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The goal of this paper is to construct a new algorithm for the numerical simulations of the evolution of tumour invasion and
metastasis. By means of mathematical model equations and their numerical solutions we investigate how cancer cells can produce
and secrete matrix degradative enzymes, degrade extracellular matrix, and invade due to diffusion and haptotactic migration.
For the numerical simulations of the interactions between the tumour cells and the surrounding tissue, we apply numerical
approximations, which are spectrally accurate and based on small amounts of grid-points. Our numerical experiments illustrate
the metastatic ability of tumour cells.

1. Introduction

The analysis of data obtained from the World Health
Organization (WHO) [1] and the UN [2] databases shows
that, at present, cancer is and probably will remain to be
among the leading causes of death worldwide [3–5] being
surpassed only by cardiovascular diseases. According to the
data provided by the WHO, cancer disease is the cause of the
death of roughly six million people yearly [1]. This explains
the major significance of the fight against the malignant
conditions, which includes prevention [6], cure [7, 8], and
cancer research.

Tumour development is a very complex multistep process
involving many intracellular and extracellular phenomena
which are strongly nonlinear and time varying [4, 9–11].
Genomic changes as well as microenvironmental factors such
as the extracellular matrix (ECM), various growth factors,
and substrate concentrations have been shown to play a
major role in the process of carcinogenesis [12].

Generally, tumours can be classified as benign and
malignant. The growth of benign tumours is self-limiting
and their cells tend to stay in the same place. Malignant
tumours may grow without limitations and their constituent
cells are prone to migrate or metastasize to other parts of the
organism [13–15]. The ability of malignant cancer to invade

the local tissue and to spread throughout the organism is
their most insidious and dangerous property. Metastasis is
the predominant cause of most cancer deaths [14, 16, 17].

The process of metastasis includes angiogenesis and
invasion. Tumour angiogenesis (rapid growth of blood
vessels near the tumour cells) is induced by a secretion of
various growth factors such as vascular endothelial growth
factor (VEGF). These vessels facilitate the influx of oxygen
and other nutrients needed for the development of the
cancer [18]. The process of angiogenesis is followed by
invasion and penetration of cancer cells into surrounding
tissues and possibly by dissemination of cancer cells through
blood vessels. Thus, tumour cells can be carried to a
distant site of the body. There they can implant and initiate
the development of a secondary tumour [14, 16, 19]. An
important role in the process of cancer invasion is performed
by matrix degradative enzymes (MDEs) such as metallo-
proteases (MMPs). They are produced by tumour cells and
digest the ECM, which enables the migration of cancer cells
through the tissue [13, 14, 17].

In the last half century, many mathematical models
describing the process of tumourigenesis have been the
subject of active research. Mathematical and computational
methods have contributed to clarifying the factors that
are sufficient to explain experimental and clinical data, to
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defining these factors in precise terms and to suggesting
experiments for calculation of these factors [20]. In addition,
analyses and simulations of mathematical models have been
used for the reduction of the amounts of costly experiments
needed for the development of therapies [21, 22]. It is
strongly believed that mathematical and computational
methods will play a significant role in cancer research in
the future. They may improve the understanding of some
complicated features and details of tumour evolution as well
as be effectively used in clinical laboratories, by means of
appropriate model-based decision support systems [4]. We
refer the readers to special issues [23–27] for more complete
bibliography regarding the applications of mathematical and
computational methods to cancer research.

