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Cortical reorganization following sensory deprivation is characterized by alterations in the
connectivity between neurons encoding spared and deprived cortical inputs. The extent
to which this alteration depends on Spike Timing Dependent Plasticity (STDP), however,
is largely unknown. We quantified changes in the functional connectivity between layer
V neurons in the vibrissal primary somatosensory cortex (vSI) (barrel cortex) of rats
following sensory deprivation. One week after chronic implantation of a microelectrode
array in vSI, sensory-evoked activity resulting from mechanical deflections of individual
whiskers was recorded (control data) after which two whiskers on the contralateral side
were paired by sparing them while trimming all other whiskers on the rat’s mystacial
pad. The rats’ environment was then enriched by placing novel objects in the cages
to encourage exploratory behavior with the spared whiskers. Sensory-evoked activity in
response to individual stimulation of spared whiskers and adjacent re-grown whiskers was
then recorded under anesthesia 1–2 days and 6–7 days post-trimming (plasticity data). We
analyzed spike trains within 100 ms of stimulus onset and confirmed previously published
reports documenting changes in receptive field sizes in the spared whisker barrels. We
analyzed the same data using Dynamic Bayesian Networks (DBNs) to infer the functional
connectivity between the recorded neurons. We found that DBNs inferred from population
responses to stimulation of each of the spared whiskers exhibited graded increase in
similarity that was proportional to the pairing duration. A significant early increase in
network similarity in the spared-whisker barrels was detected 1–2 days post pairing, but
not when single neuron responses were examined during the same period. These results
suggest that rapid reorganization of cortical neurons following sensory deprivation may be
mediated by an STDP mechanism.

Keywords: effective connectivity, whisker pairing, barrel cortex, experience-dependent plasticity, Dynamic

Bayesian Network

INTRODUCTION
The brain develops and adapts through multifaceted plastic
changes in connectivity among its neurons (Siegelbaum and
Kandel, 1991; Dan and Poo, 2004). Experience-dependent plas-
ticity might be the most vital, as it critically affects the organism’s
ability to compensate for sensory alteration (Fox and Wong,
2005). For example, amputating hand fingers in primates, or
blocking nerves that innervate them results in reorganization of
the primary somatosensory cortex (SI) (Kaas, 1991; Weiss et al.,
2000), although recent data suggest this re-organization may
be caused by plasticity in other subcortical areas (Kambi et al.,
2014). In rodents, the primary somatosensory cortex is required
for whisker-based tactile sensation of objects in the surrounding
(Guo et al., 2014; Petersen, 2014). The interaction between cortical
inputs caused by self-generated whisker movements and inputs

from whisker-object contact seems to be critical for rapid decision
making about when and what is being touched. Anatomically,
the vibrissal area of SI (vSI) is innervated by numerous afferents
from whisker follicles on the mystacial pad, and has been shown
to extensively reorganize following whisker pairing—the process
of depriving the rat from all but two adjacent whiskers (Feldman
and Brecht, 2005). In particular, neuronal firing rates in one prin-
cipal spared-whisker (W1) barrel have been shown to resemble
those in the other spared-whisker (W2) barrel in response to
deflection of W2 (Diamond et al., 1993). This may be attributed
to the emergence of new connections between the spared-whisker
barrels or to the strengthening of already existing connections
(Hebb, 1949; Lebedev et al., 2000; Feldman and Brecht, 2005).
The precise mechanism that may mediate this re-organization at
the population level, however, remains largely unknown.
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Tracking experience-dependent plasticity in vivo is challeng-
ing for a number of reasons. Chief among all is the multifaceted
aspects of plasticity that may occur at an individual synapse, a sin-
gle cell, or a population level and at multiple time scales, which
are currently insurmountable to measure in the intact brain of
an awake behaving animal. As such, characterizing experience-
dependent plasticity has been limited to the analysis of individual
unit response. Changes in spike count and spike timing have
been mostly used as biomarkers of experience-dependent plas-
ticity (Celikel et al., 2004; Jacob et al., 2007). On the other
hand, population analysis has been primarily limited to the anal-
ysis of pairwise correlations (Lebedev et al., 2000; Erchova and
Diamond, 2004; Marre et al., 2009). More recently, graph-based
techniques were shown to be more effective in characterizing
stimulus encoding properties in the rat barrel cortex (Eldawlatly
and Oweiss, 2011; Adibi et al., 2014), in retinae (Pillow et al., 2008;
Ganmor et al., 2011) as well as in other cortices (Tang et al., 2008).

