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Abstract

Dynamic communities in proteins comprise the cohesive structural units that individually

exhibit rigid body motions. These can correspond to structural domains, but are usually

smaller parts that move with respect to one another in a protein’s internal motions, key to its

functional dynamics. Previous studies emphasized their importance to understand the

nature of ligand-induced allosteric regulation. These studies reported that mutations to key

community residues can hinder transmission of allosteric signals among the communities.

Usually molecular dynamic (MD) simulations (~ 100 ns or longer) have been used to identify

the communities—a demanding task for larger proteins. In the present study, we propose

that dynamic communities obtained from MD simulations can also be obtained alternatively

with simpler models–the elastic network models (ENMs). To verify this premise, we com-

pare the specific communities obtained from MD and ENMs for 44 proteins. We evaluate

the correspondence in communities from the two methods and compute the extent of agree-

ment in the dynamic cross-correlation data used for community detection. Our study reveals

a strong correspondence between the communities from MD and ENM and also good

agreement for the residue cross-correlations. Importantly, we observe that the dynamic

communities from MD can be closely reproduced with ENMs. With ENMs, we also compare

the community structures of stable and unstable mutant forms of T4 Lysozyme with its wild-

type. We find that communities for unstable mutants show substantially poorer agreement

with the wild-type communities than do stable mutants, suggesting such ENM-based com-

munity structures can serve as a means to rapidly identify deleterious mutants.

Introduction

The dynamic nature of globular proteins allows them to sample multiple conformations

around their native equilibrium conformation. Such intrinsic dynamics is conferred by their

geometry and can be influenced by events such as ligand binding or even binding of a partner

enzyme [1]. Such events typically shift the conformational equilibrium of proteins allowing
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them to sample new conformations by lowering energy barriers, which were not accessible

from the native state [2,3]. Such dynamic plasticity is characteristic for protein function [4–6].

It facilitates signal transduction through allosteric regulation as well as allowing bio-molecular

machines to undergo large scale conformational changes from their native state essential for

their function [7–9].

Inspecting the conformational ensemble arising due to the dynamic nature of proteins

gives immediate insight into how different parts of a protein move with respect to one another.

Some regions may exhibit highly correlated motions while others may be anti-correlated in

their motions. A map describing the extent of inter-residue dynamical correlation between res-

idues can then be used to create a graphical representation which portrays the dynamic nature

of a protein [10]. In such a graph, the nodes represent the residues and the edges are weighted

by the dynamical correlation for a residue pair. Residue blocks which are highly correlated in

their motions and move as a cohesive unit can then be identified from these graphs and are

commonly referred to as dynamic communities [11,12]. These communities may correspond

to structural domains in proteins; however, they are often smaller modules whose motions

relate to the protein’s function.

Previous studies have used both normal mode analysis (NMA) and molecular dynamics

(MD) approaches to detect structural domains and dynamic communities in proteins. Hinsen

et al. [13] used normal modes to compute residue-level deformation energy and then, identi-

fied dynamically rigid segments using a threshold based on the deformation energy. Kundu

and co-workers [14] used Gaussian Network Model (GNM) [15] to partition protein struc-

tures into domains using the eigenvector corresponding the lowest non-zero eigenvalue, also

referred to as the Fiedler vector. In another study, Yesylevskyy et al. [16] used GNM to obtain

a correlation matrix describing inter-residue dynamics and used it to calculate a “correlation

matrix of correlation patterns” which essentially describes the overlap between the correlation

patterns for different residues. Then they performed hierarchical clustering on this matrix to

obtain rigid communities. A similar study used correlations in residue dynamics calculated

from normal mode analysis to decompose protein kinases into residue blocks that are dynami-

cally cohesive [17].

Other studies where MD simulations were used to identify the rigid domains have also

been carried out. Potestio et al. [18] used MD simulations to obtain conformational ensemble

describing the essential dynamics of proteins and then used dominant eigenvectors from

covariance matrix describing the variation in the ensemble to identify rigid domains. McClen-

don and co-workers [10] performed a thorough investigation of protein kinase A using micro-

second-scale MD simulations and then identified communities using inter-residue dynamical

correlations from the trajectory with the Girvan-Newman clustering scheme to understand

the mechanism of allostery in the enzyme. A similar study on Bruton’s tyrosine kinase by Cho-

pra et al. [19] revealed that inspecting the community changes for the enzyme’s mutant form

reveals the changes in the allosteric coupling in the enzyme. In another study, Yao and co-

workers [20] performed community analysis on G proteins using 80-ns MD simulations to

identify residues playing a critical role in the allosteric coupling between functional domain

interfaces.

MD simulations do provide a high resolution dynamic image of a protein describing

detailed motions of individual atoms at different time points. However, most proteins require

energy minimization with respect to an all-atom potential prior to any simulation, a computa-

tionally demanding task for larger structures. Moreover, to observe large-scale conformational

changes as often seen in the case of multi-domain proteins, simulations need to be performed

on the microsecond to millisecond time-scales, which also require considerable computing

power. In such cases, coarse-grained approaches like ENM have an upper hand [15,21,22].

Protein dynamic communities—MD and ENM
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These models adopt a coarse-grained representation for proteins by representing each residue

by only its alpha carbon (Cα). They also implement a simplified potential that uses Hookean

springs to connect residue pairs within a cutoff distance to calculate the native state dynamics

for proteins. In assuming that the crystal structure of a protein corresponds to a local mini-

mum on the energy landscape and considering it as the native state conformation, these mod-

els eliminate the necessity for energy minimization. Owing to their reduced nature, these

models require minimal computational resources even for large macromolecular structures.