Gatenby and Gawlinski present one of the first models of
tumour invasion in the papers [28, 29]. Gatenby [28] consid-
ers the competition between healthy host cells and modified
(tumour) cells and proposes and analyses several models
formulated in terms of ordinary differential equations.
Gatenby and Gawlinski [29] present a reaction-diffusion
model for the investigation of the role of the alteration of
the microenvironmental acidity induced by cancer cells for
their invasion into the organism. Subsequently, the series
of papers, among others [30–43], have appeared offering
models and detailed analysis of diverse features of cancer
invasion. In this paper, we study the continuum models
of avascular tumour growth investigated by Chaplain et
al. (cf., e.g., [31, 34–37]). The first model of this series is
proposed in Anderson et al. [31]. The authors consider three
major variables involved in the process of cancer invasion,
namely, cancer cells, ECM, and MDEs. In order to study
in detail mainly the influence of the surrounding tissue on
the process of migration of tumour cells, the proliferation
of the latter is not included in the continuum model. The
authors analyse numerically in one and two dimensions the
impact of ECM gradients resulting from the destruction of
ECM by MDE and the role of haptotaxis on cancer invasion.
An extension of this model is presented in Chaplain and
Anderson [34] who consider the role of oxygen as a nutrient
for the tumour cells. The authors propose also a new model
equation for endogenous inhibitors, such as tissue inhibiting
MMPs, that can neutralize MDEs. We include this equation
in our model (8), see Section 2 below. The model of Chaplain
and Anderson [34] has been further developed by Lolas
[37] and Chaplain and Lolas [35, 36] who have considered
terms describing chemotaxis, proliferation of cancer cells and
reestablishment of the ECM. Lolas [37] examines a variety
of continuum models, in particular incorporating the effects
of just chemotaxis, and haptotaxis, and their combination,
and so forth. One of the conclusions of the author is that the
mechanism of chemotaxis without haptotaxis cannot lead
to a successful cancer invasion if there is no proliferation
of tumour cells and reestablishment of ECM. Further novel
ordinary differential equations that describe the cancer cell
proliferation and the remodeling of the extracellular matrix
re-establishment function allowing the incorporation of the
plasminogen activation cycle are included in the model of
Chaplain and Lolas [36] that also investigates the role of
the uPA system for the cancer invasion. uPA inhibitors

and plasmin have also been investigated in the model by
Chaplain and Lolas [35]. Clear and detailed description of
the biological processes observed during the cancer invasion
and metastasis is provided in [31, 34–37]. In particular, in
these paper, the key stages of the metastatic cascade, the
structure and functions of the major constituents of the ECM
and the basic representatives of the MDEs participating in
the interactions between the healthy and cancer cells are
systematically presented on the basis of broad theoretical and
experimental bibliography.

In our paper, we propose a different numerical approach
than the approach used, for example, in [31, 34–37]. The goal
of the paper is to obtain numerical results which are based
on small amounts of spatial grid points applied to the model
equations so that low-dimensional vectors of data are used to
make the numerical computations fast. We construct a new
algorithm for the systems [31, 34, 36, 37] by using spectrally
accurate approximations to the terms that model the tumour
cell random motility, the haptotaxis, the MDE diffusion,
and the diffusion of the endogenous inhibitors. Since the
algorithm computes the solutions with spectral accuracy,
it is based on smaller amounts of spatial grid points than
the amounts of grid points used for the less accurate finite
difference approximations (strategy applied, e.g., in [31, 34–
37]), which consequently saves computational time. The idea
of using small amounts of spatial grid point and saving time
for computing one solution for one set of parameters, which
has to be repeated many times for many sets, is important,
for example, for the numerical experiments carrying the
goal of estimating parameter values from laboratory data.
This idea is applied in [44] to estimate parameter values
of one of the models presented in [36, 37] from the in
vivo experimental data [45] developed by using transgenic
mouse models. The numerical approach from [44] is based
on a different approximation to the haptotactic term than
the approximations used in this paper and our numerical
schemes are constructed for systems which are various
variants and generalizations of the model investigated in
[44]. Furthermore, because of considering different variants
of boundary conditions the schemes in this paper differ from
that of the paper [44].