Here we sought to characterize the dynamics of neural ensem-
bles in rat vSI to test the hypothesis that rapid cortical re-
organization following sensory deprivation induced by whisker
pairing may be mediated, in part, by a Spike Timing Dependent
Plasticity (STDP) mechanism. Using a combination of chronic
ensemble recording of multiple single unit activity in vivo and
the statistical inference power of Dynamic Bayesian Networks
(DBN)—a class of graph-based methods—we demonstrate that
whisker pairing results in significant changes in DBN-derived
effective connectivity between locally recorded populations of
layer V vSI neurons. Given the sensitivity of DBNs to the tem-
porally ordered spike times in the recorded ensemble spike pat-
terns, these changes could be explained in part by an STDP
mechanism.

MATERIALS AND METHODS
BARREL CORTEX RECORDING AND ELECTRODE IMPLANTATION
Four adult female Sprague Dawley rats weighing ∼300 g were
used in this study. All procedures involving animals were
approved by the Michigan State University Institutional Animal
Care and Use Committee (IACUC). Animals were anesthetized
using a cocktail of ketamine and xylazine (75 and 5 mg/kg injected
intrapertoneally, respectively). The left somatosensory cortex was
exposed (4 × 4 mm craniotomy, 0–4 mm posterior and 4–8 mm
lateral to bregma). A 32-channel microelectrode silicon array
(NeuroNexus Technologies, Ann Arbor, MI, USA) with 8 shanks,
4 recording sites/shank, 200 μm shank separation and 100 μm
electrode separation within shank was advanced into the barrel
field in 100 μm steps. Acquired signals were amplified and band-
pass filtered in the range 300–5000 Hz and sampled at 25 KHz
(Tucker-Davis Technologies, Alachua, FL, USA). Stimulus-driven
activity was observed at depths of 1100–1500 μm corresponding
to layer V of the barrel cortex. After reaching the desired depth
in layer V, the electrode array was secured in place using dental
cement.

Rats were left to recover for 7–10 days post-surgery after
which they were anesthetized and stimulus-driven S1 activity
was recorded (control data). For each rat, 3 whiskers contralat-
eral to the side of the implant were selected for mechanical
stimulation based on the observed neuronal response to manual

deflection (mapping experiment). The selected whiskers were
deflected individually by inserting each whisker into a capillary
tube glued to a piezoelectric bimorph (Piezo Systems, Cambridge,
MA, USA) where the distance between the tube and the skin was
kept at ∼1 mm. As such, a whisker, whether spared or re-grown,
was always stimulated at an identical distance from the follicle and
therefore is not expected to drive a different input to the cortex
than what was intended to be delivered. Each whisker was hor-
izontally deflected 900 times with a displacement of 80 μm for
100 ms (rise time and fall time were each set to 1 ms) at 1 Hz
frequency (i.e., the inter-trial interval was 900 ms). Two whiskers
were then selected to be paired and all other whiskers on the same
side of the rat’s mystacial pad were trimmed to the skin level. Rats
were returned back to their cages where enrichments were intro-
duced to encourage them to actively whisk new objects using the
spared whiskers. After 1–2 days and 6–7 days post-whisker trim-
ming, rats were re-anesthetized and stimulus-driven activity was
recorded (plasticity data) in response to spared whiskers deflec-
tion as well as one re-grown adjacent whisker. At the end of the
1–2 days recording session, re-grown whiskers (not previously
spared) were trimmed again to restrict the pairing to the same
pair of whiskers.

For both control and plasticity data, spikes from multiple sin-
gle unit activity were detected and sorted using NeuroQuest; a
MATLAB toolbox for neural data processing and analysis (Kwon
et al., 2012). Spikes were declared present if the raw wave-
form surpassed a threshold set at 3 times the noise standard
deviation. A spike length of ∼1 ms was used for spike sorting
(0.25 ms pre threshold crossing and 0.75 ms post threshold cross-
ing). Spikes were aligned at their trough. Principal Component
Analysis (PCA) was applied to the detected spikes, and the first
2 principal components were used as features for spike sorting.
An average population size of 23.2 ± 6.7 single units/rat was
recorded. Spike trains were binned at � = 1 ms.