Previous studies have shown that theoretical B-factors calculated using ENM correspond well

to the experimental temperature factors [15,21,22]. A study by Leioatts et al. suggests that

these models provide consistent outcomes irrespective of the details of their formulations and

thus, do not strongly depend on their underlying parameters [23]. In addition, normal modes

from ENMs show significant overlaps with principal components from both experimental sets

of structures as well as with MD ensembles [24] and tuning the inter-residue Hookean springs

further improves the correspondence with MD [25]. Comparing the dynamics between ENM

and MD also suggests that collective motions obtained with ENM from alternate conforma-

tions of a macromolecular complex cannot be reliably obtained using multiple runs of MD

simulations [26]. Besides, when supplemented with MD, ENMs have also found their applica-

tions for generating conformers along transition pathways [27].

In this study, we have performed a large set of comparisons between the dynamic commu-

nities obtained from GNM [15] (a type of ENM) and from MD for a set of 44 non-redundant

proteins. After applying a systematic hierarchical clustering scheme on the dynamic cross-cor-

relation matrices, we observe a close correspondence between the communities from GNM

and MD for specific community levels, characterized by a significantly high value of Cohen’s

kappa coefficient [28]. Centrality measures for the weighted dynamic network from GNM and

MD also reveal a strong correlation for the closeness centrality values. We also verify the extent

of agreement for the inter-residue cross-correlations between GNM and MD by investigating

the overlaps of the principal eigenvectors calculated from the dynamic cross-correlation matri-

ces and observe a good overlap. A further analysis of the effect of mutations on communities

derived using GNM for T4 lysozyme confirms that highly deleterious point mutations signifi-

cantly alter the community structure when compared to the neutral mutations. The results

from our study open up new avenues for mining dynamic communities in macromolecular

structures with ENM and using their changes to screen for deleterious mutants.

Results

We perform our study on a set of 44 non-redundant proteins (see S1 Table) taken from the

MOlecular Dynamics Extended Library (MODEL) database [29]. Each protein has a minimum

simulation time of 100 ns for its MD trajectory. We consider only the positions of the residue

alpha-carbon atoms of each protein from the trajectory file and calculate the inter-residue

dynamical correlations from the respective MD trajectory (DCCMD) using equation 1. In our

procedure we consider only the first frame of the MD trajectory of a given protein as its repre-

sentative structure to render the protein as a mass-spring system. In such a system, each resi-

due is represented by a point mass (its Cα atom) and residue pairs within a given distance

cutoff (rc) are connected by hypothetical Hookean springs. Such a model is commonly referred

to as an elastic network model. The Gaussian Network Model is a formulation of ENM that

assumes residue fluctuations to be isotropic in nature. Details concerning the implementation

of GNM are provided in the Materials and Methods section.

We construct GNM for each protein by setting the distance cutoff rc to 7.5 Å and calculate

the inter-residue dynamical correlations (DCCGNM) using a subset of 5, 10, 20, 30 and 50

Protein dynamic communities—MD and ENM
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modes (Eq 5). The choice for rc was based on a preliminary analysis where we identified the rc

that gave the best overlaps between simulation results from GNM and MD. This is followed by

a systematic comparison between the inter-residue dynamical correlations from MD and

GNM. Initially, we show how closely the dynamic cross-correlation (DCC) matrices from MD

and GNM compare with each other for two randomly selected proteins. Following this, we

perform more thorough comparisons using the three metrics described below.

i. Kappa coefficient. The DCC matrix for a protein describes the extent of correlation

between the pairs of its Cα atoms. We identify blocks of residues that move cohesively

(dynamic communities) by first clustering the DCC matrix hierarchically and then, using a

cutoff on the height of the dendrogram obtained to identify the required number of com-

munities (Nc). In the present study, we identify 2–10 communities (Nc = 2, 3, 4 . . ., 10) for a

given protein. Agreement between the communities from MD and GNM is then assessed

with kappa coefficient [28,30].

ii. Network centrality. We model each protein as a weighted network with the nodes corre-

sponding to residues and edges between pairs of residues weighted by their distance trans-

formed dynamical correlations (Eq 6 and Eq 7). Then, we calculate the residue-level

closeness centralities and verify the correlations for the centralities obtained from MD and

GNM.

iii. Overlap between principal eigenvectors. To assess how well the correlation matrices

obtained from MD and GNM compare for a protein, we also perform singular value

decompositions of the matrices and then use root-mean square inner product (RMSIP) to

evaluate the extent of overlap between the principal eigenvectors from the two systems.

In the final section of this paper, we use GNM to delineate the community structure of

wild-type and mutant forms of T4 Lysozyme and to show that elastic models can capture the

difference in community structures for the wild-type and mutant forms.