Additionally to the model presented in [36, 37] and
applied in [44], in this paper, we investigate other models,
which are presented in [34] or are combinations of the
model equations from [34, 36, 37]. Moreover, in [44],
the parameter values are evaluated quantitatively from the
laboratory data [45] so that the solutions of the model
equations correlate with the data. Contrarily to [44], in
this paper, we choose the parameter values qualitatively in
order to observe and compare solutions computed with
different parameters. This comparison allows to analyse the
influence of the parameters on the shape of the solutions
and we conclude that complicated interactions between
tumour cells, ECM, MDEs, and endogenous inhibitors can
be directed by choosing the parameter values. Our sequence
of numerical simulations is initiated from the solutions
obtained with the parameter values chosen in [34] (for
comparison) and next we gradually change the values and
analyse their influence on the solutions. Animated graphical
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visualization of the solutions and how they change according
to the parameters is helpful in observing the influence of
the parameters on the shape of the solutions. The idea of
using small amounts of spatial grid points and saving time
for computing solutions of the model equations is crucial in
the effective utilization of, for example, animated simulations
of tumours, which can be used as a predictive and visualized
tool in clinical applications. Decreasing the amounts of
spatial grid points used for such visualizations saves not only
the time of demonstrations but also the computer memory.
It is not possible to demonstrate the animated simulations in
papers and we only note that they are interesting and help in
visualization of the complicated biological processes. Instead
of the animated simulations we include snapshots at different
stages in time.

The contents of this paper is as follows: the model
equations are described in Section 2, the algorithm is
introduced in Section 3, the results of numerical experiments
and simulations are presented in Section 4, and Section 5
includes our concluding remarks and future research work.

2. Mathematical Model

In this section, we investigate various models of tissue
invasion by cancerous cells. In Section 2.1, we investigate the
Chaplain and Anderson model [34] focusing on interactions
between ECM and cancer tumour and metastatic abilities of
cancer cells. In Section 2.2, we investigate further expansions
of the model and its different versions with additional
terms connected with proliferation of tumour cells, ECM
renewal, and different functions modelling the production
of MDEs by the tumour cells. Section 2.3 deals with a more
general model with an additional equation, which describes
evolution of endogenous inhibitors.

2.1. Cell-Matrix Interactions and Cell Migration. In the next
section, we construct a numerical scheme for the following
model of tissue invasion:

∂n

∂t
= dn

∂2n

∂x2
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∂
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(
n
∂ f
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)
,
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+ αn− βm

(1)

with the space variable x belonging to the scaled domain
[0, 1] of tissue, and time t. The model equations (1) describe
interactions between tumour cells, MDEs, and ECM. The
interacting variables are n-tumour cell density, f -ECM
density, and m-MDEs concentration. The system (1) is
derived in detail in [34] and is a part of a more general
system consisting of (1) with an additional fourth equation
for endogenous inhibitor concentration denoted by u. In
[34], it is assumed that the tumour cells, the MDEs, and
the inhibitors remain within the space domain and zero-
flux boundary conditions are imposed. The fourth equation
for the endogenous inhibitor concentration is dropped

under the additional assumption that negative effect of the
endogenous inhibitors is overcame by the MDEs in an
actively invading tumour. This assumption implies that u =
0 and the general system of four equations is reduced to
(1). In Section 2.3, we investigate the model with all four
equations.

2.2. Migration and Proliferation of Cancer Cells, ECM
Renewal, and MDE Production. We also investigate further
expansions of the model (1), which are introduced, for
example, in [36, 37]. After adding the proliferation term
μ1n(1 − n − f ) to the right-hand side of the equation
governing tumour cell motion (the first equation in (1)) and
the ECM renewal term μ2 f (1−n− f ) to the right-hand side
of the equation for the ECM (the second equation in (1)), we
obtain the following model:
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(2)

where μ1 is the proliferation rate of the tumour cells and μ2

is the growth rate of the ECM.
We also make experiments with the following modifica-

tion of (2):
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where the MDE production is modeled by αn(1 − n). The
motivation for choosing such form of the MDE production
in [36, 37] follows from experimental observations of
polarized expression of MDEs at the invading leading edge
of tumour, see, for example, Estreicher et al. [46].

