
Wang et al. Human Genomics           (2025) 19:23  
https://doi.org/10.1186/s40246-025-00728-7

RESEARCH Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by- nc- nd/4. 0/.

Human Genomics

Exploring the silent connection: 
unveiling the intricate relationship 
between gastroesophageal reflux disease 
and sleep apnea syndrome
Junming Wang3,4,5, Pengfei Wang3,4,5, Jiang Lv1, Ran Chen1, Wei Yan1 and Daikun He1,2,3,4,5* 

Abstract 

Background Gastroesophageal reflux disease (GERD) and Sleep Apnea Syndrome (SAS) are two prevalent medical 
conditions that significantly affect health and quality of life. GERD involves stomach content reflux into the esopha-
gus, while SAS causes recurrent upper airway obstruction during sleep. Despite recent studies hinting at a link, 
the precise relationship and causality between GERD and SAS remain unclear. Our research uses bidirectional Men-
delian randomization to explore this intricate relationship. Additionally, given SAS’s high prevalence in cardiovascular 
patients (40–80%, as highlighted by the American Heart Association), we also investigated its potential association 
with various cardiovascular diseases to gain new insights into prevention and treatment.

Methods This study employed genetic data from large-scale genome-wide association studies (GWAS) on GERD 
(129,080 cases, 473,524 controls) and SAS (25,008 cases, 391,473 controls) for two-sample Mendelian randomization 
(MR) analysis to estimate the causal effects of GERD on the risk of SAS. All SNPs were selected using a strict clump 
window  (r2 = 0.001 and kb = 10,000). We initially applied the inverse variance weighted (IVW) method and measured 
horizontal pleiotropy using MR-Egger, weighted median, and weighted mode methods.  I2 index and Cochran Q 
statistics were used for sensitivity analysis. Funnel plot symmetry of IVW MR estimates versus 1/standard error (1/SEIV) 
was examined to exclude SNPs potentially causing heterogeneity. Additionally, to exclude reverse causality, bidirec-
tional MR was employed to investigate whether genetic susceptibility to SAS causally influenced the risk of GERD.

Results GERD was associated with an elevated risk of SAS, demonstrating an odds ratio (OR) of 1.750 (95% CI 1.590–
1.930; P < 0.001). Conversely, there was no compelling evidence to indicate a causal link between SAS and the risk 
of developing GERD, with an OR of 1.000 (95% CI 0.989–1.011; P = 0.964). In addition to the primary findings, our study 
also revealed significant risks associated with SAS for several cardiovascular conditions, including coronary heart dis-
ease, atrial fibrillation, coronary artery disease, heart failure, intracerebral hemorrhage, and ischemic stroke.

Conclusion We discovered compelling evidence indicating an elevated risk of SAS in individuals with GERD, 
but no significant evidence supporting an increased risk of GERD in those with SAS. Future investigations into SAS risk 
should take into account the potential therapeutic targeting of GERD. PPI and histamine antagonists can effectively 
reduce reflux and airway secretions, preventing airway damage and collapse. Furthermore, it is necessary to inves-
tigate the underlying mechanisms by which GERD affects SAS. For example, the inflammatory stimulation caused 
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by gastric acid and pepsin in refluxed fluid, as well as the increased tension of bronchial smooth muscle caused 
by vagus nerve reflex. Thus, early preventive measures can be implemented for potential complications related to SAS.

Keywords Gastroesophageal reflux disease, Sleep apnea syndrome, Causal effects, Mendelian randomization, Meta-
analysis

Introduction
GERD, affecting 13% of the global population, involves 
stomach acid flowing back into the esophagus, caus-
ing heartburn, regurgitation, and chest discomfort [1]. 
SAS, a common sleep disorder, features recurrent airway 
obstruction during sleep, leading to fragmented sleep, 
loud snoring, and daytime fatigue [2, 3]. Both conditions 
impact quality of life and health [4–7].