DCC maps from MD and GNM

We perform an initial visual inspection of the dynamic maps obtained from MD and GNM to

understand the overall extent of agreement for residue correlations from the two methods. Fig

1 describes the dynamic map for two randomly selected proteins from our dataset; top: copper

transporter domain from copper transporting ATPase (PDB 1fvq), bottom: alpha-chymotryp-

sinogen (PDB 1cgi). The figure shows the distance map between Cα atoms (A, D), distance

transformed DCC maps from MD (B, E) and GNM (C, F) for the two molecules. We calculated

the DCC map for GNM by setting the distance cutoff rc to 7.5Å and then considering only the

20 non-zero lowest frequency modes as these have often been shown to circumscribe the most

energetically favorable conformation fluctuations in proteins [31]. The diagonal elements of

the correlation maps describe fluctuations of individual residues while off diagonal elements

describe inter-residue correlations or cross-correlations. We note from the outset that there

are strong similarities among these representations, corresponding to the secondary structures

present in these structures.

The distance map for a protein provides information about the spatial proximity of resi-

dues. Spatially close residues are naturally expected to have high correlations in their dynam-

ics. For the two proteins, we observe both MD and GNM showing high inter-residue

dynamical correlations for the spatially close residues. However, it is interesting to notice that

correlations for residues in spatial proximity are more strongly indicated with the GNM than

by MD. The distance transformed cross-correlation and hence, the corresponding cross-

Protein dynamic communities—MD and ENM
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correlation maps from MD and GNM exhibit good overall agreement. It is also worth noting

that for alpha-chymotrypsinogen, the blocks of residues with high inter-residue dynamical

correlation in MD ([1–70], [80–120, 1–70] and [120–220]) are almost closely replicated by

GNM. Moreover, the extent of similarity in the correlation profiles of the secondary structure

elements (helical regions along the diagonal and anti-parallel beta strands perpendicular to the

diagonal) for MD and GNM is quite remarkable.

Metric based comparisons

i. Kappa coefficient. Our objective is to investigate the level of similarity between the

communities obtained from MD and GNM. As we identify a range of communities for a pro-

tein (Nc = 2, 3, 4 . . ., 10), we perform a one-to-one comparison between MD and GNM for a

given Nc. To this end, we first calculate for each protein, the dynamic cross-correlation maps

for MD (DCCMD) with Eq 1. Then, we construct GNMs for all proteins using rc = 7.5 and cal-

culate DCCGNM using a subset of the low-frequency modes: 5, 10, 20, 30 and 50 modes (Eq 4

and Eq 5). We thus have 5 correlation matrices for a given protein each calculated using a spe-

cific subset of modes described above. For a given protein, we then perform hierarchical clus-

tering on the distance transformed DCCMD (Eq 6) and DCCGNM (Eq 7) and then truncate the

resulting dendrogram to get 2–10 communities. Using kappa coefficient (Eq 8) [28,30], a met-

ric which is used to test inter-rater reliability (extent of agreement between data collectors in

assigning same scores to the same variables), we then determine the extent of similarity

between the communities from MD and GNM.

Fig 1. Examples of Cα-distance maps and distance transformed dynamic cross-correlations from MD and GNM for i. Copper transporter domain from copper

transporting ATPase (top), and ii. alpha-chymotrypsinogen (bottom). For each protein, the figure shows the distance map for alpha-carbons (A and D), dist_DCCMD
(B and E) and dist_DCCGNM (C and F). The color scale ranges from red (spatially distant regions and least correlated parts) to blue (regions in spatial proximity and

most correlated parts). The PDB IDs of the structures used are 1fvq and 1cgi, for i and ii respectively. For ease of comparison with the Cα-distance maps, we use

dist_DCC which has all values on a positive scale rather than DCC that has both positive and negative values.

https://doi.org/10.1371/journal.pone.0199225.g001
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For a given protein, we consider the Nc (2, 3, 4 . . . 10) that yields the maximum kappa coef-

ficient (Kappamax) for a chosen subset of modes. For example, if we choose the subset of

modes used to calculate DCCGNM as the first 10, we first calculate the kappa coefficient for all

Nc and then choose the particular Nc that gives maximum kappa coefficient and thus, maxi-

mum agreement between MD and GNM. Fig 2 shows the median of Kappamax for each subset

of modes used. Similar to correlation coefficients, the kappa coefficient can range from -1 to 1.

A value of -1 indicates complete disagreement whereas, 0 indicates the random case. It can be

seen that for all subsets of modes used, the median value for Kappamax is at least 0.5, indicating

that the agreement is reasonably good and is not just random. Details of Kappamax obtained

for individual proteins and the respective Nc are provided in S2 Table. We also consider all

kappa coefficients for all community levels obtained using the distance cutoff 7.5Å and calcu-

late the median kappa for each subset of modes (S3 Table and S1 Fig). As might be expected,

the median kappa when considering all community levels for each subset of modes is smaller

than the median of Kappamax (� 0.41). Considering the fact that the conformations sampled

by MD might be limited, biased by the trajectory time scale whereas ENMs can sample a rela-

tively broader ensemble independent of time, a kappa coefficient of 0.4 indicates fair agree-

ment between the communities but importantly, the agreement is not random.

In Fig 3, we show the communities from MD and GNM mapped onto the structures of 5

proteins (A. Angiogenin, B. Protease, C. Guanine nucleotide dissociation inhibitor, D. Hemo-

globin, and E. Ubiquitin). For each protein, the figure shows only the community level Nc that

provides the best agreement with MD. The figure clearly depicts the close agreement between

the communities from GNM and from MD.

ii. Network centrality. The node centrality is computed by modeling a protein as a net-

work where nodes are the Cα atoms and the edges are weighted by the correlation in dynamics

Fig 2. Variation of kappa coefficient with the number of modes. The figure shows the median Kappamax for all proteins in the dataset for subsets

including 5, 10, 20, 30 and 50 modes. Vertical bars represent the standard error of Kappamax.

https://doi.org/10.1371/journal.pone.0199225.g002
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between a residue pair. Centrality measures tell us the importance of nodes in facilitating the

flow of information within the network [32–34]. The most central nodes act as hubs and can

be essential to the transmission of information between nodes at the extreme ends of the net-

work. We compare the extent of correlation for residue centralities between GNM and MD.

