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Cells engaging in inflammation undergo drastic changes of their transcriptomes. In order

to tailor these alterations in gene expression to the requirements of the inflammatory

process, tight and coordinate regulation of gene expression by environmental

cues, microbial or danger-associated molecules or cytokines, are mandatory. The

transcriptional response is set off by signal-regulated transcription factors (SRTFs) at the

receiving end of pathways originating at pattern recognition- and cytokine receptors.

These interact with a genome that has been set for an appropriate response by

prior activity of pioneer or lineage determining transcription factors (LDTFs). The same

types of transcription factors are also critical determinants of the changes in chromatin

landscapes and transcriptomes that specify potential consequences of inflammation:

tissue repair, training, and tolerance. Here we focus on the role of three families of SRTFs

in inflammation and its sequels: signal transducers and activators of transcription (STATs),

interferon regulatory factors (IRFs), and nuclear factor κB (NFκB). We describe recent

findings about their interactions and about their networking with LDTFs. Our aim is to

provide a snapshot of a highly dynamic research area.
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INTRODUCTION

Inflammation is a rapid response of the innate immune system to infection or sterile causes
of trauma and tissue damage. Its main purpose is to alert, recruit, and activate cells of the
immune system, mobilize the adaptive immune system, remove the infectious agent or other
proinflammatory stimuli and, ultimately, repair the tissue damage inflicted by both the trigger of
inflammation and the inflammatory process (1). These events require the coordinate action of a
multitude of different cell types of the immune system and the inflamed tissue. Inflammation ensues
when cells sense microorganisms by means of microbe-associated molecular patterns (MAMPs)
or damaged tissue by the release of damage (or danger)- associated molecular patterns (DAMPs).
Both MAMPs and DAMPs are recognized by binding to one or more pattern recognition receptors
(PRR). Signal transduction by these receptors enables cells to mobilize a proinflammatory gene
expression program (2, 3). As a corollary, antimicrobial effector mechanisms are activated and
immune mediators are released that prepare the surrounding tissue for inflammation, cause influx
of leukocytes from the blood and allow for the recruited cells to adopt an immunologically activated
state.

The progression to a proinflammatory state necessitates dramatic transcriptome changes of the
participating cells. Cells such as macrophages with a pivotal role in orchestrating inflammation
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acquire an appropriately structured genome during
differentiation (4). In molecular terms this means that their
chromatin ensures accessibility of critical regulatory DNA,
thus allowing for an immediate transcriptional response of
proinflammatory genes. Cell lineage specificity of genome
accessibility requires a compatible (lack of) genome compaction
and 3D structure, but also the activity of lineage-determining
transcription factors (LDTFs). LTDFs belong to the larger group
of pioneer transcription factors with the ability to bind enhancer
elements within nucleosomal DNA. Their association with
DNA causes nucleosome rearrangement and, at neighboring
histones, the deposition of posttranslational modifications
(marks) characteristic of accessible or poised enhancers. To
initiate a proinflammatory response, MAMPs, DAMPs, or
activating cytokines such as interferon γ (IFNγ) cause the
synthesis and activation of signal-regulated transcription factors
(SRTFs) that interact with the prearranged genome to cause
a stimulus and cell-type specific transcriptome change (5).
Likewise, suppression and resolution of inflammation and tissue
repair result from signals targeting a different set of SRTFs to
produce an anti-inflammatory response tailored to a particular
cell-lineage by a permissive genome structure.

Signal transducers and activators of transcription (STATs),
interferon regulatory factors (IRFs) and nuclear factor κB (NFκB)
are major players among SRTFs. Different family members
function in the establishment as well as the resolution or
prevention of inflammation. This dual mode of macrophage
activity during inflammation is represented by the polarization
of macrophages into the proinflammatory M1 type and the
inflammation-resolving M2 type. While these types, generated in
vitro by using IFNγ/LPS (M1) or IL4 (M2), represent extremes
with most likely no direct in-vivo equivalent (6–9), they establish
a useful heuristic concept that has produced much insight how
macrophages realize their pro- and anti-inflammatory potential.

STATs, IRFs, AND NFκB, A BRIEF
OVERVIEW

For in-depth information and additional references concerning
these transcription factor families the reader is referred to
comprehensive reviews (10–15).

STATs
STATs form a family of 7 members (STATs 1-4, STATs 5a and
5b, STAT6). All family members function predominantly in
the context of cytokine-responsive, two-component JAK-STAT
pathways. When cytokine receptors bind their cognate ligands,
one or more receptor-associated Janus protein tyrosine kinases
(JAKs) are activated and phosphorylate latent STATs on a single
tyrosine residue. In some STATs this leads to a reorientation
of preformed dimers into a parallel arrangement (16) whereas
others may dimerize de-novo. Dimerization is stabilized by
reciprocal phosphotyrosine (pY) interactions with SH2 domains
which are, among transcription factors, a distinguishing feature
of STATs (Figure 1). pY-mediated dimerization exposes an
unconventional nuclear localization signal that shifts the

subcellular localization of STATs to the nucleus (26). Homo-or
heterodimeric STATs recognize a DNA sequence called gamma-
interferon-activated sequence [GAS, TTCN3−4GAA; (17)]. In
contrast, STATs able to form a complex with a non-STAT subunit,
IRF9, bind to a distinct sequence, the interferon-stimulated
response element [ISRE; (27)]. The ISRE is a hallmark of all
type I and type III IFN-responsive genes (ISG) and a large
fraction of IFNγ-inducible genes. Both type I IFN (IFN-I:
IFNα, IFNβ, others) and type III IFN (IFN-III: IFNλ) cause
tyrosine phosphorylation of STAT1 and STAT2, the resulting
heterodimer forms an ISRE-dependent complex with IRF9 called
ISGF3. As an addendum to this original paradigm of IFN-I
signaling, research in recent years has produced a variety of
activities of IRF9-containing complexes other than ISGF3 and
of unphosphorylated STATs (U-STATs), both as transcriptional
regulators and in non-nuclear contexts (28–30). We and others
have recently reviewed these non-canonical STAT activities
(31–33). Unlike IFN-I and IFN-III, the IFNγ-stimulated JAK-
STAT pathway produces a STAT1 dimer, the gamma-interferon-
activated factor (GAF), in addition to a very low level of
ISGF3. This difference in STAT activation is one of the factors
responsible for overlapping, yet discrete IFN-I and IFNγ-induced
transcriptomes (29).