Recent meta-analyses have indicated a potential link 
between GERD and SAS, with odds ratios suggesting an 
increased association (OR 1.53 and 1.75) [8, 9]. Effective 
treatment for GERD, such as proton pump inhibitors 
(PPIs), can effectively improve subjective sleep param-
eters and reduce the frequency of respiratory pauses [10]. 
While the exact causal mechanisms remain unclear [11], 
emerging research explores several pathways, including 
airway inflammation and vagal nerve effects. Acid reflux 
can cause throat inflammation like saliva pooling, red-
ness/swelling, hypertrophy, granulomas, and worsen SAS 
symptoms [12]. Additionally, GERD-associated auto-
nomic dysfunction, particularly vagovascular tone, may 
cause upper airway sensitivity and eventual obstruction 
[13, 14]. Understanding these interactions could lead to 
better treatment strategies for both conditions. There-
fore, we hypothesize that GERD causally elevates SAS 
risk.

This study aimed to investigate the causal effects 
between GERD and SAS using a method called Men-
delian randomization (MR) [15]. MR utilizes genetic 
variations as instrumental variables to provide unbiased 
estimates of causal relationships in observational stud-
ies [16]. By employing a bidirectional two-sample MR 
design, we sought to estimate the causal effects of GERD 
on SAS risk and SAS on GERD risk.

A comprehensive grasp of the causal relationship 
between GERD and SAS facilitates the development 
of targeted interventions, such as personalized weight 
loss and exercise programs tailored [17] to control 
BMI indices in SAS patients with/without GERD 
(34.0 ± 7.0 vs. 33.1 ± 6.8, P = 0.049) [18], thereby allevi-
ating mechanical pressure and improving ventilation 
function [17]. Emerging research indicates that 65% of 
GERD patients exhibit Pittsburgh Sleep Quality Index 
(PSQI) greater than 5 [19], highlighting the neces-
sity of quantitative sleep monitoring methods such as 
polysomnography or portable sleep monitoring [20]. 

As mentioned previously, early diagnosis of GERD and 
aggressive PPI treatment can prevent the progression 
of SAS [10]. By promoting deeper cohort studies and 
refining our clinical strategies, we can enhance patients’ 
quality of life, reduce healthcare costs, and provide 
comprehensive care for individuals with GERD and co-
existing SAS.

Methods
Genetic data
For both our analyses of the effect of GERD on SAS risk 
and of the effect of SAS on GERD risk we used two-
sample MR where summary statistics (effect estimates 
and standard errors) for the exposure and outcome 
associations were obtained from separate studies.

For the MR of the effect of GERD on SAS risk, 
instruments were selected from the largest available 
genome-wide association study (GWAS) meta-anal-
ysis on GERD by Ong et  al. [21]. For each instrument 
(SNP), summary statistics of the exposure association 
(expressed as log odds ratio for GERD) were obtained 
from the replication stage of Ong et al. [21]. Summary 
statistics of the outcome association (log odds ratio 
for SAS) were obtained from the authors of the GWAS 
meta-analysis on SAS [22].

Similarly, for the MR of the effect of SAS on GERD 
risk, instruments were selected from the largest avail-
able GWAS meta-analysis on SAS by Wang et al. [23]. 
For each SNP, summary statistics of the exposure asso-
ciation (log odds ratio for SAS) were obtained from this 
GWAS, while summary statistics of the outcome asso-
ciation (log odds ratio for GERD) were obtained from 
the authors of the GWAS meta-analysis on GERD [24].

SNP selection in exposure and outcome
Based on the above assumptions, a search was con-
ducted within the GWAS database for the selection of 
SNPs. To avoid linkage disequilibrium, all SNPs were 
clumped using a strict clump window  (r2 = 0.001 and 
kb = 10,000) [25, 26]. These SNPs were then examined 
in the phenome-wide association studies (pheWAS) 
catalog databases to ascertain any potential associa-
tions with confounding factors of the outcomes, with a 
significance threshold set at P < 5 ×  10−6 [27, 28].



Page 3 of 13Wang et al. Human Genomics           (2025) 19:23  

MR and assumptions
This study utilized a bidirectional two-sample MR design 
using genetic instruments (SNPs) to predict GERD and 
SAS based on the latest GWAS data (Fig.  1). The bidi-
rectional approach enables us to examine both the asso-
ciation between GERD and SAS, as well as the causal 
relationship between SAS and GERD [29]. MR analysis 
relies on three fundamental assumptions: (1) a robust 
association between genetic predictors (SNPs) and their 
corresponding exposures (GERD and SAS) [30], (2) inde-
pendence of genetic predictors from confounding factors 
in the relationship between exposure and outcome [31], 
and (3) genetic predictors exclusively influencing the out-
come through their impact on the exposure (exclusion-
restriction assumption) [32].