We investigate the model equations (1), (2), and (3)
supplemented by the zero-flux boundary conditions

∂n
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∂ f
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(0, t),

∂m
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at x = 0 and either the Dirichlet conditions

n(1, t) = 0, m(1, t) = 0 (5)

or the zero-flux boundary condition
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∂m

∂x
(1, t) = 0, (6)

at x = 1. As in [34], we assume that the initial tumour
is centered at x = 0, the initial MDE concentration is
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proportional to the initial tumour cell density with 1/2
as the constant of the proportionality, and the MDE has
already degraded the ECM, thus we consider the same initial
conditions as in [34], which are the following:

n(x, 0) = exp

(
−x2

ε

)
,

f (x, 0) = 1− 0.5n(x, 0),

m(x, 0) = 0.5n(x, 0),

(7)

for x ∈ [0, 1]. The parameter values for the model equations
are specified in Section 4.

2.3. Production of Endogenous Inhibitors. We additionally
consider the general model
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where the last equation describes evolution of endogenous
inhibitors (concentration of which is denoted by u). This
equation is the fourth equation in the model (10.5) proposed
by Chaplain and Anderson in [34], where it is assumed that
endogenous inhibitors are produced by ECM as a response
to the MDEs and the function F(m, f ) models the inhibitor
production. The term θum models neutralization of the
MDEs and ρu models decay of the inhibitors. We assume that
the initial inhibitor concentration is

u(x, 0) = 0 (9)

and impose the zero-flux boundary conditions

∂u

∂x
(0, t) = ∂u

∂x
(1, t) = 0. (10)

Our goal is to construct a new efficient algorithm for
solving the models (1), (2), (3), and (8) and investigate the
ability of cancer cells to produce and secrete the MDE, which
then degrade the ECM, and allow the cells to start their
migration towards healthy parts of the tissue.

3. Construction of Numerical Approximations
to Tumour Cells, ECM, and MDEs

In this section, we construct numerical solutions to the
model equations (1), (2), and (3) supplemented by the initial
conditions (7) and the boundary conditions (4) and (5). For
the numerical solutions, we consider the Chebyshev-Gauss-
Lobatto points
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2
− 1

2
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, (11)

with i = 0, 1, . . . ,N + 1, in the scaled domain [0, 1] of tissue.
Our goal is to construct approximations to n(xi, t), f (xi, t),
and m(xi, t), for i = 0, 1, . . . ,N ; the values of the solutions at
xN+1 are known from (5).
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and we use similar notations for f and m. We shall replace
the spatial derivatives in (1) by numerical approximations
constructed for the vectors nxx(t), nx(t), fx(t), fxx(t) in the
first equation and for mxx(t) in the third equation. For nx(t),
we apply the following spectrally accurate approximations
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with i = 0, 1, . . . ,N + 1, where
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(14)

is the first-order differentiation matrix based on the points
(11), see [47, 48]. We also apply the analogous spectrally
accurate approximations
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for fx(t) and mx(t), respectively.
Since the exact value of (∂n/∂x)(x0, t) is given by (4), the

approximation (13) is not needed at the first point x0, that
is, for the first component of nx(t). Therefore, from (13), the
first approximation in (15) with f and i = 0, and from the
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Figure 1: Tumour cell migration and interactions between the tumour and the surrounding tissue: tumour cell density (solid), ECM density
(dashed), and MDE concentration (dashdot). Solutions to (1), (4), (5), (7) with the parameter values γ = 0.005 and η = 10.

boundary conditions (4) and (5) we obtain
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From (13) and (16) we obtain the following approximation
for the second-order derivatives
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We now construct approximations to fx(t), mx(t), fxx(t),
and mxx(t). From the spectrally accurate approximations
(15) and from (4) and (5) we obtain

fx(t) ≈ D(1) f (t) + f (xN+1, t)w, (20)

mx(t) ≈ D(1)
0 m(t). (21)

According to (20), we have the following approximation for
the second-order derivative of f
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Figure 2: Evolution in time: the tumour cell density (a), ECM density (b), and MDE concentration (c). Solutions to (1), (4), (5), (7) with
the parameter values as in Figure 1.