IRFs
The original description and eponymous function of IRFs derives
from their activity as regulators of the genes encoding type I
IFN (34). The minimal IRF binding site of the IFNβ promoter,
characterized by 5′-GAAA-3′ motifs (35) is part of many ISRE
sequences (5′-PuPuAAANNGAAAPyPy-3′). Not surprisingly
therefore, a second identification of IRFs resulted from the
purification of ISRE-associated proteins (36). Subsequent work
revealed a total of 9 family members in mice and men (IRF1-9).
Common structural features of IRFs include anN-terminal DNA-
binding domain with 5 characteristically spaced tryptophanes
and one of two structurally distinct C-terminal IRF association
domains (IAD; Figure 1). In IRF9, but not other IRFs, the
IAD contains a binding site for STAT2 (37). The regulation of
IRF transcriptional activity requires for some IRFs (IRF3, IRF5,
IRF7) the phosphorylation of serine residues within the IAD and
C-terminus for dimerization and activation. For others (IRF1,
IRF2, IRF4, IRF8), sporadic reports of phosphorylation events
exist (38, 39), but this modification is most likely not generally
necessary to regulate transcriptional activity. IRF9 is unique as
it has no known transcriptional activity on its own and is so
far characterized exclusively as a subunit of ISGF3 or other
complexes containing either STAT1 or STAT2.

Phosphorylation-dependent IRFs function downstream of
toll-like receptors (TLR) and cytosolic nucleic acid receptors
(2, 3). The established serine kinases are IKKβ [IRF5; (40)]
and the non-canonical IKKs TBK1 and IKKε (41). IRF3 and
IRF7 are the main regulators of IFN-I gene expression, whereas
IRF5’s main activity appears to be in the regulation of typical
proinflammatory genes [although IRF5 may in some situations
also contribute to IFN-I regulation; (42)]. With the notable
exception of IRF3 all IRF family members are cytokine-inducible
and have important functions in cytokine responses. Particularly
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FIGURE 1 | Structural attributes of STAT-, IRF-, and Rel family transcription factors. STATs. All mammalian STAT members share a common structural motif consisting

of an N-terminal domain, which plays a role in dimerization (DD), followed by a coiled-coil domain (CC), that can be involved in interactions with other proteins, a

DNA-binding domain (DBD), a linker domain (L), an SH2 domain for reciprocal phospho-tyrosine interaction and a transactivation domain (10, 11). Upon receptor

(Continued)
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FIGURE 1 | engagement Janus kinases lead to the activation of the latent cytoplasmic STATs, via phosphorylation on single tyrosine residues (Y701 on STAT1 and

Y690 on STAT2). The STAT1-STAT2 dimer associates with interferon regulatory factor 9 (IRF9) to form a transcriptionally active IFN-stimulated gene factor 3 (ISGF3).

This complex controls gene expression by binding to interferon-stimulated response elements (ISRE) present in promoters of IFN stimulated gene (ISG). Additionally,

STAT1 homodimers, translocate to the nucleus and stimulate ISG expression by binding to gamma interferon-activated sites (GAS) (17). IRFs. All IRFs harbor a

conserved N-terminal DNA-binding domain (DBD), which forms a helix-turn-helix domain with a conserved tryptophan cluster that recognizes DNA sequences in

interferon induced genes (18). An analysis of the crystal structure of the DBD of IRF1 bound to the Ifnb promoter revealed that 5′-GAAA-3′ is the consensus sequence

recognized by the helix-turn-helix motif of IRF1 (19). This DNA motif is known as the IRF-element (IRF-E) (20). All IRFs harbor a C-terminal IRF association domain

(IAD), which is responsible for homo- and heteromeric interactions with other family members or transcription factors (21, 22). IAD1 and IAD2 domains can be

distinguished by structural criteria and are found, respectively, in IRF1 and IRF2 or all other IRFs. Rel (NFκB). One of the best studied NFκB dimers is the p50/p65

heterodimer, whose crystal structure has been solved (23). NFκB recognizes 9–11 bp (base pair) DNA-elements, which are often located within promoters and

enhancers of NFκB target genes. The consensus sequence 5′-GGGRNWYYCC-3′, where R denotes a purine base, N means any base, W stands for adenine or

thymine and Y represents a pyrimidine base, is recognized by the Rel-homology domain [RHD; (12)]. The C-terminal domain of RelA (p65) contains two strong and

independent transactivation domains (TAD) providing full transcriptional activity (24). The p100 precursor protein is proteolytically processed to the NFκB subunit p50.

The mature p50 protein contains the RHD followed by glycine-rich region, a region that is essential for directing the cleavage and proteolytic processing of a long

IκB-like C-terminal part of the precursors (25). IκBα regulates rapid and transient induction of NFκB activity. The crystal structure of IκBα bound to the p65/p50

heterodimer revealed that one IκBα molecule binds to an NFκB dimer and masks the NLS of p65. IKKβ is necessary and sufficient for phosphorylation of IκBα, leading

to IκBα ubiquitination, and further degradation by the proteasome.

IRF4 and IRF8 are important for the specification of immune
cell lineages and/or as determinants of their functional attributes.
IRF6 is the only family member with a function in embryonic
development.