The MR analyses were initially conducted using a two-
sample inverse variance weighted (IVW) method. In this 
method, SNP-specific Wald ratios between the effect of 
the outcome and exposure were meta-analyzed [33]. The 
analysis employed a random-effects inverse variance 
approach, with each ratio weighted by its corresponding 
standard error while also considering potential heteroge-
neity in the measurements [34].

Directional pleiotropy occurs when there is a non-zero 
overall effect of horizontal pleiotropy across all SNPs, 
which can introduce bias into the estimates obtained 
through the inverse variance weighted (IVW) method 
[35]. To address this issue, alternative MR methods such 
as MR-Egger, weighted median, and weighted mode were 
used to calculate estimates for comparison with the IVW 
estimates, as these methods are more robust to direc-
tional pleiotropy [36–38].

MR‑Egger
The MR-Egger method is a variant of Egger regression 
that incorporates an intercept in the weighted regres-
sion model to accommodate directional pleiotropy [39]. 
It considers the possibility that specific SNPs may affect 

the outcome through mechanisms unrelated to exposure 
modification [40], thereby providing more robust esti-
mates of causal effects [41]. A non-zero intercept indi-
cates horizontal pleiotropy [42, 43].

Weighted median mode
The weighted median mode orders the MR estimates 
derived from individual SNPs, each weighted by the 
inverse of their variance [44]. By selecting the median 
result, a single MR estimate is obtained, with its confi-
dence intervals estimated through a parametric boot-
strap method [45]. This approach can yield a robust 
result even when over 50% of the weights originate from 
invalid SNPs [46]. Moreover, in the presence of horizon-
tal pleiotropy, the weighted median mode helps reduce 
type I errors, thereby enabling a more precise evaluation 
of causal associations [47].

Weighted mode
In the weighted mode, the weighted effect estimates for 
each SNP are sorted, and the effect estimate that appears 
most frequently (or has the largest weight) is selected as 
the final causal effect estimate [48]. When the majority of 
similar individual estimates come from valid SNPs, the 
weighted mode can obtain a robust overall causal esti-
mate [45].

Sensitivity analysis
For IVW analysis, both the  I2 index and Cochran’s Q 
statistic were used to assess heterogeneity. Additionally, 
a leave-one-out analysis was employed to identify SNPs 
with potential impacts and validate the reliability of the 
results [49]. Furthermore, funnel plot symmetry of IVW 
MR estimates against 1/standard error (1/SEIV) was 
examined to exclude SNPs that might be introducing het-
erogeneity [50].

Single Nucleotide PolymorphismsGenome-Wide Association Study

SAS associated
SNPs

GERD associated
SNPs

Causality

Bidirectional two-sample MR

SASGERD

Controls Cases ?

Fig. 1 The Process of Mendelian randomization analysis
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Statistical analysis
All statistical analyses were conducted using Stata ver-
sion 13.1 (StataCorp LP, College Station, TX) and R 
version 3.6.3 (R Foundation for Statistical Computing, 
Vienna, Austria), and the ‘TwoSampleMR’ and ‘Mendeli-
anRandomization’ packages.

Results
Demographic data for the cohorts
All baseline information of the included cohorts in this 
study is presented in Table 1. Specifically, for the GERD-
SAS risk association analysis, summary statistics of 
the exposure association were sourced from Ong et  al.’s 
GWAS, while summary statistics of the outcome associa-
tion were obtained from Sakaue et al.’s GWAS. As for the 
SAS-GERD risk association analysis, summary statistics 
of the exposure / outcome association were obtained 
from the GWAS of Wang et al. / Dönertaş et al.

The impact of GERD on the risk of SAS
In the UK Biobank, a total of 2466 SNPs are found to be 
associated with GERD (P < 5 ×  10–8), 1465 of which were 
available in the SAS GWAS. After removing SNPs in link-
age disequilibrium  (r2 < 0.001), a remaining set of 80 SNPs 
were used in the MR analyses. The detailed information 

regarding these SNPs and their correlation with SAS is 
presented in Table 2.