From (21) we have

mxx(t) ≈ D(1)D(1)
0 m(t) + smN+1(t)w, (24)

with the similar notation for m
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(
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)
. (25)

We now replace the spatial derivatives in the model (1)
by their corresponding approximations. We apply (18), (16),
(20), and (22) to the first equation in (1) and obtain its
discrete version written in the following form
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where � stands for the component-wise multiplication
between two vectors. The discrete version of the second
equation in (1) is written in the form
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and from (24) we obtain the following discrete form of the
third equation in (1)
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The resulting system (26)–(28) is composed of 3N + 3
ordinary differential equations and is a semidiscrete version

of (1). Note that since the spatial derivatives in (1) are
approximated with the spectral accuracy, much smaller
numbers of grid-points xi are needed for (26)–(28) than
for finite difference schemes, and time integration of the
smaller systems is more robust and more efficient than time
integration of the finite difference systems.

For the models (2) and (3) supplemented with (4)
and the right-hand side boundary condition (6), which is
different than (5), we need to apply different approximations
than (16), (18), (20), and (22) as they include (5) instead of
(6). For this problem, from (13), instead of (16), we obtain

nx(t) ≈ D(1)
00 n(t) +

γ

dn
w(0,N+1), (29)

where

D(1)
00 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

d1,0 d1,1 · · · d1,N

...
...

. . .
...

dN ,0 dN ,1 · · · dN ,N

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

w(0,N+1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s
f
0 (t)n(x0, t)

0

...

0

s
f
N+1(t)n(xN+1, t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(30)

Further, from (29), we obtain

nxx(t) ≈ D(1)
(
D(1)

00 n(t) +
γ

dn
w(0,N+1)

)
. (31)
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As in (13) and (15), for the vector

H(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x

(
n(x0, t)

∂ f

∂x
(x0, t)

)

∂

∂x

(
n(x1, t)

∂ f

∂x
(x1, t)

)

...

∂

∂x

(
n(xN , t)

∂ f

∂x
(xN , t)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (32)

of approximations to the haptotactic term we obtain

H(t) ≈ D(1)(n(t)� fx(t)
)

(33)

and instead of (24), from (6), we obtain

mxx(t) ≈ D(1)
00 m(t). (34)

From (29), (31), (33), and (34) we obtain the following
scheme for the problem (3), (4), and (6)

dn

dt
(t) = D(1)

(
dnD

(1)
00 n(t) + γw(0,N+1) − γn(t)� fx(t)

)

+ μ1n(t)� (e − n(t)− f (t)
)
,

df

dt
(t) = −η(m(t)� f (t)

)
+ μ2 f (t)� (e − n(t)− f (t)

)
,

dm

dt
(t) = dmD

(1)
00 m(t) + αn(t)� (e − n(t))− βm(t),

(35)

where e is a vector entries of which are all 1-s. For (2), the
component αn(t) � (e − n(t)) needs to be replaced by αn(t)
in the last equation of (35). From the boundary conditions
(10), we obtain the approximation for the diffusion of the
endogenous inhibitors

uxx(t) ≈ D(1)
00 u(t) (36)

and the semi-discrete version for the last equation in (8) is
written in the following form

du

dt
(t) = duD

(1)
00 u(t) + ξ f (t)− θu(t)�m(t)− ρu(t), (37)

where we assume that the inhibitor production is modelled
by F(m, f ) = ξ f . The semi-discrete equations have to be
closed by initial conditions chosen according to (7) and (9).