NFκB
Various canonical and non-canonical NFκB complexes are
formed by members of the Rel family of transcription factors
which contain a Rel homology domain (RHD) for DNA binding
and, in case of the RelA, RelB, and c-Rel family members,
a C-terminal transactivation domain (12). The p52 and p50
proteins are formed from larger precursor protein (p100 and
p105, respectively) by proteolytic processing. The major player
among proinflammatory NFκBs, and the only one discussed here,
is the heterodimer of RelA/p65 and p50. Its nuclear activity is
restricted by inhibitors of NFκB (IκB, mainly IκBα) through
a direct interaction that masks the nuclear localization signal.
Activation of the IκB kinase complex (IKK complex, consisting
of IKKα, IKKβ, and IKKγ/NEMO) causes the phosphorylation of
IkBα on two critical serines which leads to its ubiquitination and
subsequent degradation. In the innate immune system activation
of the IKK complex is caused by all PRR, and by TNF receptor- as
well as CD40-related receptor families. In the adaptive immune
systemNFκB is activated by these same receptor families and also
by lymphocyte antigen receptors.

TRANSCRIPTION FACTOR NETWORKS
INVOLVING STATs, IRFs, AND NFκB IN
MACROPHAGES

There are several conceptual possibilities how transcription
factors form networks (Table 1). Networking may result from
a common functional context such as inflammation, but result
from independent action. On the other hand, there are several
ways to directly link the activity of one transcription factor to
the activity of the other. For example, networking transcription
factors may regulate each other’s synthesis or activation or,
alternatively, converge at promoter level to cooperate or
antagonize each other in the regulation of a common set of

TABLE 1 | Different molecular principles guiding the interaction between

transcription factors (TFs) of the STAT, IRF and Rel/NFκB families.

Mode of

interaction

Example References

TF1 regulates TF2

synthesis

• STAT1 regulates IRF1 and IRF8

synthesis

• NFκB regulates IRF1 synthesis

(43)

(44)

(45)

Promoter

occupancy of TF1

required for

binding of TF2

• IRF8 required for

NFκB/IRF3/7-dependent Ifnb

enhanceosome assembly by LPS

• IRF8 enhances IFNγ-induced gene

transcription by STAT1 and IRF1 in

myeloid cells

(46)

(47)

(48)

Promoter

co-occupancy by

TFs required for

transcriptional

activation

• ISGF3 and NFκB cooperate at iNOS

and IL6 promoters

• STAT1 and IRF1 cooperate in

IFNγ-induced transcription

(49)

(50)

(51)

(52)

Physical

interaction of TFs

• IRF9 binds to STAT2

• IRF3 associates with RelA/p65 to

function as coactivator at NFκB sites.

Conversely, RelA/p65 functions as IRF3

coactivator at ISREs

• U-STAT2 associates with RelA/p65 to

induce IL6 transcription

(10)

(37)

(53)

(54)

(55)

TF competition for

promoter binding

(direct or indirect)

• STAT6 prevents NFκB binding at

overlapping sites

• STAT5 prevents STAT1 association at

IRF8 promoter

(56)

(57)

(58)

genes. Such agonistic or antagonistic action can result from direct
physical contacts or from complementing each other in different
steps of promoter activation such as chromatin remodeling and
modification or the formation of a transcriptional initiation
complex. In one way or another all these possibilities contribute
to networks containing STATs, IRFs, and NFκB.

Establishment of Enhancers Controlling
Inflammatory Gene Expression
The changes in genome structure occurring during macrophage
differentiation set the stage for appropriate responses of the
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mature cells to challenges such as infection or inducers of
sterile inflammation (Figure 2). As outlined above, this relies
on the activity of LDTFs that generate poised enhancers with
typical histone marks such as H3K4me1. Activation of these
enhancers in differentiated cells is accompanied by the binding
of a variable number of SRTFs and the deposition of additional
histone modifications including the characteristic H3K27ac
mark. While several LDTFs such as C/EBPα and AP1 family
TFs are associated with poised enhancers in differentiating
macrophages, the most prominent role in the script belongs to
the Ets protein Pu.1 (59–61). Many of the Pu.1 binding sites
occupied during differentiation represent EICE elements that
allow for concomitant association of both Pu.1 and IRF8 [5′-
GGAANNGGAAA-3′; (62)]. Thus, Pu.1 and IRF8, by specifying
which of the thousands of potential enhancer sequences are
accessible for transcription control, are critical in shaping a
macrophage-specific chromatin landscape and the response
to inflammatory stimuli. By interacting with LDTFs, IRFs,
STATs, and NFκB play prominent roles in converting these
enhancers into an active state that allows for contacts with
the transcriptional machinery at the transcription start site
(TSS). Studies such as that by Kaikkonen suggest that enhancer
transcription precedes their engagement in the formation of
transcription initiation complexes (61).

Not all enhancers of inflammatory gene expression are
established during differentiation. Activation of terminally
differentiated macrophages also causes the binding of both
LDTFs and SRTFs to “latent” enhancers, i.e., sequences
embedded into nucleosomes that have not been previously
remodeled and marked by deposition of H3K4me1. Both IFNγ

and the alternativeM2 polarization factor IL4 (see below) convert
latent into active enhancers by providing STAT1 and STAT6,
respectively (63). Unexpectedly, the binding site in the IFNγ-
activated latent enhancers is an ISRE, not a GAS sequence
suggesting the participation of ISGF3 or STAT2-IRF9 complexes
(29). Once activated, latent enhancers persist for some time
to generate a transcriptional memory effect for subsequent
stimulation. In LPS-stimulated cells composite binding sites for
AP1 family and IRF8 play a prominent role in the mobilization
of latent enhancers (47).