MR analysis revealed a causal relationship between 
GERD and SAS risk, with an OR of 1.750 (95% CI 
1.530–2.010; P < 0.001) (Fig. 2A). The pleiotropy P value 
was 0.546. After exclusion of 3 SNPs which caused sig-
nificant heterogeneity, as explained later, the 95% CI of 
OR became narrower (OR 1.750, 95% CI 1.590–1.930; 
P < 0.001) (Fig.  2B). Additionally, the  I2 value changed 
from 44 to 0%, indicating the absence of heterogeneity. 
The scatter plots illustrated that there were strong asso-
ciations between SNP-SAS and SNP-GERD (Fig. 2C). The 
individual impact of each SNP is as depicted in Fig. 2D. 
The funnel plot (Fig.  2E) demonstrates the inverse vari-
ance weighted MR estimate for each GERD SNP with 
SAS versus 1/standard error (1/SEIV), with the 3 SNPs 
(rs12967855, rs7527682, and rs9940128) accountable for 
substantial heterogeneity highlighted in red.

The impact of SAS on the risk of GERD
Wang et  al. performed a meta-analyses on SAS GWAS 
by combining 5 cohorts from various countries. 35 SNPs 
were reported to be associated with SAS, all of which can 
be found in the GERD GWAS database (Table 3).

Table 1 The baseline information of the included cohorts in this study

GERD, Gastroesophageal reflux disease; SAS, Sleep apnea syndrome; CLSA, Canadian longitudinal study of aging; AGDS, Australian genetics of depression study

Study Participants Sources / Population Build Reference

GERD

Ong et al.

 Cases 129,080 UK Biobank / European HG19/GRCh37 [21]

 Controls 473,524

Dönertaş et al.

 Cases 20,381 UK Biobank HG19/GRCh37 [24]

 Controls 464,217

SAS

Sakaue et al.

 Cases 13,818 UK Biobank / European HG19/GRCh37 [22]

 Controls 463,035

Wang et al.

 Cases 7902 UK Biobank Not known [23]

9096 Finngen / Finns

3102 Partners Biobank

3391 CLSA / Canadian

1517 AGDS / Australian

 Controls 248,112 UK Biobank Not known

110,963 Finngen / Finns

16,945 Partners Biobank

9615 CLSA / Canadian

5838 AGDS / Australian
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Table 2 The 80 SNPs associated with GERD from a GWAS involving UK Biobank participants that were available in the SAS GWAS and 
included in the GERD-SAS MR analyses