DYNAMIC BAYESIAN NETWORKS (DBNs)
A graphical model uses a node to represent a random variable and
an edge to connect two nodes representing a probabilistic rela-
tionship between the corresponding random variables. Formally,
a graph G consists of a set of nodes V and edges E, written
as G = <V, E>. Each node in V, denoted by vi, corresponds
to a random variable xi. Each edge in E ⊆ V × V , denoted by
vi → vj, indicates the causal influence of random variable xi on
random variable xj (i.e., effective connectivity). Graphical repre-
sentation of neuronal interactions is intuitive because it can be
easily visualized and allows the use of many established graph
metrics to quantify certain features of the inferred graph that can
be compared to imaging and anatomical neural data (Stam and
Reijneveld, 2007; Bullmore and Sporns, 2009).

In the DBN analysis we carried out on the spike train data, a
directed acyclic graph (DAG) (Murphy, 2002), denoted by G, and
a set of conditional probabilities, denoted by P, represented the
statistical dependence between the simultaneously observed spike
trains (r1, r2, . . . , rn), and was used to represent the network B
as B = <G, P>. Each node in V, denoted by vi, corresponds to
the spike train of neuron i at time t, where ri(t) = 1 represents a
“spike,” and ri(t) = 0 represents “no spike.” Each directed edge in
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E indicates conditional dependence (i.e., causal influence) among
the corresponding neurons.

The state of each variable ri(t) in the DBN is determined only
by its putative pre-synaptic cells’ history, denoted rπ(i)(1 : t − 1),
and is independent of the state of any other cell. Thus, the prob-
ability Pr (r1(t), r2(t), . . . , rn(t)|r(1 : t − 1)) can be expressed in
terms of the conditional probabilities Pr

(
ri(t)|rπ(i)(1 : t − 1)

)
as

Pr (r1(t), r2(t), . . . , rn(t)|r(1 : t − 1))

=
n∏

i = 1

Pr
(
ri(t)|rπ(i)(1 : t − 1)

)
. (1)

For the sake of simplicity, it is often assumed that ri(t)
is only dependent on the value of its parents observed at
time T = t − 1, which simplifies the conditional probabilities
Pr
(
ri(t)|rπ(i)(1 : t − 1)

)
to Pr

(
ri(t)|rπ(i)(t − 1)

)
. This is known

as the Markov assumption with Markov lag equal to 1. This
simplification to the Markov assumption can be extended to
include multiple Markov lags. For instance, a DBN with max-
imum Markov lag equals 3 implies that ri(t) is decided by the
value of its parents observed at time T = t − 1, t − 2, t − 3, or
Pr
(
ri(t)|rπ(i)(t − 3 : t − 1)

)
.

Learning DBN structure (i.e., inferring the edges in the net-
work) from the data can be achieved by searching for the structure
G∗ that maximizes the posterior density of the network structure
G for a given dataset D, denoted Pr (G|D), expressed using Bayes’
rule as

Pr (G|D) = Pr (D|G) Pr (G)

Pr (D)
(2)

where Pr (D|G) is the likelihood of the data D given the structure
G, Pr(G) is the structure prior, and Pr(D) is the probability of the
observed data. Assuming no prior information about the struc-
tures [i.e., a uniform distribution for Pr(G)] and given that Pr(D)
is independent of the choice of G, G∗ can be found as the structure
that maximizes Pr (D|G).

Score-based approaches can be used to search for G∗ in which
multiple network structures are evaluated by assigning a score
to Pr (D|G) (Heckerman, 1995). In our analysis, we used the
Bayesian Dirichlet equivalent (BDe) score (Heckerman et al.,
1995). Assuming that the distribution of each node in the net-
work can be learned independently of all other distributions in
the network and assuming Dirichlet priors, the BDe score can be
expressed as (Cooper and Herskovits, 1992; Heckerman, 1995)

log Pr (D|G) =
∑
i,k

(
log

�
(
Z′

ik

)
�
(
Z′

ik + Zik
)