Macrophage Activation and M1
Polarization
In a simplified view macrophage activation results from signals
generated by PRR such as the LPS receptor TLR4, which
are amplified via JAK-STAT signal transduction by the IFNγ

receptor. Polarization expresses the fact that one of several
possible physiological states of a macrophage is more or
less transiently established with a concomitant suppression of
others (Figure 3). In case of the M1 macrophage this state is
proinflammatory as well as antimicrobial and TNF/NFκB play
a role in suppressing the competing M2 fate. Recent studies
show that ablation of TNF responsiveness in tumor-associated
macrophages (TAMs) suppresses the M1 component of their
transcriptome. Further evidence for this concept comes from
a report showing that the lack of TNF corresponds with an

FIGURE 2 | Interplay between LDTFs and SRTFs. Pu.1 is an important

macrophage lineage–determining factor (LDTF) and a major driving force

behind setting up macrophage enhancers for further action by SRTFs.

Enhancers are distinguished by high levels of H3K4me1 and are primed by

LDTFs, which further displace nucleosomes. Stimulus responsive enhancers

and promoters are bound by stimulus-regulated transcription factors (SRTFs),

such as STAT, NFκB, and IRF transcription factors, to direct transcriptional

responses in the course of inflammation. The binding of SRTFs to primed

promoters and enhancers leads to further recruitment of co-activators that

deposit the activation mark H3K27ac (5).

increased expression of M2 marker genes during infection with
Leishmania major (7, 66). According to work by van den Bossche
M1 polarized macrophages cannot be repolarized to M2 by IL4
treatment because the M1-typic shut-down of mitochondrial
oxidative phosphorylation prevents this. The iNOS product NO
plays an important role in inhibiting OxPhos, as iNOS inhibition
allowed for a partial rescue of IL4-induced alternative activation
in M1-polarized cells (67).

IFNγ-Independent Pathways of
Macrophage Activation and M1
Polarization
The signaling network operating in IFNγ/LPS-stimulated
macrophages produces several types of active SRTFs that include
NFκB, IRFs, and STATs. However, many MAMPs alone produce
these transcription factor activities without requiring exogenous
supplies of IFNγ as follows. LPS activates NFκB both through the
MyD88 and TRIF pathways downstream of its receptor TLR4.
NFκB is subsequently involved in both immediate, primary,
and delayed, secondary expression of proinflammatory LPS
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FIGURE 3 | Transcription factors shaping macrophage polarity. M1 stimuli

lipopolysaccharide (LPS) and interferon γ (IFNγ) trigger the activation of several

transcription factors such as IRF1, IRF5, IRF8 STAT1, STAT2, and NFκB (64).

M1 macrophages play key roles in inflammation as well as antibacterial

responses. IL4 and IL13 induce M2 polarity in macrophages. M2

transcriptomes are determined by different transcription factors such as IRF4,

STAT6, JMJD3, PPARγ, PPARδ, and C/EBPβ. M2 macrophages exert

anti-inflammatory activities such as tissue repair. M1 macrophages are

glycolytic whereas mitochondrial oxidative phosphorylation is required for M2

macrophage development (65).

target genes (68). Primary and secondary response genes can
be distinguished by a differential need for SRTF-dependent
chromatin remodeling at the transcription starts (TSS) and
proximal promoters (69, 70). These regions contain a high CpG
content at primary response genes which impedes nucleosome
formation, leaving the TSS, and promoter-proximal transcription
factor binding sites accessible for initiation complex formation.
In fact, many of these promoters contain paused RNA
polymerases. By supporting the binding of elongation factor
pTEFb to its recruitment factor, the BET protein BRD4, NFκB
helps to remove the DSIF/NELF elongation block for mRNA
transcription (70–73). Secondary response genes show a more
delayed response, consistent with the need to restructure/modify
promoter chromatin in a signal-dependent manner (68–70).
Initiation complexes at these genes are established de novo.
Secondary responses can be generated via regulatory feed-
forward loops, i.e., the synthesis of a secondary mRNA with a
transcription factor either encoded by a primary response gene,
or activated by a primary response product such as TNF. An
example of the former situation is the synthesis of IRF1 in the
primary, STAT1-dependent response to IFNγ (52). Interactivity
between NFκB and STAT/IRF pathways occurs both at primary
and secondary response genes.

While TLR4 is not directly connected to a JAK-STAT pathway,
the downstream TRIF pathway targets the IRF3 kinases TBK1
and IKKε, and hence the IFN-I genes (74). LPS-stimulated
cells thus accumulate active STATs as a secondary response
resulting from signaling by the IFN-I receptor. The same holds
true for endosomal TLRs that either use the TRIF adapter
for signaling (TLR3) or that form a complex containing IRF7

around the MyD88 adapter (2). In this signalosome IRF7
is phosphorylated by IKKα (75). IFN-I synthesis is also an
essential outcome of signaling by all cytosolic nucleic acid
receptors that signal via platforms containing the adapters
MAVS or STING (3). Therefore, active NFkB, IRFs and STATs
are hallmarks of pathogen-exposed macrophages even in the
absence of cytokines derived from external sources such as IFNγ.
The relevance of this attribute of infected or infection-exposed
cells is the ability of IFN-I to provide a priming signal for
resting macrophages and other cell types either resident in the
surrounding tissue, or entering infected tissue in the process
of inflammation (49, 76). Owing to the cooperativity between
STATs and IRFs or NFκB, the deposition of ISGF3 during IFN-
I priming allows for more vigorous responses to an inflammatory
stimulus.

Transcription control of IFN-I genes, particularly Ifnb, is one
prominent example of the interaction between different IRFs
as well as between IRFs and NFκB. In macrophages the gene
is constitutively bound by Pu.1/IRF8 and induction by LPS is
strongly reduced in cells lacking functional IRF8 (47). LPS or viral
infection stimulate the promoter binding of IRF3 and/or IRF7
as well as NFκB and the subsequent recruitment of chromatin
remodeling and modifying enzymes (77). The analysis of the
active Ifnb promoter culminated in an atomic model of its
enhanceosome (78). It contains not only IRFs3/7 and NFκB, but
also the AP1 family members ATF2 and c-Jun.