SNP Chr Position Effect allele Other allele EAF βa P

rs10010963 4 159,839,313 T C 0.62 − 0.03 4.9E−08

rs1011407 2 60,665,768 G A 0.12 − 0.04 1.1E−08

rs10133111 14 103,377,321 A G 0.16 0.04 1.4E−10

rs1021363 10 106,610,839 G A 0.64 − 0.03 5.1E−10

rs10837002 11 38,565,727 G C 0.35 0.03 4.0E−08

rs11762636 7 2,061,111 A C 0.18 − 0.05 1.9E−16

rs11953061 5 120,144,025 T C 0.34 0.03 3.1E−08

rs12204714 6 152,235,339 T C 0.63 − 0.03 7.9E−09

rs12357321 10 21,790,476 A G 0.31 0.03 1.3E−09

rs12453010 17 50,316,131 T C 0.40 0.03 1.7E−09

rs12598916 16 60,658,751 G C 0.28 − 0.03 6.9E−10

rs12967855 18 35,138,245 G A 0.67 − 0.04 1.1E−12

rs12997558 2 41,704,580 A G 0.36 0.03 3.0E−08

rs13107325 4 103,188,709 T C 0.07 0.07 2.2E−14

rs1334297 13 58,335,375 A G 0.73 − 0.04 1.1E−12

rs13409451 2 144,257,639 G A 0.39 − 0.03 1.9E−08

rs1431196 18 50,832,102 G A 0.43 0.03 2.7E−11

rs1479405 12 15,387,519 T C 0.32 0.03 9.9E−10

rs1510719 4 140,938,116 C T 0.38 − 0.04 3.8E−15

rs1592757 5 103,889,998 C G 0.36 0.03 6.0E−10

rs1596747 2 193,802,478 G A 0.49 0.03 1.0E−10

rs1716171 12 123,716,376 T C 0.79 0.04 7.8E−11

rs17379561 1 98,340,139 T A 0.14 0.05 1.1E−14

rs1883842 20 41,223,062 G T 0.28 0.03 9.3E−09

rs1937450 1 66,478,840 G T 0.54 0.03 7.1E−11

rs2016933 3 65,653,157 G C 0.73 − 0.03 1.0E−08

rs2023878 19 18,834,124 T C 0.19 − 0.04 3.0E−09

rs2043539 7 12,253,880 A G 0.42 0.03 2.2E−08

rs2106353 7 126,506,598 T G 0.23 0.04 1.4E−10

rs2145318 6 26,496,603 A T 0.49 0.04 2.0E−13

rs215614 7 32,347,335 A G 0.63 − 0.03 4.1E−11

rs2164300 4 67,813,017 T C 0.52 − 0.03 4.1E−08

rs2240326 3 50,128,386 A G 0.47 − 0.05 1.1E−22

rs2358016 2 162,007,430 G C 0.50 0.03 4.2E−09

rs2396133 7 109,197,067 G A 0.48 0.03 1.1E−09

rs2396766 7 114,318,071 A G 0.47 0.03 2.3E−11

rs2734839 11 113,286,490 T C 0.61 − 0.03 8.8E−09

rs2744961 6 34,655,000 T C 0.36 0.03 5.8E−09

rs2782641 1 44,013,355 A G 0.61 0.03 4.3E−08

rs2815749 1 72,814,783 G A 0.80 0.04 1.1E−10

rs2834005 21 34,291,708 C T 0.32 0.03 9.4E−09

rs2838771 21 46,501,576 C G 0.65 − 0.03 2.9E−08

rs324769 12 83,969,240 T C 0.45 − 0.03 3.0E−08

rs329122 5 133,864,599 A G 0.42 − 0.03 3.1E−09

rs3766823 1 32,197,257 A G 0.17 0.04 7.1E−10

rs3793577 9 23,737,627 G A 0.54 0.03 2.5E−08

rs3828917 6 31,465,917 T G 0.04 0.07 2.3E−08

rs3863241 8 73,890,335 T C 0.53 0.03 1.5E−11
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MR analysis revealed no evidence of a causal rela-
tionship between SAS and GERD risk, with an OR of 
1.000 (95% CI 0.990–1.010; P = 0.986) (Fig.  3A). Evi-
dence of pleiotropy was observed, with an  I2 value of 
41% and a heterogeneity P value of 0.008. Four poten-
tial pleiotropic SNPs were identified, as indicated by 
the highlighted regions in the funnel plot (Fig.  3C). 
After removing these SNPs, there was no residual 
evidence of pleiotropy  (I2 = 20%; P = 0.167), and the 
results remained null (OR 1.000, 95% CI 0.989–1.011; 
P = 0.964). Similar null findings were obtained when 
robust methods adjusting for pleiotropy were used 
(Fig. 3B).

An increased risk of cardiovascular diseases associated 
with SAS
Based on the MR analyses conducted on GWAS data 
from the UK Biobank [22, 24, 51–54], aiming to uncover 
high-risk cardiovascular diseases associated with SAS, 
it was found that SAS may increase the risk of coro-
nary heart disease (OR 1.219), atrial fibrillation (OR 
1.127), coronary artery disease (OR 1.182), heart failure 
(OR 1.114), intracerebral hemorrhage (OR 1.273), and 
ischemic stroke (OR 1.096) (Fig. 4). The MR analysis was 
conducted following standard procedures and efforts 
were made to minimize the inclusion of SNPs that may 
introduce pleiotropy and heterogeneity.