4. Numerical Experiments

We apply the approximations introduced in Section 3 and
begin our series of numerical simulations from (26)–(28),
which correspond to model (1). Results of our numerical
experiments are presented in Figures 1–6. We use the
parameter values dn = 0.001, dm = 0.001, α = 0.1, β = 0,
ε = 0.01, and different values of γ and η specified in the
captions of the figures.

We apply N = 30, that is 32 grid-points xi, for the
numerical experiments presented in Figures 1–4. The time of
integration of the system (26)–(28) based on 32 grid points
is 0.22 sec to compute the numerical solutions presented
in Figures 1 and 2 and 0.38 sec to compute the numerical
solutions from Figures 3 and 4. For Figures 5 and 6, we apply
N = 43, that is 45 grid points, and in this case, the time of
integration of (26)–(28) is 0.35 sec.

Figures 1, 3, and 5 show snapshots in time and Figures 2,
4, and 6 show continuous evolution in time of tumour cells,
ECM, and MDE, and their interactions for all x in the space
domain. The numerical results presented in Figures 1 and 2
were obtained with γ = 0.005 and η = 10, see also [34, Figure
10.2]. The results from Figures 3 and 4 were obtained with
γ = 0.01 and η = 10.

Two distinct clusters of tumour cells are seen in Figures 1
and 3 at t = 1 and t = 10. The numerical results show that the
new clusters, which are not seen at t = 0 and appear at t = 1
and t = 10, are created at the leading edge of the tumour as
a result of the diffusion and haptotactic migration modeled
by the two components from the right-hand side of the first
equation in (1): random motility dnΔ2n and haptotaxis−γΔ·
(nΔ f ), respectively. Since γ is greater for Figure 3 than for
Figure 1, because of larger haptotactic migration in Figure 3
than in Figure 1, the two clusters seen in Figure 3 are more
separated from each other than the two clusters in Figure 1.
The pictures show the effect of haptotaxis. The small clusters
of cells, which break away from the main body of the tumour,
illustrate the potential for the cancer cells to degrade the
surrounding tissue, migrate, and start the metastatic cascade.
The migrations of the small clusters may not be detected
during the processes of medical treatments, and even after
resections of the main tumours, the new small clusters may
initiate recurrences of the disease. A new cluster of tumour
cells broken away from the main body of the tumour is also
observed in Figures 5 and 6, which present numerical data
computed with γ = 0.02 and η = 20.

The next part of our numerical experiments concerns
the models (2) and (3) supplemented by (4), (6), and (7).
The results for model (2) are presented in Figures 7, 8,
11, and 12 and for model (3) in Figures 9, 10, 13, and
14. These experiments start from the initial condition (7)
corresponding to the snapshot in time t = 0 in Figure 1.
We observe that the small clusters of cancer cells separated
from the main tumours are better formed at t = 2 than at
t = 1 and as time evolves the haptotactic migration together
with the production of new cancer cells spread the shapes
of the tumours over the x-domain. We also observe that
the snapshots in time t = 1 in Figures 1, 7, and 8 look
similar to each other and the models (1), (2), and (3) give
similar results for t ∈ [0, 1] although they are supplemented
by the different boundary conditions, either (5) or (6), and
solved with different parameters μ1,μ2 ∈ {0, 0.1, 0.5} and
β ∈ {0, 0.07}. However, these similarities are observed only
for t ∈ [0, 1] and as time evolves the corresponding solutions
of the models (1), (2), and (3) differ from each other. For
example, already at t = 2, Figure 8 shows greater production
of tumour cells than Figure 7. Moreover, at t = 10 and
t = 20, Figure 7 shows weaker MDE production and greater
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Figure 3: Tumour cell migration and interactions between the tumour and the surrounding tissue: tumour cell density (solid), ECM density
(dashed), and MDE concentration (dashdot). Solutions to (1), (4), (5), (7) with the parameter values γ = 0.01 and η = 10.
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Figure 4: Evolution in time: the tumour cell density (a), ECM density (b), and MDE concentration (c). Solutions to (1), (4), (5), (7) with
the parameter values as in Figure 3.