The cooperation between NFκB and IRF3 shows additional
levels of complexity in TLR responses of macrophages. Two
studies are consistent with the idea that the two transcription
factors can act as coactivators for each other. On the one
hand, NFκB function at a subset of its binding sites requires
direct interaction with IRF3 (53). On the other hand, p65 is
tethered to ISRE subsets during macrophage TLR4 or TLR9
signaling. In LPS-treated macrophages around 100 ISREs bound
these complexes and the corresponding genes were selectively
inhibited by agonists of the glucocorticoid receptor [GR; (54)].
The data further demonstrate sensitivity of the interaction
between IRF3 and the RelA RHD to disruption by the GR in
vitro. The two studies reveal that some inflammatory genes are
controlled by NFκB/IRF interaction without having promoter
binding sites for both. Genome-wide DNA binding data in
virus-infected cells further confirmed the impact of gene co-
regulation by IRF3 and NFκB (79). An alternative experimental
approach supports the importance of this finding by using a
virus mutant with reduced ability to suppress NFκB activation.
In IRF7-deficient cells the increased NFκB activation compared
to wt virus partially rescued inflammatory gene expression
and antiviral immunity (80), suggesting that a higher dose of
NFκB activity compensates for the loss of IRF7 at coregulated
genes.

Similar to IRF3, IRF5 is recruited to inflammatory genes
and is essential for their efficient transcription. In LPS-treated
macrophages NFκB assists IRF5 in binding to DNA, and the
two factors set up a unique “inflammatory” IRF5-RelA cistrome
which is best explained by the presence of consensus NF-κB and a
composite Pu.1-ISRE element (81). Conditional deletion of IRF5
in macrophages is incompatible with M1 polarization (82).
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IFN-I production in response to inflammatory stimuli
produces transcriptional activity of transcription factor ISGF3,
the STAT1/STAT2/IRF9 heterotrimer. ISGF3 exemplifies a direct
physical STAT/IRF contact (37). According to the JAK-STAT
paradigm described above, ISGF3 is the terminal component of
IFN-I and IFN-III signaling. Whereas, a large fraction of IFNγ-
inducible genes essentially depends on multimerized STAT1
dimers (83), there is currently no evidence that STAT1 dimers
make important contributions to IFN-I or IFN-III signaling.
As will be discussed in more detail below, genes regulated by
STAT1 dimers are characterized by frequent cooperativity with
IRF1, IRF8 and, at least for some genes, IRF7 (48, 52, 84–86).
Conventional ISGs, i.e. ISGF3-dependent genes responding with
a strong transcriptional increase to IFN-I do not require IRF1
(87), but a large fraction shows ISGF3 binding at or near Pu.1 and
IRF8 (47, 62). Correspondingly, about 20% of total ISGs show
diminished responses to IFNβ in cells expressing the IRF8 R294C
mutant which is unable to interact with Ets family proteins and
thus strongly impaired in its ability to bind DNA at composite
binding sites (88). The ISREs of such ISGs contain the expected
5′ GGAA motif that allows for simultaneous association of IRF8
and Pu.1. Notwithstanding the neighborhood of ISGF3 and IRF8
at macrophage promoters, activity of the ISGF3 complex shows
greater independence from ancillary IRFs than STAT1 dimers.
One reason for this is the potent transactivating domain (TAD) of
STAT2 compared with that of STAT1 (89). In fact, expression of a
fusion protein of IRF9 with the STAT2 TAD largely recapitulates
the transcriptional response to IFN-I (90).

In non-hematopoietic cells ISGs require a signal-independent
nucleosome rearrangement prior to ISGF3 binding. It is executed
by the mammalian SWI/SNF (or BAF) remodeling complex
including the ATPase BRG1 (91). In addition, recent work has
shown that ISGF3 binding causes additional IFN-dependent
remodeling, shown by the appearance of open chromatin regions
in ATAC-Seq or MNase I sensitivity experiments (92, 93).
Histone exchange also takes place and results in the removal of
the repressive variant H2A.Z. It will be interesting to determine
how these non-hematopoietic remodeling events compare to
chromatin opening during macrophage differentiation.

Despite the largely self-sufficient mode of ISGF3 action at
many conventional ISGs, some genes expressed in MAMP-
exposed or infected macrophages demonstrate a different
behavior. These genes are referred to as unconventional ISGs
(76) or synergy genes (50) because they respond poorly to IFN-
I alone, instead requiring an additional PRR-derived signal. In
many cases NFκB is essential to provide this second signal
(50). By conservative estimate around 130 unconventional
ISGs show synergistic transcriptional responses owing to
ISGF3 and NFκB occupancy in macrophages infected with the
intracellular bacterial pathogen Listeria monocytogenes. They
include the genes encoding iNOS (NOS2) or IL6. Mechanistically
the cooperativity at these two genes is explained by NFκB
predominance in the recruitment of histone-modifying enzymes,
the BET protein Brd4 and the TFIIH and pTEFb complexes
needed for the phosphorylation of the RNA polymerase II (Pol II)
carboxyterminal domain (CTD; Figure 4A). In contrast, ISGF3
plays a dominant role in the promoter recruitment of the general

transcription factor TFIID and the formation of a complete
initiation complex including Pol II. Both transcription factors
cooperate in the recruitment of the mediator complex with core
and kinase modules (49–51). Whether these mechanisms apply
to all or a majority of genes showing NFκB/ISGF3 cooperativity
remains to be determined. We have found that some of the
conventional ISGs such as Isg15, Gbp, or Stat1 also have binding
sites for NFκB and these sites are occupied during infection with
L. monocytogenes [Figure 4B, data set as in (50)]. This suggests
an even larger input of NFκB signaling into transcriptional
responses to IFN. From the immunological standpoint the
cooperative activation mode is useful because it allows to better
dose signal strength at promoter level. Furthermore, NFκB
can generate a state of transcriptional short-term memory for
ISGF3, i.e., providing an NFκB-inducing signal alone generates a
cooperative response even when the IFN signal follows up to 24 h
later (49). This effect is similar to the latent enhancer activation
described above, or to the priming effect of IFNγ described
below. During an inflammatory response the kinetics of exposure
to the many environmental signals differ for individual cells,
thus these memory mechanisms appear highly advantageous.
In support of this notion a study by Park et al. confirms
the ability of both TNF and IFNα to reprogram the human
macrophage epigenome, thus altering inflammatory responses
to TLR4 stimulation. Preexposure with TNF may tolerize genes
with NFκB sites or lead to synergism with LPS in genes with
ISRE/IRF and AP1 elements. IFN pretreatment can counteract
the tolerizing effects of TNF (76).