Table 2 (continued)

SNP Chr Position Effect allele Other allele EAF βa P

rs4300861 2 22,549,441 T C 0.38 0.03 5.4E−10

rs4382592 9 134,870,755 G T 0.70 − 0.03 8.2E−09

rs4713692 6 33,807,638 T C 0.37 − 0.03 3.1E−08

rs569356 1 29,136,686 G A 0.14 − 0.04 4.1E−08

rs6711584 2 104,421,692 A G 0.45 0.03 2.7E−11

rs6722661 2 100,806,588 A G 0.37 − 0.03 1.1E−10

rs6780459 3 104,624,105 T A 0.75 0.03 3.1E−08

rs7032155 9 122,672,771 A C 0.59 0.03 1.6E−08

rs7206608 16 82,872,628 G C 0.32 0.03 1.5E−08

rs7241572 18 77,580,712 A G 0.21 0.04 9.5E−10

rs7527682 1 189,172,684 G A 0.54 − 0.03 3.1E−08

rs7541875 1 190,957,589 G A 0.43 0.03 1.6E−08

rs7600261 2 212,622,818 T C 0.31 0.03 9.5E−11

rs7612999 3 35,678,337 A G 0.25 0.03 4.9E−08

rs761777 10 134,938,075 G A 0.25 0.04 4.7E−10

rs7675588 4 80,734,978 A C 0.80 − 0.03 1.8E−08

rs7685686 4 3,207,142 G A 0.42 − 0.03 1.1E−08

rs773109 12 56,374,695 A G 0.34 − 0.04 8.7E−14

rs7942368 11 76,465,362 T C 0.22 − 0.03 9.5E−09

rs903678 1 201,809,918 A G 0.34 0.03 4.9E−08

rs903959 8 142,630,782 A T 0.40 0.03 3.0E−09

rs9372625 6 98,344,031 A G 0.38 − 0.04 2.6E−14

rs9373363 6 143,150,043 G A 0.25 − 0.03 4.1E−09

rs9396740 6 17,023,108 A G 0.25 − 0.03 1.5E−08

rs942065 14 94,032,065 A G 0.63 0.03 8.4E−10

rs9517313 13 99,105,892 C G 0.38 0.03 2.0E−11

rs9529055 13 66,957,533 A G 0.48 0.03 3.1E−08

rs9542729 13 31,833,578 G C 0.20 − 0.04 1.4E−09

rs957345 14 75,276,079 G C 0.54 0.03 1.7E−09

rs9615905 22 48,875,699 T C 0.46 0.03 1.2E−08

rs9636202 19 18,449,238 A G 0.27 − 0.04 1.5E−10

rs9940128 16 53,800,754 A G 0.42 0.03 8.1E−12

SNP, Single-nucleotidepolymorphism; Chr, Chromosome; EAF, Effect allele frequency
a Change in the GERD GWAS population
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Fig. 2 The forest plot illustrated the MR analysis results based on 80 GERD-related SNPs (A) and after excluding 3 SNPs causing heterogeneity 
(B). The correlation of SNPs in both diseases was shown (C). The forest plot displayed the individual effects of each SNP (D). The funnel plot 
demonstrated the inverse variance weighted MR estimate for each GERD SNP with SAS versus 1/standard error (1/SEIV) (E)
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Discussion
The findings of our study on the causal effects between 
gastroesophageal reflux disease (GERD) and obstructive 
sleep apnea syndrome (SAS) align with recent research in 
this field. GERD may trigger SAS through multiple mech-
anisms, with airway inflammation and vagal reflexes 
serving as two pivotal pathways. The aspiration of gastric 
acid and other refluxate into the airways can irritate and 
damage the mucosa, primarily inducing a neutrophilic 
inflammatory response [55], which is also evidenced 

by elevated IL-6 concentrations in sputum [56], further 
leading to airway hyperreactivity (AHR) [57]. Addition-
ally, higher levels of monocyte chemoattractant protein-1 
(MCP-1) and thymic stromal lymphopoietin (TSLP) have 
been found in the sputum of patients with GERD [58]. 
On the other hand, gastric acid and pepsin in the reflux-
ate [59] can stimulate vagal receptors located at the glot-
tic inlet and laryngeal regions [60], which possess potent 
reflex bronchoconstrictive activity. Studies by Nadal et al. 
have shown that mechanical stimulation of the laryngeal 

Table 3 The 35 SNPs associated with SAS from a meta-analyses involving 5 cohorts that were available in the SAS and GERD GWAS 
and included in the MR analyses

SNP, Single-nucleotide polymorphism; Chr, Chromosome; EAF, Effect allele frequency
b Change in the SAS GWAS population