+
∑

j

log
�
(

Z′
ijk + Zijk

)
�
(

Z′
ijk

)
⎞
⎠ (3)

where �(x) is the Gamma function satisfying �(x + 1) =
x�(x) and �(1) = 1, Zik = ∑

j Zijk, Zijk is the number of times

variable r(t)
i = j (where j is equal to “0” for no spike and

“1” for a spike) and rπ(i)(1 : t) = k, Z′
ik = ∑

j Z′
ijk and Z′

ijk =
a Pr

(
r(t)

i = j, rπ(i)(1 : t) = k|G0

)
, where a is the equivalent sam-

ple size, G0 is a prior structure and π(i) is defined by the
considered structure G. The search starts with an initial ran-
dom structure. At each step, the network is modified by either
adding a new connection, remove an existing one or reversing its
direction. A search is then carried out through the space of all pos-
sible structures to find the model with the maximum score—or
equivalently that best explains the observed data. In our imple-
mentation, we used the Bayesian Network Inference with Java
Objects (BANJO) toolbox (Smith et al., 2006) with simulated
annealing search algorithm (Kirkpatrick et al., 1983).

In a previous study, we examined the extent to which DBNs
could infer the structure of a simulated network when neurons
forming this network obey an inhomogeneous Poisson firing
model (Eldawlatly et al., 2010), which results in significant vari-
ability in the temporal structure of the firing patterns, eventually
mimicking what is typically observed in cortex (Shadlen and
Newsome, 1998). Specifically, we examined the ability of DBN to
identify the structure of a network when the following parameters
were varied: synaptic delay, number of pre-synaptic connections,
excitation-to-inhibition ratio, model memory, background fir-
ing rate, population size and analysis time window. We found
that DBNs could faithfully reconstruct the network structure—
even for relatively weak connectivity—within intervals (model
memory) in the order of ∼18 ms. This temporal resolution
far supersedes other methods that have been typically used to
infer connectivity from macroscale activity (such as functional
Magnetic Resonance Imaging fMRI).

DATA ANALYSIS
For each neuron, the total number of evoked spikes in a given
trial for each stimulated whisker was calculated as the differ-
ence between the total number of spikes fired by the neuron
within the 100 ms-trial and the total number of spikes fired by
the neuron in the 100 ms window preceding the trial. The mean
first-spike latency of each neuron for a given whisker was com-
puted as the average time taken by the neuron to fire the first spike
post stimulus onset. To quantify the similarity in the response of
individual neurons to deflection of the spared whiskers, we com-
puted the difference in the evoked number of spikes as well as
the difference in the first-spike latency of each neuron across the
spared whiskers. The similarity was then computed as [1 - the
normalized absolute difference] where the absolute difference for
each neuron was normalized by the maximum absolute difference
across all neurons.

To infer stimulus-specific networks, a total of 100 datasets,
18 s each, for each whisker were extracted from the recorded 900
trials/whisker in each of the control and plasticity data. Each
dataset was formed by concatenating 180 trials that were ran-
domly selected from a uniform distribution of the 900 trials. We
analyzed the same type of stimulus-driven layer V barrel cortex
data in previous experimental study using the same dataset length
of 18 s for each dataset (Eldawlatly and Oweiss, 2011). In that
study, the inferred networks were verified by examining the extent
to which the inferred connections were consistent with individual
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neurons response properties. Therefore, we used the same dataset
length here given the similarity in the analyzed data. The spike
trains of each dataset were analyzed using DBN with Markov lags
in the range [1, 5] bins ([1, 5] ms) which is within the range of
delays of chemical synapses in layer V of the barrel cortex (aver-
ages ∼2 ms) (Schubert et al., 2001; Sun et al., 2006). Whenever a
connection was inferred at more than one Markov lag, only the
largest lag was considered. For each cell, the maximum number
of pre-synaptic cells (incoming edges) was set to 10 to conform to
the 10% average connectivity ratio (given the electrode yield) we
encountered in the barrel cortex (Feldmeyer, 2012). We conserva-
tively set the search time to 30 min to ensure all connections are
captured. Our previous analysis demonstrated that for neuronal
populations of size 20–30 neurons (similar to the population sizes
we recorded in this study), an algorithm search time of 5 min
would be sufficient (Eldawlatly et al., 2010).