The Transcriptional Response to IFNγ–Its
Contribution to Macrophage Activation
and Inflammation
IFNγ is the macrophage-activating cytokine produced in the
course of an inflammatory responses by innate lymphocytes
such as NK or ILC1 cells, but also via an innate response of T
lymphocytes. Immunological effects of IFNγ are to a large extent
established de novo and require extensive chromatin landscape
changes (94). Formation of STAT1 dimers (or GAF) by the IFNγ

receptor complex is sufficient for the transcription of a relatively
small number of primary response genes with GAS promoter
elements. Among these are the Irf1 and Irf8 genes. IRF1 and IRF8
production is necessary for a delayed transcriptional of many
secondary IFNγ-induced genes, represented by e.g., the GBP
family, the gp91Phox, Nos2 (iNOS), or the Ciita gene encoding
themaster regulator ofMHC II expression (48, 52, 84, 85, 95–97).
In addition, our recent data in IFNγ-treated macrophages reveal
a surprisingly large contribution of ISGF3 to the IFNγ-induced
transcriptome (29).

Increased amounts of IRF8 in LPS or IFNγ-treated cells
allow the transcription factor to occupy landing sites in addition
to those established during macrophage differentiation. This
is important because similar to ISGs, many IFNγ-inducible
promoters are prebound with Pu.1 and a subfraction of these are
associated with Pu.1/IRF8. In this situation Pu.1/IRF8 binding
occurs via EICE sequences, whereas inducible binding of IRF8
occurs via ISRE, but not via GAS sites (47). IRF1 appears to
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FIGURE 4 | STAT-NFκB cooperativity shapes the transcriptional response to Listeria monocytogenes. (A) NFκB association with the Nos2 promoter is the initial step

and leads to recruitment of TFIIH which is further required for Pol II phosphorylation. Brd4 stabilizes the NFκB-TFIIH complex. In addition, association of HAT and the

mediator kinase module (CDK8) strongly depend on NFκB. ISGF3, which recruits the core mediator, is essential for the formation of a pre-initiation complex (PIC) and

further provides a critical prerequisite for TFIID and RNA polymerase II (Pol II) binding (49–51). These references also describe the experimental procedures for

separate analysis of STAT and NFκB signaling during L. monocytogenes infection. (B) Binding of NFκB RelA/p65 and STAT1 to promoters of co-regulated ISGs. The

igv browser tracks show induced RelA/p65 binding in macrophages treated with IFNβ and heat-killed Listeria (hkl). STAT1 binding sites are shown from

IFNβ-stimulated macrophages. A ChIP-seq data set described in reference 50 was used.
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have a minor-if any- role in enhancer establishment during
differentiation, but its role in signal-dependent gene induction
is essential and not redundant with other IRFs. Based on their
IRF requirement, a recent report by Langlais and colleagues
distinguishes two types of IFNγ-induced gene clusters. The first
is characterized by prebound Pu.1/IRF8 and its ISRE sequence
will associate with both IRF8 and IRF1 in IFNγ-treated cells.
The second type of IFNγ-induced genes is prebound by Pu.1
alone and its ISRE will associate with IRF1 only. Both clusters
show a large overlap with STAT1 binding (48). Thus, STAT1
in the IFNγ response acts both as an inducer of the primary
response genes IRF1 and IRF8 and then cooperates with these
IRFs in the second tier of the transcriptional response. There
is a very limited number of studies providing a mechanistic
explanation why IRFs and STATs together potently induce
transcription where either of them alone fails to do so. Two
studies correlated the presence of IRF8 with the establishment
of constitutive H3K27 acetylation (47, 48) and one of these
links IRF1 binding with the IFNγ-induced increase of this
mark (48). At genes with EICE sequences IRF8 participates
in the recruitment of STAT1, leaving it open which of the
two is the histone acetyl transferase (HAT)-recruiting factor
(47). In non-hematopoietic cells our data suggest a crucial
role of STAT1 in the recruitment of the HAT CBP/P300 to
the promoter of the IFNγ-inducible GBP2 gene with no or
very little contribution of IRF1. CBP recruitment required
phosphorylation of the C-terminal S727 in the STAT1 TAD.
The two transcription factors displayed no interdependence
of DNA binding, but were equally needed for cooperative
recruitment of RNA Pol II [(52), Figure 5]. With the discovery
of different clusters of IFNγ-induced genes in macrophages,
regulatory heterogeneity may apply to non-hematopoietic cells
as well and the data with the GBP promoter are likely to
represent only a subfraction of IFNγ-induced genes. Studies by
El Hassan et al. in epithelial cells show that IRF1 occupies a
large number of sites without STAT1, but, conversely, STAT1 is
mostly co-associated with IRF1 [(97), this appears to be different
in macrophages (48)]. The larger number of IRF1 binding sites
may be explained by a role of IRF1-binding enhancers in the
formation of a 3D promoter structure as reported by the same
group for the gene encoding the MHC II master regulator CIITA
(96).