We consider the residue closeness centrality, which is the cumulative sum of the lengths of

the shortest paths from the residue to all other residues [35,36]. It is also defined as the recipro-

cal of farness. The centralities calculations were performed using the distance transformed

DCCGNM and DCCMD (Eq 6 and Eq 7). Fig 4 shows the correlations for the node closeness be-

tween MD and GNM where it can be seen that both methods show significantly high correlati-

ons in their centralities. It is worth noting that although the maximum correlation is obtained

using 50 modes (� 0.63), a steep rise in the curve is observed only until 20 modes, after which

the curve has almost converged. S4 Table describes the correlations for residue closeness cen-

tralities obtained using each subset of modes for individual proteins.

Fig 3. Comparison of communities from MD and GNM. Mapped communities for five proteins. (A) Angiogenin (PDB ID: 1agi), (B) Protease (PDB ID: 1nso), (C)

Guanine nucleotide dissociation inhibitor (PDB ID: 1gnd), (D) Hemoglobin (PDB ID: 1idr), (E) Ubiquitin (PDB ID: 1ubq). The number of communities (Nc) shown for

each case corresponds to the case of maximum agreement between MD and GNM given by Kappamax. DCCGNM calculated with a subset of 20 low-frequency modes was

used for each protein to perform calculations for communities.

https://doi.org/10.1371/journal.pone.0199225.g003
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iii. Overlap between principal eigen vectors. How well do the dominant motions cap-

tured from DCCGNM quantitatively compare with DCCMD? How many low-frequency GNM

modes are required to closely reproduce the correlation pattern from MD? To answer these

questions, we investigate the extent of overlap between the principal eigenvectors from

DCCGNM and DCCMD.

Let UN and VN be the set of N principal eigenvectors obtained upon singular value decom-

position (SVD) of DCCGNM and DCCMD. By principal eigenvectors we are referring to the set

of eigenvectors with highest eigenvalues. Because the DCC matrix is comparable to a covari-

ance matrix, vectors Ui and Vi are comparable to the principal components of a covariance

matrix, capturing the directions of maximum variance from the residue cross-correlation

matrix. We inspect the overlap between U and V using root-mean square inner product

(RMSIP) (Eq 9) and quantitatively evaluate the extent of similarity between the two matrices.

It is also to be noted that we consider the same number of principal eigenvectors each from UN

and VN as the subset of modes used. Details about the calculation of RMSIP are provided in

Materials and Methods. In Fig 5, we show that the overlaps between the principal eigenvectors

of the DCCGNM and DCCMD matrices are high. The figure also depicts sharp increases in

RMSIP and hence, a steep positive gradient as the subset of modes selected increases from 5 to

10 following which the curve converges. S5 Table gives the RMSIP values of individual pro-

teins for different subsets of low-frequency modes.

Changes to dynamic communities upon mutations

Mutations can lead to changes in the structure of dynamic communities [19]. We hypothesize

that highly unstable mutations tend to change the community structure in a protein more

radically than mutations that are less unstable. To test this, we consider 16 mutant structures

of T4 Lysozyme crystallized and reported by Mooers et al [37]. In their study, the authors

Fig 4. Node centrality correlations. The median correlation for closeness centrality from DCCGNM with DCCMD is shown for different subsets of

modes for all proteins. Vertical bars give values of standard errors.

https://doi.org/10.1371/journal.pone.0199225.g004
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investigated the effect of mutating Arg96 on the stability of the enzyme. ΔΔG values were

reported that indicate changes in the stabilities relative to the wild-type (Table 1). The more

negative numbers indicate higher instability. We arbitrarily divide the dataset into two groups:

the more unstable mutants (rows 1–8) having ΔΔGs between -4.7 and -2.6 and less unstable

mutants (rows 9–16), ΔΔGs varying between -2.6 and 0. For simplicity, we refer to the more

unstable type as unstable and the less unstable type as stable. We obtain the dynamic commu-

nities with GNM using all heavy-atoms from the atomic protein structures and then, with

DCCGNM from 5, 10, 20, 30 and 50 modes, we verify the community agreement for each of the

two mutant types with the wild-type with the kappa coefficients.

In Fig 6, we show the variation in kappa coefficient for the two mutant categories. For each

category, the plot shows the median kappa for individual community levels. It is seen that the

stable mutants (blue curve) exhibit better agreement with the wild-type than the unstable
mutants (red curve). Also, it is interesting to note that these differences are manifested in the

first 6 communities. At higher community levels, the two mutant types almost come into

agreement. It is also interesting to note that this difference in community architecture is more

apparent for a subset of 10 modes. To visualize these differences on the protein structures, we

consider 3 pairs of unstable and stable mutants: (PDB IDs: 3c80, 3c81), (PDB IDs: 3c82, 3c81)

and (PDB IDs: 3c82, 3c8s). For each pair, we identify the smallest number of communities for

which the change is significant. The ΔΔG for each of these mutants can be seen in Table 1.