The similarity between the inferred networks was quantified as
follows (Eldawlatly and Oweiss, 2011): we first represented each
inferred network as an n × n binary adjacency matrix A, where
n is the total number of neurons in the network. Each element
A(i, j) takes the value “1” if there is a connection from neu-
ron i to neuron j and “0” if there is no connection between the
corresponding neurons. For a given population of n neurons, K
deflected whiskers and M datasets per whisker, all the adjacency
matrices of the inferred networks were vectorized and stacked
together into one KM × n2 matrix. PCA was then applied to this
matrix to extract significant features from the inferred networks
by projecting the adjacency matrices into a p-dimension network
space, where p ≤ n2, that accounts for most of the variance in the
networks (Luo et al., 2003). The distance D(Al, Am) between a
pair of adjacency matrices Al and Am was defined as

D (Al, Am) = ||ql − qm|| (4)

where ql and qm are the projections of Al and Am in the p-
dimension network space, respectively, and ||.|| is the Euclidean
distance (lp-norm) between the two projections. The number of
principal components used p was set to 2. The average distance
between the networks inferred for a given pair of whiskers w1 and
w2, D̄ (w1, w2), was defined as

D̄ (w1, w2) = 2

M2

∑
l

∑
m

D
(
Aw1

l , Aw2
m

)
(5)

Finally, the similarity between a pair of networks was computed
as: 1—the normalized distance between the networks’ projections
in the feature space.

RESULTS
We chronically implanted each of the four rats with a 32-channel
microelectrode array in vS1 and measured spiking activity from
a total of 325 well-isolated single units in layer V in response
to unilateral stimulation of individual whiskers. One week post-
implantation, activity was recorded over a number of days (con-
trol data) after which whisker pairing on the contralateral side of
the rat’s mystacial pad was performed to induce plasticity. Activity
was then recorded 1–2 days and 6–7 days post whisker pairing
(plasticity data) (Figure 1A).

For each recorded ensemble, we used Dynamic Bayesian
Networks (DBNs) to infer the effective connectivity between neu-
rons in that ensemble (Eldawlatly et al., 2010; Eldawlatly and
Oweiss, 2011). Using ideal observer analysis that has access to the
distribution of the responses, we have previously demonstrated
that DBNs provide more information about the deflected whisker
identity than individual neurons’ responses (Eldawlatly and
Oweiss, 2011). This information represented the ordered, spike-
by-spike, causal influence between neurons in the ensemble. We
hypothesized that:

1. whisker pairing will increase the likelihood that co-active
inputs from the spared whiskers reach the barrel cortex within
a window of time that is shorter than if these whiskers were a
subset of an intact whisker set.

2. cortical neurons in barrels innervated by the sparred whiskers
will likely fire in a quasi–synchronous fashion in response to
these near-simultaneous inputs, thereby promoting Hebbian-
like plasticity (Feldman and Brecht, 2005).

We therefore expected that the co-activation of neurons in the
spared-whisker barrels would induce STDP, eventually leading to
increased similarity in the effective connectivity between these
neurons (as illustrated by Figure 1B). For comparison, we com-
puted the spike count and first-spike latency for each neuron in
response to the deflection of each of the spared whiskers before
and after pairing.

We found no significant change in the spike count and
first spike latency 1–2 days post-pairing, similar to published
reports that used similar single neuron measures (Diamond et al.,
1993, 1994; Armstrong-James et al., 1994; Lebedev et al., 2000).
The similarity between responses to stimulation of the spared
whisker pair, however, increased significantly 6–7 days post-
pairing (Figures 2A,B; Normalized similarity in evoked spikes
for control: 0.64 ± 0.23, 6–7 days post-pairing: 0.74 ± 0.21;
Normalized similarity in first-spike latency for control: 0.66 ±
0.12, 6–7 days post-pairing: 0.73 ± 0.11, P < 0.05, two-sample
t-test). Thus, our results replicate those in published reports con-
firming that pairing-induced changes in cell excitability become
observable beyond the 2-day window post-pairing.

The effective connectivity between neurons in both control
and plasticity data was computed and used to construct a net-
work feature space as described in the materials and methods
section (Eldawlatly et al., 2010; Eldawlatly and Oweiss, 2011). In
this space, ensemble responses appear as a cluster of points where
each cluster corresponds to a specific input (in our case a specific
whisker deflection). Similarity between networks corresponding
to different inputs would be manifested in the network output
space as a cluster merging process. Figure 3A illustrates the net-
work feature space of control data and 7 days post-pairing. Each
point represents the projection of a network corresponding to a
single 18-s long dataset (as explained in section Data Analysis)
comprising the response to deflection of one of the three whiskers
D4, D5, and D6. The figure demonstrates the merging between
D4 and D5 clusters in one rat after pairing these two whiskers,
suggesting that the network response in the D4 barrel and that
in the D5 barrel became increasingly similar, while remained
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FIGURE 1 | Experimental design. (A) Experiment timeline. Yellow
follicles correspond to spared whiskers. (B) A schematic for our
working hypothesis. Similarity between network representation of

the spared whiskers’ mechanical stimulation will increase when
they are more frequently co-active compared to the control
condition.