SNP Chr Position Effect Allele Other Allele EAF βb P

rs11075985 16 53,805,207 A C 0.43 0.04 4.46E−24

rs10878269 12 65,791,463 T C 0.33 0.03 3.86E−16

rs592333 13 51,340,315 G A 0.53 − 0.03 1.69E−14

rs6265 11 27,679,916 T C 0.18 − 0.04 1.79E−14

rs72902175 2 157,013,035 T C 0.13 0.04 3.67E−14

rs2307111 5 75,003,678 C T 0.59 0.03 1.53E−13

rs35445111 19 32,172,047 G A 0.91 0.04 1.62E−11

rs11041997 11 8,602,016 A G 0.54 0.02 3.42E−11

rs6113592 20 22,229,505 G A 0.63 0.02 7.82E−11

rs12603115 17 46,248,994 T C 0.58 − 0.02 8.14E−10

rs1444789 10 9,064,361 C T 0.78 − 0.03 1.10E−09

rs1537818 1 39,647,038 A G 0.7 − 0.02 1.31E−09

rs57222984 17 43,758,898 G A 0.82 − 0.03 1.62E−09

rs11634019 15 76,634,680 C T 0.71 0.02 1.84E−09

rs8176749 9 136,131,188 T C 0.09 − 0.04 3.78E−09

rs227731 17 54,773,238 G T 0.54 − 0.02 3.96E−09

rs4076077 5 170,863,509 T C 0.49 − 0.02 4.26E−09

rs698408 7 127,345,936 A G 0.32 0.02 4.61E−09

rs4987719 18 60,960,310 T C 0.03 0.06 4.72E−09

rs1428381 5 122,693,901 G A 0.29 0.02 4.83E−09

rs4923536 11 28,422,496 G A 0.54 − 0.02 5.39E−09

rs34811474 4 25,408,838 A G 0.23 − 0.02 6.50E−09

rs1403848 3 77,609,655 A C 0.54 − 0.02 9.30E−09

rs7005777 8 78,233,600 T G 0.75 0.02 1.12E−08

rs1007311 7 150,696,008 G A 0.58 − 0.02 1.22E−08

rs8045335 16 60,607,116 G A 0.42 − 0.02 1.24E−08

rs6842303 4 17,854,055 G T 0.28 − 0.02 1.39E−08

rs2715039 7 84,094,964 C A 0.6 − 0.02 2.04E−08

rs1815739 11 66,328,095 C T 0.4 0.02 2.10E−08

rs6038517 20 6,458,205 G A 0.74 − 0.02 2.19E−08

rs9933881 16 1,740,691 C T 0.93 − 0.04 2.54E−08

rs10747478 1 96,901,455 G T 0.41 − 0.02 2.90E−08

rs2601764 10 33,815,235 C A 0.59 − 0.02 3.47E−08

rs6988053 8 71,546,963 T C 0.44 0.02 4.47E−08

rs9551973 13 20,256,342 C T 0.88 − 0.03 4.52E−08
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Fig. 3 The forest plot illustrated the MR analysis results based on 35 SAS-related SNPs (A) and after excluding 4 SNPs causing heterogeneity (B). The 
correlation of SNPs in both diseases was shown (C). The forest plot displayed the individual effects of each SNP (D). The funnel plot demonstrated 
the inverse variance weighted MR estimate for each SAS SNP with GERD versus 1/standard error (1/SEIV) (E)
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mucosa increases total lung resistance in the distal airway 
of anesthetized and decerebrate cats, further supporting 
this notion [61]. In canine models, vagotomy abolished 
the airway resistance induced by esophageal acid infu-
sion [62, 63]. Furthermore, GERD and SAS may share 
common risk factors such as obesity and smoking [64, 
65], which can concurrently impact the health of both the 
gastrointestinal and respiratory systems.

Our study also highlighted a potential association 
between SAS and cardiovascular diseases. (1) Coronary 
heart disease: SAS can lead to intermittent hypoxia [66], 
blood pressure fluctuations [67], and arrhythmias [68], 
all of which increase the risk of coronary heart disease. 
Patients with SAS who undergo continuous positive 
airway pressure (CPAP) therapy for 4  h per day exhibit 
a significant reduction in the risk of coronary-related 
mortality (HR: 0.29, P = 0.026) [69]; (2) Atrial fibrillation: 
Repeated episodes of SAS can lead to a hypoxic state, 
which may trigger arrhythmias, including atrial fibril-
lation [70]. The chronic recurrence of SAS is associated 
with structural remodeling of the atrium and altera-
tions in electrical conduction [71]. An expert consensus 
document identifies SAS as a significant risk factor for 
the recurrence of arrhythmias following catheter abla-
tion [72]; (3) Heart failure: Periodic apnea and hypopnea 
in SAS lead to excessive fluctuations in intrathoracic 