We have briefly mentioned the participation of IFNγ/STAT1
in the mobilization of latent enhancers in murine macrophages.
Consistent with this Qiao et al. report studies in human
macrophages showing that IFNγ primes LPS-responsive genes
with STAT/IRF binding sites without necessarily activating
their transcription (98). Examples are the genes encoding IL6
and IL12. IFNγ priming leads to a massive increase in their
subsequent LPS responsiveness. Whether this is mechanistically
related to the priming of the Il6 and Nos2 (iNOS) genes
by type I IFN remains to be determined. However, the
data suggest that cooperativity between NFκB and STATs
may contribute to the increased inflammatory response after
priming with IFNγ from exogenous sources much as it
does in case of proinflammatory stimuli and endogenously
produced IFN-I.

FIGURE 5 | STAT1 and IRF1 synergistically drive expression of Gbp2. A large

group of IFNγ-induced genes such as Gbp2 requires both STAT1 and IRF1 for

transcriptional activation (52). STAT1 associates with the Gbp2 promoter and

is responsible for the ordered recruitment of the coactivator/histone acetyl

transferase CREB-binding protein (CBP) and histone hyperacetylation. CBP

recruitment requires phosphorylation of the STAT1 TAD at S727. Irf1 is a

STAT1 target gene and, following IRF1 synthesis, its association with the Gbp2

promoter follows that of STAT1, but in respective knockout cells the two

transcription factors bind without requiring each other’s presence. RNA

polymerase II (Pol II) association with the Gbp2 promoter requires both STAT1

and IRF1, but only IRF1 is found in a complex with RNA polymerase II.

M2 Polarization-the Cross-Repression of
M1 and M2 Genes
Macrophages undergo “alternative” activation and M2
polarization when exposed to the type II immunity cytokines
IL4 and IL13. They lack proinflammatory gene expression and
have strongly reduced antimicrobial effector functions. Instead,
they typically express genes allowing for tissue repair and
fibrosis. M2 type genes such as Arginase1 (Arg1) or the mannose
receptor Mrc1 are expressed in adipose tissue macrophages,
but also in tumor-associated macrophages or in macrophages
fighting parasitic infections (8, 64). Unlike M1 polarization,
M2-polarized macrophages can be converted to an M1 type in
vitro by treatment with IFNγ/LPS (67).

The apical transcription factor specifying the M2 state is
STAT6, activated by the IL4 and IL13 receptors. Many of the
typical M2 genes are direct targets of STAT6. IL4 also induces
an IRF family member, IRF4. The human Irf4 gene contains a
GAS element, suggesting it is under direct control of STAT6 (99,
100). Transcriptional induction of the Irf4 gene also requires the
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histone demethylase JMJD3 to remove the repressive H3K27me3
histone mark in the vicinity of the Irf4 transcription start.
This demethylation step is of critical importance as Jmjd3−/−

macrophages do not undergo M2 polarization during helminth
infection (101). More recent knockdown studies in human
monocytes suggest an enhancement of JMJD3 expression by
STAT6 (100). This suggests that STAT6 is apical to both JMJD3
and IRF4. In specifying M2 transcriptomes STAT6 and IRF4
interact with other transcription factors, particularly PPARγ,
C/EBPβ, and KLF4. Gene deficiencies for these transcription
factors reduce the M2 potential, as do those for STAT6 and
IRF4 (8). Different combinations of these transcription factors
may specify distinct M2ish transcriptomes in animals (64).
For example, PPARγ is instrumental in arranging the lipid
metabolism of adipose tissue macrophages.

STAT6 is unique among STATs by preferentially associating
with GAS containing 4 spacer nucleotides between half sites (5′-
TTCN4GAA-3

′). This explains in part why its target genes are
different from those activated by STAT1. On the other hand,
genome-wide analysis of STAT1 and STAT6 binding to GAS
elements revealed a large number of sites occupied by STAT1
and STAT6, respectively, in IFNγ or IL4-stimulated cells (102).
Thus, epigenetic mechanisms and/or the cooperation with other
M2 transcription factors are likely to further contribute to the
distinction between STAT6 and STAT1-induced transcriptome
changes. Although IRF4 is most likely a primary STAT6 target
in analogy to the situation with STAT1 and IRF1/IRF8, we are
not aware of a similarly important interaction of STAT6 and
IRF4 at the level of common target promoters. In a recent study,
an important function is assigned to STAT6 in cross-repressing
M1 genes. In IL4-treated macrophages STAT6 represses genes
at steady state and, in addition, renders proinflammatory
genes unresponsive to a subsequent LPS challenge. Suppression
requires HDAC3 activity and causes decreased promoter binding
of LDTFs (e.g., Pu.1, C/EBP) as well as the p300 histone acetyl
transferase. More than 600 LPS-induced genes show an overlap
of NFκB and STAT6 binding sites (GAS), 70% of which are
inhibited by IL4 and in 11.5% of them IL4 inhibited RelA/p65
binding (57). These genome-wide data are consistent with a
model of competitive enhancer association as one of several
mechanisms by which STAT6 represses NFκB activity. This
model agrees with an earlier study of the E- selectin promoter
suggesting direct competition of STAT6 and NFκB at overlapping
binding sites (56). IRF4 stimulates gene expression via ISRE
elements. It forms ternary complexes with Pu.1 and IRF8 on
composite ISREs. However, the data are conflicting with regard
to the outcome of complex formation on ISG transcription
with some suggesting an inhibitory activity and repression of
IRF1 activity (103, 104) and others supporting a stimulatory
role (105).