dissimilar for whisker D6 that was not part of the pairing process.
Figure 3B summarizes the average similarity across all rats. The
significant increase in similarity is proportional to the number
of days post-pairing (Network similarity for control: 0.58 ± 0.1,
1–2 days post-pairing: 0.66 ± 0.1, 6–7 days post-pairing: 0.71 ±
0.1, P < 0.05, two-sample t-test). Thus, the ensemble response to
a spared whisker stimulation became increasingly similar to that
of the other spared whisker. This suggests that re-organization of
the receptive fields of the neurons in one spared-whisker barrel
engulfs inputs that would normally trigger the strongest response
in the other spared-whisker barrel. A significant change in the
effective connectivity was observed 1–2 days post-pairing, a phe-
nomenon not observed when analyzing individual neuron firing
properties during the same period.

We also found an early increase followed by a late decrease
in pre-synaptic convergence—the number of pre-synaptic inputs
averaged across neurons and subjects—(Control: 0.09 ± 0.04, 1–2
days post-pairing: 0.12 ± 0.04, 6–7 days post-pairing: 0.08 ± 0.03,

P < 0.05, two-sample t-test; Figure 3C). The early increase sug-
gests that long-term potentiation (LTP) might have dominated,
while the late decrease suggests the possible occurrence of long
term depression (LTD) (Feldman et al., 2004). Given the large
extent of convergence of functionally independent inputs from
other cortical laminae onto infragranular layer V neurons, the
rapid changes detected in our data after 1–2 days post-pairing
suggest that sensory map re-organization could be mediated by
spike timing-dependent plasticity (STDP), and in particular LTP
and LTD of existing connectivity, while less likely by dendritic
mechanisms which require at least 2–4 days up to a month to
contribute to the induced plasticity (Trachtenberg et al., 2002).

Finally, DBN analysis allowed us to examine the extent of
convergence in the circuit, irrespective of whether the inferred
connectivity is an actual indicator of actual synaptic connectivity
or not. In particular, it has been suggested that the longitudinal
effects of pre-synaptic convergence on the magnitude and type
of plasticity depends on the number of converging synapses and
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FIGURE 2 | Similarity between evoked responses in the spared-

whisker barrels, averaged across neurons and subjects. (A) 1–2 days
and (B) 6–7 days post whisker-pairing (mean ± s.d.). Y-axis was computed
as [1—the normalized absolute difference in evoked response in (A) and in
first-spike latency in (B) of the spared whiskers] for each neuron
(∗P < 0.05, two-sample t-test). Responses of a total of 481 neurons
recorded from four subjects were analyzed.

their strength (Feldman et al., 2004). Consistent with previous
studies using patch-clamp recordings of postsynaptic potentials
(PSPs) confirming that synaptic connectivity in cortex is pre-
dominantly local (Petersen et al., 2001, 2002, 2003; Feldman and
Brecht, 2005; Song et al., 2005; Hofer et al., 2011; Ko et al., 2011),
our network-based metric of effective connectivity demonstrated
strong evidence in support of these studies, as measured by an
increasing probability of graph connectedness between a given
pair of neurons with decreasing vertical and horizontal separation
between electrodes that recorded the pairwise activity (Figure 4).

DISCUSSION
Historically, quantifying plastic changes in neural connectivity
has been primarily confined to two domains of analysis: (1)
the synaptic level, owing largely to the feasibility of measur-
ing changes in postsynaptic potentials under current clamp in
pairs or triplets of neurons in vitro and more recently in vivo
(Kodandaramaiah et al., 2012) and (2) the voxel level, owing
to the feasibility of performing functional brain imaging exper-
iments in vivo, for example, using fMRI. In between, quantifying
plasticity-induced changes in connectivity at the population level
has been significantly lagging. Herein, we provided a novel way to
detect changes in population dynamics that could not be detected
when analyzing single neuron response properties. In particular,