Fig 7 (3c80, 3c81), Fig 8 (3c82, 3c81) and Fig 9 (3c82, 3c8s) show communities for each

mutant pair relative to the wild-type (4s0w). In each figure, the wild-type structure with the

communities is shown on left, the stable mutant in the center and the unstable mutant on the

right. Side chains of mutation sites are shown as sticks with the same residue side chains

Fig 5. Overlap between principal vectors from DCCGNM with DCCMD. The figure shows the extent of agreement between the residue cross-

correlation matrices from MD and GNM in terms of the principal eigenvectors. The principal eigenvectors are obtained from singular value

decomposition of the DCCGNM and DCCMD matrices, respectively. The median overlap between the vectors from MD and GNM, computed with

RMSIP, is shown for subsets of 5, 10, 20, 30 and 50 modes. Vertical bars represent the standard errors in RMSIP.

https://doi.org/10.1371/journal.pone.0199225.g005
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displayed in the same color. In Fig 7, the difference in community structure for 3c80 (unstable)

and 3c81 (stable) is distinct showing two different communities. The stable and unstable forms

differ visibly in the dynamical correlation of the N-terminal helix (residues 1–12), which is

cohesive with the adjacent N-terminal beta sheets and helices in the wild-type and stable

forms, while it moves in coordination with the C-terminal domain in the unstable form. The

kappa coefficient for the unstable and stable mutant structures is 0.74 and 0.98, respectively.

For 3c82 (unstable) and 3c81 (stable) (Fig 8), the difference is apparent at 3 communities

(kappa values of 0.65 and 0.97 respectively). Again we observe a change in the N-terminal

helix that moves as an independent unit in the wild-type and stable forms, but shows more

coordinated motion with the N-terminal domain in the unstable form. In Fig 9, we notice the

difference at 3 communities and as previously observed, the difference between the stable and

unstable forms becomes visible in the N-terminal helix. The kappa coefficients for the unstable
(3c82) and stable (3c8s) forms at the level of 3 communities are 0.65 and 0.94, respectively.

Discussion

In the present study, we focus on a simple approach for detecting dynamic communities in

proteins with elastic networks. ENM is simpler to formulate, easier to implement and is com-

putationally less expensive in comparison with MD. Here, we emphasize that identifying the

true number of dynamic communities is largely an unsolved problem and it is not our current

goal to establish ENM as a more accurate method than MD in this aspect. Rather, it is in our

interest to show that this method works as well as MD does for community detection. Our

results reveal that this single-parameter model can closely reproduce the results from a com-

plex, multi-parameter model like MD, especially for community detection. Owing to its

reduced nature, ENM is superior to MD in terms of execution time and thus, can contribute

significantly to the investigation of the dynamic communities for larger proteins. We would

also like to emphasize that simulation results from MD may not always fully capture the near-

Table 1. Mutants for T4 Lysozyme sorted by ΔΔG. The set of PDB structures used to compare the community struc-

ture of stable and unstable mutants is given below. The Mutation column gives information on the mutation and has

the format “xRy”, where ‘x’ is the residue in the wild-type, ‘y’ the residue in the mutant, and R is the position of muta-

tion in the protein. More negative ΔΔG values indicate less stable mutant form.

PDB Identifier Mutation ΔΔG (pH 5.35) Stability

3c80 R96Y -4.7000 Unstable

3fi5 R96W -4.5000 Unstable

3c7z D89A, R96H -3.8000 Unstable

3c82 K85A, R96H -3.6000 Unstable

3c8q R96D -3.5000 Unstable

3cdt R96N -3.0000 Unstable

3cdv R96M -2.7000 Unstable

3c8r R96G -2.6000 Unstable

3cdq R96S -2.6000 Stable

3c8s R96E -2.5000 Stable

3cdo R96V -2.4000 Stable

3c7y R96A -2.0000 Stable

3c81 K85A -0.6000 Stable

3c83 D89A -0.5000 Stable

3cdr R96Q -0.3000 Stable

3c7w R96K 0.0000 Stable

4s0w None (wild-type) 0 Stable

https://doi.org/10.1371/journal.pone.0199225.t001
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native conformation ensemble for a given protein and thus, one should not view results from

MD as the absolute truth. The conformational sampling using MD may be highly biased by

the simulation length vis a vis the size of the protein, with larger proteins requiring longer sim-

ulations to capture a fully representative ensemble of near native conformations. Thus, in our

scheme of comparing communities and the underlying correlation matrices obtained from

ENM with MD, a lack of agreement between MD and ENM does not necessarily imply the

inability of ENM to capture the underlying conformational dynamics. Instead, in some cases,

this could be related to the underlying sampling inaccuracies arising from MD.

We show that communities extracted using GNM, a simple formulation of ENM, exhibit a

considerable similarity to the communities from MD. We choose GNM over its anisotropic

counterpart ANM [21] because it is simpler and because previous studies have shown that

GNM exhibits better correlations with experimental B-factors than ANM [38]. Moreover, in a

preliminary analysis we observe that the communities obtained with GNM show better agree-

ment with MD than does ANM. In Fig 1, the distance transformed DCCGNM and DCCMD

matrices for two proteins selected randomly from our dataset show considerable agreement

for the regions with high correlation in their dynamics. However, it is surprising to notice a

better cohesive behavior, in the case of GNM, showing a close connection between inter-resi-

due dynamical correlations and residue spatial proximity. The dispersion of close contacts sug-

gested by the distance matrix is more closely reproduced with DCCGNM than with DCCMD.

