylated and hypomethylated mRNAs and lncRNAs in LUAD. a A flow diagram of the exploration of 
methylation‑driven mRNA and lncRNA in LUAD. b–e The methylation degree when comparing cancer patients to normal patients in LUAD. The red 
curve indicates the methylation degree from the cancer group, the green curve indicates the methylation degree from the normal group, and the 
black line above the figure is the distribution of methylation levels in normal patients. f–i The correlation between methylation and gene expression 
in methylation‑driven mRNAs and lncRNAs

(See figure on next page.)
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Fig. 2 Heat map of methylation‑driven mRNAs and lncRNAs in LUAD. a The hierarchical clustering heat map of LUAD‑specific methylation‑driven 
mRNAs. b The hierarchical clustering heat map of LUAD‑specific methylation‑driven lncRNAs. In the figure, red represents highly methylated genes 
and green represents low methylated genes between LUAD and adjacent tissues



Page 9 of 14Li et al. J Transl Med          (2019) 17:324 

tissues that could be affected by DNA methylation [38]. 
Previous studies have shown that survival-associated, 
methylation-driven lncRNAs might serve as novel prog-
nostic biomarkers for predicting the prognosis of LUAD.

Recent studies have shown that the roles of lncRNA in 
tumorigenesis and metastasis can indicate that lncRNA 
may function as a novel biomarker for the diagnosis and 
prognosis of cancer [39–44]. LncRNA TUBA4B has been 
reported to serve as a new predictor for prognosis and 
modulate cell viability in non-small-cell lung cancer [45]. 
lncRNA AFAP1-AS1 may act as an oncogenic to facilitate 
the migration of non-small-cell lung cancer (NSCLC) 
[16]. Long noncoding RNA ANRIL acts as an oncogene 
by silencing KLF2 and P21 expression to promote the 
development of NSCLC [46]. LncRNA PANDAR acts as 
a cancer suppressor gene by regulating Bcl-2 to affect cell 
apoptosis in NSCLC [47].

In the present study, we retrieved methylation and 
lncRNA and mRNA expression from the TCGA data-
base by using bioinformatics analysis and obtained 
methylation-driven lncRNAs and mRNAs to predict 
the prognosis of LUAD. First, we obtained differentially 
expressed methylation and lncRNA and mRNA using 
the MethylMix R package to obtain methylation-driven 
lncRNA and mRNA. Functional enrichment analysis was 
performed to analyze the methylation-driven mRNA 
to identify its biological functions in the regulation and 
development of LUAD. Furthermore, univariate and 
multivariate Cox regressions were performed to con-
struct a predictive model for predicting the prognosis 
of LUAD. Finally, a combined methylation and lncRNA 
expression survival analysis was carried out, which 
might provide novel insight to predict the diagnosis and 
prognosis of LUAD.

Fig. 3 Functional enrichment analysis of methylation‑driven mRNAs in LUAD. a The outer circle represents the expression (logFC) of 
methylation‑driven mRNAs in each enriched GO (gene ontology) term: red dots on each GO term indicate upregulated methylation‑driven mRNAs 
and blue dots indicate downregulated methylation‑driven mRNAs. The inner circle indicates the significance of GO terms (log10‑adjusted P values). 
b The circle indicates the correlation between the top 30 methylation‑driven mRNAs and their gene ontology terms. c The distribution of the 
methylation‑driven mRNAs in significant GO terms
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In the present study, we combined methylation and 
lncRNA and mRNA expression data with survival anal-
ysis to identify 4 lncRNAs and 8 mRNAs that act as 

independent prognostic factors for predicting the diagno-
sis and prognosis of LUAD. LINC01354 acts as a ceRNA 
to predict the early diagnosis and prognosis of colorectal 

Fig. 4 Pathway analysis of methylation‑driven mRNAs in LUAD. The red circles indicate the number of methylation‑driven mRNAs on each pathway. 
The line between the two red circles represents the ratio of methylation‑driven mRNAs present in the common genes of the two pathways; the 
thicker the line, the more common methylation‑driven mRNAs are represented

Table 3 Pathway analysis

ID Pathway Count P-value q-value

R‑HSA‑212436 Generic transcription pathway 15 0.000169248 0.01031453

WP3891 Benzene metabolism 2 0.000338181 0.01031453

R‑HSA‑73857 RNA polymerase II transcription 15 0.000564162 0.011471298

R‑HSA‑74160 Gene expression (transcription) 15 0.001668004 0.020896371

PA150642262 Platinum pathway, Pharmacokinetics/pharmacodynamics 2 0.001720726 0.020896371