negative pressure [73], increasing Left Ventricular (LV) 
transmural pressure (the difference between intracardiac 
and intrathoracic pressure) and afterload [74]. Simul-
taneously, venous return increases, elevating right ven-
tricular preload, causing right ventricular dilation and 
leftward septal shift during diastole, which impedes LV 
filling [75, 76]. This combination of reduced LV preload 
and increased afterload decreases stroke volume and car-
diac output, ultimately leading to heart failure [77]. (4) 
Cerebrovascular events: SAS has been established as an 
independent risk factor for both intracerebral hemor-
rhage and ischemic stroke. During apnea/hypopnea epi-
sodes, intracranial blood volume increases [78], leading 
to elevated intracranial pressure and decreased cerebral 
perfusion pressure [79]. On the other hand, SAS patients 
often exhibit endothelial dysfunction [80], potentially 
due to impaired vascular response to hypercapnia, which 
increases the risk of hemorrhage [81].

Interestingly, our study did not find evidence of an 
increased risk of GERD among individuals with SAS. 
This is in line with a recent cohort study conducted by 
On et al. [82], which indicated a lack of strong evidence 
supporting a causal relationship between SAS and GERD 
(P = 0.61). Pillai et  al. also pointed out that SAS does 
not contribute to the occurrence of esophageal reflux 
[83]. This may be attributed to the fact that most genetic 
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variations associated with SAS involve the upper respira-
tory tract structure [84], and currently, the position of the 
hyoid bone has been proven to correlate with the severity 
of SAS [85]. Additionally, studies have reported that the 
primary disease-associated gene for SAS is FTO, which 
is well-defined and associated with BMI [86]. These 
variations may independently influence the risk of SAS 
without a direct link to GERD. Alterations in esopha-
geal sphincter function, such as dysregulation of genes 
regulating the NF-κB pathway, play a crucial role in the 
pathogenesis of GERD [87].

In the context of potential therapeutic interventions, 
our study highlights the significance of considering 
GERD as a potential target for managing SAS. Recent 
studies exploring novel treatment approaches have 
shown promising results [88]. For instance, a randomized 
controlled trial by Wasilewska et  al. demonstrated that 
targeted treatment of GERD using proton pump inhibi-
tors (PPIs) led to a reduction in apnea–hypopnea index 
(AHI) (from 13.08 ± 3.11/h to 8.22 ± 2.52/h) and improved 
sleep quality in patients with coexisting GERD and SAS 
[89]. These findings support the notion that targeting 
GERD may provide benefit in terms of SAS management.

Despite the valuable insights gained from our study, 
several limitations merit acknowledgment. The Men-
delian randomization approach assumes the validity of 
instrumental variables and employs specific genetic vari-
ants as proxies for exposure and outcome [90]. Although 
sensitivity analyses were performed to address potential 
issues, the possibility of unmeasured confounding fac-
tors or biases cannot be entirely excluded [91]. Moreover, 
our study primarily relies on GWAS data from European 
populations (Table 1), limiting the interpretation due to 
overlooked genetic differences and environmental factors 
across diverse populations. Future work will integrate 
diverse datasets and ethnic groups for comprehensive 
analysis, and we anticipate larger, more comprehensive 
GWAS studies. Additionally, leveraging the community 
resources of Jinshan Hospital’s General Medicine Depart-
ment, we will conduct randomized controlled clinical 
trials on PPI treatment for SAS patients with GERD, 
translating our research from bench to bedside.

In conclusion, our study contributes to the exist-
ing body of literature by confirming the increased risk 
of SAS among individuals with GERD. These findings, 
in line with recent research, support the importance 
of considering GERD as a potential therapeutic target 
for managing SAS. Future studies should utilize robust 
methodologies and explore novel treatment approaches 
to optimize the management of both GERD and SAS, 
while also investigating the complex relationships 
between GERD, SAS, and other related conditions such 
as cardiovascular diseases.
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