Fig 6. Community agreement for unstable (red) and stable (blue) mutants of T4 lysozyme with the wild-type. The figure shows the median kappa coefficient

(agreement with wild-type) at each community level for the unstable and stable mutants. The communities were obtained with DCCGNM calculated using (A) 5, (B) 10,

(C) 20, (D) 30 and (E) 50 low-frequency modes. The abscissa and ordinates correspond to the number of communities and the Kappa coefficient respectively, as given in

6A.

https://doi.org/10.1371/journal.pone.0199225.g006

Protein dynamic communities—MD and ENM

PLOS ONE | https://doi.org/10.1371/journal.pone.0199225 June 20, 2018 11 / 21

https://doi.org/10.1371/journal.pone.0199225.g006
https://doi.org/10.1371/journal.pone.0199225


This cohesiveness is a hallmark of the elastic network models in general, and is one reason that

they can show better agreement with various protein behaviors than MD. It is however to be

noted that we use only the first twenty low-frequency modes from GNM to calculate DCCGNM.

As we find in other analysis, the agreement between MD and GNM for different metrics

mostly converges for the first 20 normal modes, with the addition of more modes not provid-

ing much significant gains.

Our approach to identify dynamic communities differs from existing methods that identify

dynamic domains [39,40], which, similar to the approach taken by Kundu [14], divide the

structure into rigid units (dynamic domains) based on the sign of the residue positional fluctu-

ations given by the low frequency modes. These methods cluster residues with positive fluctua-

tions into a single group and those with negative fluctuations into a separate group by

considering each low frequency mode separately and dividing a protein structure primarily

into two rigid clusters or dynamic domains. Depending on the mode that was considered, a

single domain may be highly cohesive or may have individual entities that are dispersed over

an entire protein structure. In contrast, our approach considers the cumulative contributions

from more than one mode by calculating a cross-correlation matrix that combines multiple

low frequency modes. Transforming such a matrix into a distance correlation matrix and then

clustering it hierarchically, divides the structure into the desired number of dynamic commu-

nities based on the extent of inter-residue correlation. While the identification of dynamic

domains chooses all residues having the same sign in their positional fluctuations and groups

them into one cluster, our method could in principle divide these dynamic domains further

into sub-modules, i.e., the dynamic communities.

Fig 7. Comparison of community structures for wild-type (PDB: 4s0w), stable (PDB: 3c81) and unstable (PDB: 3c80) mutant forms of T4 lysozyme. Two

communities (red and cyan) are shown for each structure. We choose Nc = 2 because the differences in community structure for the stable and unstable forms are most

distinctive at this level. Similarly localized communities are colored alike. Sites of mutations are shown in sticks with the corresponding residue names labelled. Side

chains of same amino acids in the sites of mutation are colored alike.

https://doi.org/10.1371/journal.pone.0199225.g007
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To model the dynamics, we have considered a fixed distance cutoff rc = 7.5 Å for each pro-

tein. However, it might be more realistic to use a different rc for each protein, since using a

generalized distance cutoff sometimes fails to take into account the size and variations in the

packing density in different proteins and may not accurately represent the protein dynamics.

Previous implementations of ENM have used a range of different rc and then considered the rc

that best reproduces the experimental B-factors [15,21].

Our results from comparing the communities obtained upon clustering the distance trans-

formed DCCGNM and DCCMD matrices hierarchically, suggest that for a certain number of

communities Nc, MD and GNM show near-perfect agreement. Importantly, we observe con-

vergence in agreement after using the first few low frequency modes. This also corroborates

previous studies that showed that the first few low frequency modes are adequate to reproduce

the experimentally observed conformational ensemble of proteins [31,41]. Also, in the case of

GNM, though the model assumes isotropic, non-directional residue fluctuations not account-

ing for the directional preferences of residue mobilities, previous studies have suggested that

using the first few low-frequency modes nonetheless results in good correlations with experi-

mental B-factors [42]. When verifying the median kappa for all modes with rc = 7.5 Å (S1 Fig),

it is interesting to note that the median kappa for each subset of modes at all community levels

is almost the same (� 0.41), except for the subset of 30 modes which shows highest median

kappa values. While kappa coefficients of 0.41 rules out the possibility of random agreement,

at the same time, one must also consider that there could be possible conformational under-

sampling depending on the time scale of the MD trajectory that restricts the extent of agree-

ment between MD and GNM.

Fig 8. Comparison of community structures for wild-type (PDB: 4s0w), stable (PDB: 3c81) and unstable (PDB: 3c82) mutant forms of T4 lysozyme. Three

communities (green, brown and blue) are shown for each structure. Nc = 3 shows maximum structural difference between the community structures of mutant and

wild-type forms, hence the choice. Coloring scheme is the same as in Fig 7.

https://doi.org/10.1371/journal.pone.0199225.g008
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Near-convergence for a subset of the first-few low-frequency modes (20–30 modes) is also

consistent for the correlation of node centralities and RMSIP between MD and GNM. It is

interesting to observe the high correlation for node closeness (0.63), further verifying the

strong correspondence between the simulation results from the two methods. However, as Fig

1 suggests, DCCGNM and DCCMD do not exhibit 100% agreement with each other. They agree

to a large extent in the correlations of secondary structure elements and residues in spatial

proximity however, they differ in their scale of inter-residue correlations which could possibly

explain the lack of perfect correlation for node closeness.