the changes in the functional connectivity between neurons in
layer V as a result of whisker pairing suggested by our data imply
that large scale sensory map re-organization occurs much more
rapidly than previously thought, and that it is consistent with
an STDP rule. This mechanism has been implicated in a wide
range of studies that examined LTP and LTD of synapses follow-
ing tetanic stimulation of pre- and post-synaptic cells (Bi and
Poo, 1999). Furthermore, STDP has been proposed in multiple
studies as a potential mechanism that mediate changes in neu-
ronal responses as a result of whisker pairing (Feldman, 2000;
Rema et al., 2006; Jacob et al., 2007), but evidence that sup-
port the time course of these changes has been lacking. Because
Dynamic Bayesian Network (DBN) is sensitive to temporal reso-
lutions of the order of milliseconds (Eldawlatly et al., 2010), it is
readily capable of detecting changes occurring within the STDP
time-scale.

It is plausible that rats may alter their whisking behavior
following whisker trimming in ways that could reduce the con-
current activation of spared-whisker barrels, and thus reduce the
likelihood of engaging an STDP mechanism. Studies of whisk-
ing behavior, however, have shown that rats move their whiskers
in a repetitive retraction-protraction cycle—often referred to as
whisking bout—to palpate external objects. This repetitive motion
may involve multiple whiskers following similar bouts such as
whisking in air, or could involve markedly different self-generated
patterns, such as when whiskers strike the surface of an object.
Trimming of some whiskers implies that a substantial portion
of the input to the barrel cortex has been lost. It is currently
unknown if animals compensate for this lost input by altering the
self-generated movement patterns of the spared whiskers in order
to gather a qualitatively similar amount of information about the
touched object compared to when they use the same whiskers as
part of an intact whisker set. Rats may choose to move spared
whiskers in a more coordinated fashion in order to make rapid
decisions about sensory stimuli, as has been demonstrated by
studies that examined the extent to which spatially distributed
sensory inputs affects speed and accuracy of decision making dur-
ing simple sensory detection, albeit at the single whisker level
(Celikel and Sakmann, 2007). Co-active inputs, while may pro-
vide temporally redundant sensory information to the barrel
cortex, can nevertheless serve to increase information about the
surrounding when integrated with spatial information. The adja-
cency of the spared whiskers may contribute to this increased
likelihood. One limitation of our current study though is that
we have not carried out independent measurements of whisk-
ing behavior to provide support for this idea, largely because it
is an insurmountable challenge to measure the volitionally con-
trolled whisker movements in a freely behaving animal at the
spatial and temporal resolution needed to address this question.
Nonetheless, our overarching hypothesis is that whisker pairing
increases the likelihood that co-active inputs from the spared
whiskers reach the barrel cortex within interval lengths similar
to the case when the entire whisker set is intact. Therefore, cor-
tical neurons in barrels innervated by the spared whiskers will
likely fire in a quasi–synchronous fashion in response to these
near-simultaneous inputs, thereby promoting STDP (Feldman
and Brecht, 2005).
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FIGURE 3 | Network analysis. (A) Network feature space of a sample rat for
3 whiskers (D4, D5, and D6) for the Control (left) and 7-days post D4–D5
whisker pairing (right). Each dot corresponds to the projection of one network
onto a 2-dimension principal component feature space. (B) Network similarity

across spared whiskers for control (blue) and plasticity data recorded 1–2
days and 6–7 days post-pairing (red) averaged across 4 subjects (mean ±
s.d.). (C) Pre-synaptic convergence averaged across neurons for control (blue)
and plasticity data (red) (mean ± s.d.). ∗P < 0.05, two-sample t-test.

FIGURE 4 | Effective connection probability as a function of the

horizontal and vertical separations between the electrodes on which

neurons were recorded.

There is an abundance of published reports demonstrating
that whisker pairing induces experience-dependent plasticity as
early as the first few hours of pairing in layer IV (Diamond et al.,
1993; Rema et al., 2006; Quairiaux et al., 2007; Sellien and Ebner,
2007). Our present study suggests that these changes may well
extend to layer V over a similar time scale, perhaps owing to
the existence of excitatory across-layer connectivity (Feldmeyer,
2012). On the other hand, in vivo imaging of dendritic structures
in layer V provides evidence that sensory deprivation induces
changes in the turnover of spines starting as early as 1–2 days fol-
lowing deprivation (Trachtenberg et al., 2002). This suggests that

experience-dependent plasticity may be manifested as early as 1–
2 days post-pairing. However, these changes may be too subtle to
be detected at the individual neuron level, but that network analy-
sis that accounts for temporal precision of spiking can reveal such
changes.