R‑HSA‑156580 Phase II—conjugation of compounds 4 0.002055381 0.020896371

WP692 Sulfation biotransformation reaction 2 0.002963269 0.025340686

WP697 Estrogen metabolism 2 0.003323369 0.025340686

PWY‑4061 Glutathione‑mediated detoxification 2 0.005884846 0.035982304

R‑HSA‑156584 Cytosolic sulfonation of small molecules 2 0.006376838 0.035982304

path:hsa00983 Drug metabolism—other enzymes—Homo sapiens (human) 3 0.006488612 0.035982304
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cancer [48]. The combined survival analysis showed 
that the low expression of AC023824.1 with hypermeth-
ylation, compared to the high expression of AC023824.1 
with hypomethylation, had a higher survival rate. (P = 0). 
The combined hypermethylation and low-expression sur-
vival rate of AF186192.1 was lower than the hypometh-
ylation and high-expression survival rate of AF186192.1. 
(P = 0.01). The low expression and hypermethylation 

survival rate of LINC01354 was low. (P = 0.038). The high 
expression and hypomethylation survival rate of WASIR2 
was high. The survival analysis showed that lncRNA 
AF186192.1, LINC01354 and WASIR2 might act as can-
cer suppressor genes regulated by DNA methylation 
to play significant roles in predicting the prognosis of 
LUAD. LncRNA AC023824.1 might act as an oncogene 
regulated by DNA methylation to have a pivotal effect 
on predicting the prognosis of LUAD. The survival rate 
of hypermethylation and low expression of CCDC181, 
EFS, GKN2, ITPRIPL1, KLHDC9, MPV17L, and S1PR1 
were low. However, the hypermethylation and low-
expression of the survival rate of F2RL1 was high. F2RL1 
might act as an oncogene for predicting the prognosis 
of LUAD. Previous studies have shown that CCDC181, 
KLHDC9, and S1PR1 act as methylation-driven genes 
to reveal prognostic biomarkers in LUAD [19]. GKN2 
may contribute to the homeostasis of gastric epithelial 
cells by inhibiting GKN1 activity [49]. F2RL1 may act as 
novel acute myeloid leukemia subsets that are meaning 

Table 4 Multivariate Cox regression analysis of 6 lncRNAs 
associated with overall survival in LUAD patients

coef exp(coef) se(coef) z P

FOXE1 3.004 20.1665 1.018 2.95 0.0032

HOXB13‑AS1_2 1.0226 2.7804 0.5657 1.81 0.0706

VMO1 1.054 2.869 0.5992 1.76 0.0786

HIST1H3F 1.005 2.7319 0.3872 2.6 0.0094

AJ003147.8 − 3.0925 0.0454 0.6695 − 4.62 3.80E−06

ASXL3 1.4791 4.3888 0.7969 1.86 0.0635

Fig. 5 Prognostic value of 6‑methylation lncRNAs in LUAD. a A risk heat map established from 6 lncRNAs from 449 LUAD patients. b Kaplan–Meier 
curve analysis for OS (overall survival) of LUAD patients using the 6 lncRNA signatures. c ROC curve analysis of the prognostic 6‑lncRNA signature
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Fig. 6 The combined methylation and gene expression data survival analysis in LUAD. a–d Kaplan–Meier curve analysis of four lncRNAs in LUAD. 
e–l Kaplan–Meier curve analysis of eight mRNAs in LUAD
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for treatment guidance [50]. MPV17L acts as a unique 
interacting protein and regulator of HtrA2 protease, 
mediating antioxidant and antiapoptotic functions in 
mitochondria [51]. Compared with previous studies, our 
study first obtained differentially expressed mRNA and 
lncRNA using the edge R package and aberrant methyl-
ated genes using the limma R package, and then we fil-
tered low expression genes and intersected mRNA and 
lncRNA expression data with DNA methylation data to 
obtain methylation-driven genes by using the MethylMix 
R package. The MethylMix (https ://bioco nduct or.riken 
.jp/packa ges/3.1/bioc/html/Methy lMix.html) is an algo-
rithm implemented to integrate DNA methylation with 
RNA expression to identify methylation-driven genes in 
cancers [52]. In summary, MethylMix provides a tool that 
contributes to the analysis of methylation-driven lncR-
NAs and mRNAs in cancer studies from TCGA [17, 18]. 
However, the MethylMix focuses on identifying cis-reg-
ulatory effects of DNA methylation on gene expression 
and does not currently model trans-regulatory effects 
[18]. Further studies are needed to solve the multiple 
testing challenge on identifying trans-regulatory effects 
of DNA methylation on gene expression. Our study may 
provide a novel method for determining disease-specific 
prognostic biomarkers in LUAD and may play a signifi-
cant role in predicting the diagnosis and prognosis of 
LUAD.

Our study subjects were retrieved from the TCGA 
database, which is a significant tool for analyzing prog-
nostic biomarkers. It is not known whether our results 
are applicable to other groups. The predictive prognos-
tic lncRNA and mRNA signature needs to be verified by 
molecular biologic experiments on clinical samples in 
future studies. Eventually, large-scale samples and experi-
mental studies could validate the biological function of 
prognostic biomarkers in LUAD.

Conclusion
In conclusion, our study identified methylation-driven 
mRNA and lncRNA by using bioinformatics analysis 
from the TCGA database. A Cox predictive model was 
performed to identify independent prognostic factors. 
Methylation and gene expression data combined with 
survival analysis was used to identify LUAD-specific, 
methylation-driven lncRNAs and mRNAs for predicting 
the diagnosis and prognosis of LUAD.
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