Singular value decomposition of DCCGNM and DCCMD helps in capturing the directions of

maximum variations for inter-residue correlations through its principal eigenvectors. Upon

verifying the overlap of the principal eigenvectors between MD and GNM we observe an

RMSIP of 0.82 (for 20 modes) followed by convergence. This confirms that the DCCGNM and

DCCMD matrices agree to a large extent in terms of the inter-residue fluctuation correlation. It

is also interesting to note that when using either a smaller number of modes (5 modes) or too

many modes (50 modes) the standard error in RMSIP increases. While using very few modes

possibly leads to a loss in information, including more modes in the calculations for DCCGNM

possibly adds to the noise, since the most reliable modes of motion for the elastic network

models are those at the lower frequency end. Higher frequency modes describe local residue-

level dynamics and are less reliable. Hence, including those modes in the calculation of the cor-

relation matrix can potentially reduce the signal to noise ratio, resulting in observed lower

agreement of DCCGNM with DCCMD.

Fig 9. Comparison of community structures for wild-type (PDB: 4s0w), stable (PDB: 3c8s) and unstable (PDB: 3c82) mutant forms of T4 lysozyme. Three

communities (red, blue and green) are shown for each structure. Nc = 3 shows the maximum structural differences for the community structures in the mutant and

wild-type forms, hence its choice. The coloring scheme is same as in Figs 7 and 8.

https://doi.org/10.1371/journal.pone.0199225.g009
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The ability of GNM to discriminate stable mutants from unstable ones by evaluating com-

munity agreement is notable. The extent of change in community structures in unstable

mutants is much greater than for stable mutants. We have used the atomic structures of T4

Lysozyme in the GNM as opposed to the coarse-grained version to account for the mutation

changes. Interestingly, we observe that changes to community structures are more distinct in

the higher community levels (smaller number of communities) as described by Fig 6. One

should consider that we have performed this study only for a set of 16 mutant structures of T4

lysozyme, which is really a very small sample. However, we are limited in the availability of

experimentally determined mutant structures for a single protein [43,44]. There is some data

for the changes in free energy associated with a single point mutation in proteins [45] however,

the crystal structures corresponding to these mutants are not usually available. To use this

data, previous methods have considered computational approaches to mutate targeted residues

in a given protein and then, used the modeled structure as a representative of the mutant form

[46]. However, such computational approaches rely upon the potential function used in the

modeling tool and hence, the structure of the modeled mutant (especially the sidechain posi-

tions of the mutant site and its neighbors) may be biased by the potential function. The data

we have used should be more reliable because these are experimentally reported crystal

structures.

Materials and methods

Dataset

We compile a set of 44 distinct proteins from the MODEL database [29] by considering only

those proteins with MD trajectories of 100 ns or above. Each protein has a minimum of 50 res-

idues. For each protein, we downloaded the all-atom trajectory from the database and parsed

the all-atom trajectory into a Cα trajectory, having only the coordinates for residue Cα atoms

in each frame.

Dynamic cross-correlations from MD trajectory

For each protein, we perform calculations for residue-level dynamic cross-correlations on the

respective Cα trajectory using the dccm function in the Bio3D package [47] with the following

equation [48,49].

DCCMD i; jð Þ ¼
< DriðtÞ:DrjðtÞ>t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

< jjDriðtÞjj
2
>t

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

< jjDrjðtÞjj
2
>t

q ð1Þ

Here, ri(t) and rj(t) refer to the coordinates of the ith and jth atoms as a function of time t,
<.> indicates the time ensemble average and Δri(t) = ri(t) − (< ri(t)>)t and Δrj(t) = rj(t) −
(< rj(t)>)t.

Dynamic cross-correlations from Gaussian Network Model

We use GNM [15,50], a form of ENM, to calculate the dynamic cross-correlations between res-

idues. In GNM a protein is usually modeled as a coarse-grained system by representing indi-

vidual residues by their alpha-carbons, but these points can also be atoms, which we use for

the computations on the mutant proteins. Residues within a certain distance cutoff (rc) are

connected by Hookean springs. GNM assumes the protein crystal structure to be of energetic

minimum conformation and doesn’t require the structure to be energy minimized. It also

assumes that residue fluctuations about their mean positions are isotropic and follow a
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Gaussian distribution in their excursions away from the assumed minimum energy structure.

The potential for GNM is given as

V ¼
1

2
g
Pn

i;jG ðDRi � DRjÞ
2

h i
ð2Þ

Here, ΔRi and ΔRj are the fluctuation vectors for residue i and j respectively, γ is the stiffness of

the springs connecting residues i and j. Γ is the Kirchhoff matrix defining node connectivity

and is defined as the following.

G ¼

� 1; if i 6¼ j and Rij � rc

0; if i 6¼ j and Rij > rc

�
P

j;j6¼iGij; if i ¼ j

ð3Þ

8
>><

>>:

Here, Rij is the distance between the alpha carbons of residues i and j while, rc is the distance

cutoff. Diagonalizing Γ yields N-1 modes with non-zero eigenvalues. Each mode is a vector

that describes the residue fluctuations about its mean position while the eigenvalues corre-

spond to the square of the mode frequency and indicate the relative extent of motion of each

point. The slow modes or the low-frequency modes describe the most energetically favorable

motions of a protein.