production of the tumour cells and the ECM than in Figure 1
due to the fact that μ1, μ2, and β are greater in Figure 7 than
in Figure 1. On the other hand, also at t = 10 and t =
20, Figure 8 shows greater MDE production than Figure 1.
Although β = 0.07 for Figure 8 and β = 0 for Figure 1, since
the MDE production is greater in Figure 8 than in Figure 1,
the MDE concentration is greater in Figure 8 than in Figure 1
and consequently the ECM degradation is more progressive
in Figure 8 than in Figure 1. It can also be observed that

although the parameters dm, α, and β in the third equation
of (1) and (2) are the same for Figures 1, 7, and 8, the MDE
curves show different MDE concentrations in all of these
figures.

In Figures 7–10, we observe differences due to the
MDE production terms αn and αn(1 − n) in (2) and (3),
respectively. The parameter values for Figure 9 are the same
as for Figure 7 and the parameter values for Figure 10 are the
same as for Figure 8 but the MDE production is weaker in
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Figure 5: Tumour cell migration and interactions between the tumour and the surrounding tissue: tumour cell density (solid), ECM density
(dashed), and MDE concentration (dashdot). Solutions to (1), (4), (5), (7) with the parameter values γ = 0.02 and η = 20.
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Figure 6: Evolution in time: the tumour cell density (a), ECM density (b), and MDE concentration (c). Solutions to (1), (4), (5), (7) with
the parameter values as in Figure 5.

Figure 9 than in Figure 7 and also weaker in Figure 10 than
in Figure 8. The MDE concentrations in Figures 9 and 10
are more uniformly spread out across the x-domain than
in Figures 7 and 8. Furthermore, Figures 9 and 10 illustrate
that the system (3) models a decreasing MDE production
as the tumour invasion progresses and consequently less
MDE concentrations in the regions where the high tumour
cells densities are situated (possibly in these regions the
tumour cells already finalized their invasion due to lack of