Compared to previous studies of experience-dependent plas-
ticity in the rat barrel cortex following sensory deprivation, our
experimental paradigm provides a more accurate account of the
effects induced by sensory deprivation for two reasons: First,
our study was designed to permit identifying plastic changes by
recording evoked responses to whisker deflection in the same sub-
ject using a chronically implanted electrode array over a number
of days. This enabled us to determine the extent of response vari-
ability in control and experimental conditions more accurately
than if it were to be assessed across different subjects. Previous
studies, on the other hand, acutely recorded neural responses
to whisker deflection and compared them across different sub-
jects (Diamond et al., 1993, 1994; Armstrong-James et al., 1994;
Lebedev et al., 2000). We believe that the approach in these
studies might have been susceptible to across-subject variabil-
ity that could not be fully attributed to short-term plasticity
effects. In addition, very few studies have examined plasticity
in vSI Layer V. As this layer consists the major output of the
barrel system and heavily innervates vibrissal primary motor
cortex (vMI) (Hooks et al., 2011), characterizing the neural
substrate that mediates the changes during whisking behav-
ior is critical. Our results are consistent with other reports
(Jacob et al., 2012) that documented the occurrence of rapid
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plasticity in layer V following sensory deprivation. Jacobs et al.’s
assessment of plasticity, however, was conducted across differ-
ent groups of animals and over a longer time interval (Control,
3-day and 10-day deprivation groups). Our study, on the other
hand, fills a knowledge gap about the extent of re-organization
in local cortical circuits in the same animal over a shorter
interval.

Second, with the exception of only one study that quanti-
fied changes in the cross-correlograms of pairs of neurons in
the barrels of the spared whiskers (Lebedev et al., 2000), our
study is the first, to our knowledge, that uses a novel quan-
titative way to track whisker pairing-induced plasticity at the
ensemble level. Single-neuron response properties, namely spike
count and precise spike timing, have been traditionally used as
the sole neuronal response properties for assessing plasticity-
induced changes in receptive field characteristics. Our previous
study (Eldawlatly and Oweiss, 2011), however, demonstrated that
these two metrics are more susceptible to intrinsic, across-trial
variability in single neuron responses in vS1. In addition, the
ensemble response property—measured by the functional con-
nectivity metric derived from DBN analysis—was shown to be
more informative about stimulus identity than any of the single-
neuron response properties we assessed. Because it is a population
metric, it lends itself naturally to the assessment of plasticity-
induced changes within local circuits that can be tracked over
short periods within the same subject. This also explains why
this metric could detect significant plasticity-induced changes
within the first 48 h than single-neuron metrics. Our experimen-
tal design, however, could not independently verify whether the
observed changes in the effective connectivity over longer peri-
ods resulted from the emergence of new connections across the
sparred-whisker barrels or due to other non-Hebbian forms of
plasticity, as suggested by previous reports (Fox, 2002; Feldman
and Brecht, 2005).

The observed increase in pre-synaptic convergence 1–2 days
post whisker pairing suggested by our data implies an over-
all increase in the number of pre-before-post spiking events,
indicating that LTP could have possibly been dominating. On
the other hand, the drop in convergence to postsynaptic cells
suggested by our data 6–7 days post whisker pairing suggests
that synapses were strengthened enough for the corresponding
changes in spiking patterns to be captured by the DBN, perhaps
as a result of correlated inputs to these neurons, and that LTD
is more likely to have occurred. In each of these cases, the pro-
portion of LTP vs. LTD depends on the degree of correlation in
the sensory inputs that the pre-synaptic neurons receive. Because
whisker pairing may increase the likelihood of timing corre-
lation between inputs to sparred-whisker barrels, our findings
support the hypothesis that timing-dependent plasticity con-
tributes to cortical re-organization following sensory deprivation.
Nonetheless, other mechanisms that regulate network excitability
through synaptic scaling to prevent unconstrained potentiation in
order to reach homeostatic stable network states could also be at
play (Turrigiano and Nelson, 2000; Turrigiano, 2008), and further
studies are certainly needed to elucidate the temporal and spatial
scales of these mechanisms.
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