The Kirchhoff matrix has a zero determinant and is thus, singular. The pseudo-inverse of

this matrix is calculated using the N-1 or a subset of the N-1 modes with the following equa-

tion.

G� 1 ¼
PN� 1

i¼1
li
� 1ViV

T
i ð4Þ

λi is the eigenvalue of the ith mode, Vi is ith mode and VT
i is the transpose of Vi. The inter-resi-

due dynamical correlation between residues i and j is then calculated as

DCCGNM i; jð Þ ¼
G� 1ði; jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG� 1ði; iÞ G� 1ðj; jÞÞ

p ð5Þ

In the present study, we first use a range of different values for the distance cutoff rc (6, 6.5, 7,

7.5 and 8 Å) and then, select rc = 7.5 Å, which provides high overlap for dynamics captured

from GNM with MD. Using this cutoff, we calculate DCCGNM using 5, 10, 20, 30 and 50 low-

frequency modes.

Dynamic communities from correlation matrix

For each protein in our dataset, we convert the residue-residue dynamical correlation matrices

DCCMD and DCCGNM into distance correlation matrices as follows

dist DCCMD ¼ 1 � DCCMD; ð6Þ

dist DCCGNM ¼ 1 � DCCGNM ð7Þ

We then perform hierarchical clustering on the distance correlation matrices with weighted pair-

group method with arithmetic mean (WPGMA), which takes into consideration the cluster size

when calculating the distance between two clusters [51]. Hierarchical clustering yields dendro-

grams that can be pruned at different levels to give the desired number of clusters. The clusters

obtained upon pruning a dendrogram at a certain height correspond to the dynamic communi-

ties, i.e., the blocks of residues that are highly cohesive and move like a rigid body. We cut the den-

drograms at different levels to obtain between 2 and 10 communities. The hierarchical clustering
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was performed using the MATLAB linkage (https://www.mathworks.com/help/stats/linkage.html)
and cluster (https://www.mathworks.com/help/stats/cluster.html) modules.

Comparing community assignment between MD and GNM

We use 3 metrics to assess the agreement between the communities from MD and GNM.

1. Cohen’s kappa coefficient. The Cohen’s kappa or simply, kappa is a statistic that is

often used to evaluate the extent of agreement between data collectors or raters in their assign-

ments to the same variables, referred to as inter-rater reliability. Kappa coefficient is consid-

ered to be more robust than percent agreement as it also takes into consideration random

agreement [28]. Like correlation coefficients, the value of the kappa statistic can range from -1

to 1. A kappa of 0 indicates an agreement by chance while kappa of 1 indicates perfect agree-

ment [28,30]. We calculate the kappa coefficient as follows

K ¼
po � pe

1 � pe
ð8Þ

Here, po is the observed probability of agreement for cluster assignment between MD and

GNM while, pe is the expected probability of agreement.

2. Network centrality. We model each protein as a weighted network in which a node repre-

sents a residue and the edge between a pair of nodes is weighted by the distance transformed cor-

relation for the residue pair (Eq 6 and Eq 7). Then, we calculate the node closeness centralities for

the networks from MD and GNM. The closeness centrality is the sum of the lengths of the shortest

paths to all other nodes from the given node in the graph. We perform all calculations for network

centrality using the MatLab graph (https://www.mathworks.com/help/matlab/ref/graph.html) and

centrality (https://www.mathworks.com/help/matlab/ref/graph.centrality.h tml) modules.

3. Overlap between principal eigen vectors. We perform singular-value decomposition

(SVD) on the DCCMD and DCCGNM matrices and then evaluate the overlaps between the MD

and GNM eigenvector spaces for subsets of vectors having largest eigenvalues using the root-

mean square inner product (RMSIP) [52] as

RMSIP ¼
ffiffiffi
1

n

r
�Pn

i¼1

Pn
j¼1
ðVi:UjÞ

2
ð9Þ

V and U are the principal eigenvectors obtained from SVD of the DCCMD and DCCGNM matri-

ces respectively, while n is the number of vectors to be compared. We consider the same num-

ber of principal vectors for the two matrices.

Mutant dataset

We use PDB structures for the T4 lysozyme mutants crystallized by Mooers et al. [37]. In their

study, the authors performed circular dichroism assays to estimate stability changes upon spe-

cific mutations to the enzyme and calculated the free energy change (ΔΔG) for the mutants as

ΔGmutant − ΔGwildtype. The authors have defined the more negative ΔΔG values to be the unsta-

ble mutants. The stability changes were performed at pH 5.35 and 3.05. In our study, we con-

sider the ΔΔG values calculated at pH 5.35. Details of the mutant structures used and their free

energy changes with respect to the wild-type are given in Table 1.

Effect of mutation on dynamic communities

We use all-atom GNM to investigate the community change in the mutant structures with

respect to the wild-type. For both the mutant and wild-type forms of the enzyme, we retain all
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heavy atoms in the PDB and use a distance cutoff of 3.5Å to identify interacting spring loca-

tions. Using 5, 10, 20, 30 and 50 modes, we initially calculate the inter-residue dynamical cor-

relations and then, perform hierarchical clustering with weighted average linkage to obtain the

desired number of clusters. We trim the dendrograms for each structure at specific heights to

obtain 2–10 communities and then compute the agreement between the communities for the

wild-type and mutant forms with the kappa coefficient.
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