space and move to other regions) than in the regions of
less advanced stage of invasion. This shows that cancer cells
may not need MDEs in the regions where they deal with
lack of space. Similar features are observed in Figures 11–
14, where the clusters separating from the main tumours are
more profound than in Figures 7–10. The same parameter
values were used for Figure 11 as for Figure 13 and the same
parameter values were used for Figure 12 as for Figure 14.
Figures 11 and 12 illustrate numerical solutions to (2),
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Figure 7: Tumour cell proliferation, migration, ECM re-establishment, and interactions between the tumour and the surrounding tissue:
tumour cell density (solid), ECM density (dashed), and MDE concentration (dashdot). Solutions to (2), (4), (6), (7) with the parameter
values γ = 0.005, η = 10, μ1 = 0.1, μ2 = 0.5, and β = 0.07.
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Figure 8: Tumour cell proliferation, migration, ECM re-establishment, and interactions between the tumour and the surrounding tissue:
tumour cell density (solid), ECM density (dashed), and MDE concentration (dashdot). Solutions to (2), (4), (6), (7) with the parameter
values γ = 0.005, η = 10, μ1 = 0.5, μ2 = 0.1, and β = 0.07.
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Figure 9: Tumour cell proliferation, migration, ECM re-establishment, and interactions between the tumour and the surrounding tissue:
tumour cell density (solid), ECM density (dashed), and MDE concentration (dashdot). Solutions to (3), (4), (6), (7) with the parameter
values γ = 0.005, η = 10, μ1 = 0.1, μ2 = 0.5, and β = 0.07.
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Figure 10: Tumour cell proliferation, migration, ECM re-establishment, and interactions between the tumour and the surrounding tissue:
tumour cell density (solid), ECM density (dashed), and MDE concentration (dashdot). Solutions to (3), (4), (6), (7) with the parameter
values γ = 0.005, η = 10, μ1 = 0.5, μ2 = 0.1, and β = 0.07.
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Figure 11: Tumour cell proliferation, migration, ECM re-establishment, and interactions between the tumour and the surrounding tissue:
tumour cell density (solid), ECM density (dashed), and MDE concentration (dashdot). Solutions to (2), (4), (6), (7) with the parameter
values γ = 0.01, η = 10, μ1 = 0.1, μ2 = 0.5, and β = 0.07.
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Figure 12: Tumour cell proliferation, migration, ECM re-establishment, and interactions between the tumour and the surrounding tissue:
tumour cell density (solid), ECM density (dashed), and MDE concentration (dashdot). Solutions to (2), (4), (6), (7) with the parameter
values γ = 0.01, η = 10, μ1 = 0.5, μ2 = 0.1, and β = 0.07.
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Figure 13: Tumour cell proliferation, migration, ECM re-establishment, and interactions between the tumour and the surrounding tissue:
tumour cell density (solid), ECM density (dashed), and MDE concentration (dashdot). Solutions to (3), (4), (6), (7) with the parameter
values γ = 0.01, η = 10, μ1 = 0.1, μ2 = 0.5, and β = 0.07.
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Figure 14: Tumour cell proliferation, migration, ECM re-establishment, and interactions between the tumour and the surrounding tissue:
tumour cell density (solid), ECM density (dashed), and MDE concentration (dashdot). Solutions to (3), (4), (6), (7) with the parameter
values γ = 0.01, η = 10, μ1 = 0.5, μ2 = 0.1, and β = 0.07.
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Figure 15: Tumour cell density (solid), ECM density (dashed), MDE concentration (dashdot), and endogenous inhibitors (dotted).
Solutions to (8) with (4), (6), (7), (9), (10) and the parameter values γ = 0.005, η = 10, μ1 = 0.5, μ2 = 0.1, β = 0.07, du = dn = dm = 0.001,
θ = 0.05, ξ = 0.03, and ρ = 0.07.

while Figures 13 and 14 illustrate numerical solutions to
(3). Comparison of Figures 11–14 confirms that the term
αn(1 − n) in (3) models lower MDE production than the
term αn in (2) (with the same parameter values). We also
observe that since MDE production is lower in Figures 13
and 14 than in Figures 11 and 12, the ECM degradation is
smaller in Figures 13 and 14 than in Figures 11 and 12.

Figure 15 shows snapshots in time of the four solutions
to the more general model (8) describing the interactions
between the tumour cells, ECM, MDEs, and endogenous
inhibitors. All four profiles show that, as time evolves,
the ECM produces endogenous inhibitors, concentration of
which increases in time and their higher concentration is
located in the regions where ECM is not yet entirely degraded
rather than in the regions where the degradation is already
effectively developed. The inhibitor profile shows that the
ECM responds to the MDEs by producing the endogenous
inhibitors.

5. Concluding Remarks and Future Directions

We have constructed a new numerical algorithm for fast
computations of the solutions of the mathematical models
proposed by Chaplain et al. in [34, 36, 37], which consist of
systems of nonlinear partial differential equations describing
interactions between tumour cells, ECM, and MDEs. The
algorithm is based on spectrally accurate approximations
and small amounts of grid points, which results in ordinary
differential systems of small dimensions and fast compu-
tations. We have applied the algorithm and presented and

compared the numerical simulations with a variety of model
equations. The simulations demonstrate that the models
describe important features of the interactions between
tumour cells and the surrounding tissue, and in particular
the initiation of a new colony of cells and metastasis.

Our future research work will address the question for
which parameter values and domains the model [34] and
the kinetic type model proposed in [49] are equivalent. We
will also address numerical methods with spectrally accurate
approximations for the models with two-dimensional spatial
domain and with different kinds of the function F(m, f )
modelling the inhibitor production [34].
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