Just as M1 genes are suppressed in M2 macrophages, the
inverse situation is established in M1 polarized cells. In human
macrophages transcription factor MAF regulates the expression
of a subset of M2 genes. Fifteen percent of the genes repressed by
IFNγ treatment are MAF targets. MAFb is a bZip transcription
factor important for the development of macrophage-dendritic
cell progenitors to monocytes (106). The work of Kang et al.

demonstrates that IFNγ treatment causes a disassembly of MAF-
associating enhancer sequences. Accompanying changes were a
loss of enhancer transcription, of LDTF binding (Pu.1, CEBPβ),
cohesin association and of the H3K27ac mark as a beacon of
transcriptionally active genes. At the same time IFNγ deposits
LDTFs at latent enhancers. Disassembled MAF enhancers also
lose accessibility, determined by the disappearance of ATACseq
signals. Chromatin closing at MAF enhancers contrasts with the
majority of IFNγ-repressed genes that appear to be subject to a
different inhibitory mechanism. A complex enhancer regulating
MAF expression loses activating histone marks upon IFNγ

treatment, consistent with decreased MAF levels in such cells.
MAF family members are known to interact with Ets family
proteins, suggesting that M2 enhancer accessibility may be
regulated via Pu.1/MAF interaction. Another report by Ivashkiv’s
group showed that in human macrophages a small number of
genes is stably repressed by IFNγ via H3K27me3 deposition
by the PRC2 complex including the histone methylase EZH2
(107). These elegant studies provide important insight how
IFNγ tips the polarity balance by repressing M2 genes. The
studies do not address how the repressive mechanisms are linked
to signals from the IFNγ receptor or the STAT/IRF network
it activates. This will be an important task for future work.
Likewise, the similarities and differences to mouse macrophages
will interesting to decipher.

In a different approach, Piccolo and colleagues addressed
the question how mouse macrophages are reprogrammed by
a simultaneous encounter with the opposing IFNγ and IL4
(102). The authors report that each cytokine cross-inhibits
genes of the opposite pole, but the impact of IFNγ dominates,
most likely because it exerts a global effect on the binding of
STAT6. In contrast, the repressive effect of IL4 on IFNγ-induced
genes is more selective. Promoters containing GAS and ISRE
elements only are spared from repression whereas more complex
promoters that include sites for AP1 transcription factors with
JunB subunits, such as the Nos2 gene, are repressed. In line with
the study in human macrophages (108), MAFb-regulated genes
are also enriched among IFNγ-repressed genes. The authors
speculate that the inability of IL4 to globally suppress all IFNγ

activity allows macrophages to maintain essential immunological
functions such as the antiviral state. However, an immunological
assessment of IL4/IFNγ co-treated macrophages has not been
carried out. Interestingly, combining the finding that STAT6
and STAT1 both bind many GAS elements with the observed
suppression of STAT6 binding by IFNγ lends further support to
the direct competition model as one mechanism explaining the
cross inhibition of polarization genes.

Sequels of the Inflammatory Response:
LPS Tolerance and Macrophage Training
Chronic stimulation of macrophages with LPS causes a state of
tolerance in which many inflammatory genes are refractory to
further stimulation with LPS. The mechanisms contributing to
this refractory state are manifold and many are not at promoter
level, but rather affect TLR signaling and the activation of
inflammatory transcription factors (109). A notable exception is
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the NFκB pathway. NFκB binding sites are enriched in tolerized
genes (110), supporting an earlier notion that NFκB1/p50
forms repressive dimers on such sites (111). Macrophages
lacking NFκB1 cannot be tolerized by LPS (112). Yan et al
further demonstrate that p50 recruits HDAC complexes to
tolerized genes. In human monocyte-derived macrophages LPS
pretreatment leads to a tolerant state with extensive changes in
histone modifications (enhancer marks) in which a fraction of
LPS-induced genes shows an absent or reduced response to a
second LPS stimulus. IRF (particularly IRF8) and STAT motifs
are strongly enriched in genes showing partial unresponsiveness.
IRF1, IRF8, STAT2, and STAT5 themselves are among highly
tolerized genes. Interestingly, tolerization can to a large extent
be reversed by the yeast MAMP β-glucan. This substance is
associated with “trained immunity” (113). IFNγ pretreatment
reverses effects of the tolerized state by maintaining chromatin
remodeling and accessibility at LPS-induced genes (114). A
seminal study on the topic showed that chromatin modifications
and accessibility acquired during tolerization distinguish between
proinflammatory cytokine genes and antimicrobial genes. While
the former show a loss of remodeling and activating histone
marks, these are retained on the latter. Consistently, the
proinflammatory group enters a state of repression while the
latter maintains inducibility (115). This suggests that in the
tolerant state inflammation is dampened whereas antimicrobial
defense remains. However, LPS tolerance is also thought to
underlie the immunoparalysis of post-septic patients.

Trained Immunity
Trained immunity denotes a state of innate immunological
memory resulting in macrophages and other innate cells from
the previous encounter of an inflammatory and activating
stimulus (116). LPS tolerance is one form of trained immunity.
Training resulting from microbes such as BCG or Candida
albicans or the yeast-associated molecular pattern β-glucan
enhances subsequent responses of the innate immune system to
different microbial infections. The trained state is accompanied
by persistent metabolic and epigenetic changes. Epigenomic
alterations show partial overlap, but are clearly distinct between
LPS-tolerized and β-glucan-trained human macrophages (117).
At the level of transcription training is explained by persistence
of activating chromatin marks and regulatory site accessibility,
particularly at previously latent enhancers. The causes for these
genome changes are not understood. One study suggests an
IFNγ-dependent role for STAT1 in training by C. albicans, but
not β-glucan (118).

STATs AND IRFs IN DENDRITIC CELL (DC)
DEVELOPMENT AND FUNCTION

For a comprehensive review of transcription factors in the
development of DC subsets the reader is referred to the following
reviews (119, 120).

DC Development
Both STATs and IRFs play important roles in the generation of
different DC lineages and both influence each other’s activities.

STAT3, downstream of the Flt3 receptor, is required for the
generation of most likely all DC lineages in vitro and has
a clear role in plasmacytoid DC (pDC) development in vivo
(121). Constitutive IRF7 expression is thought to accompany
the development of pDC precursors into IFN-I-producing cells
(IPC), i.e., cells with the ability to rapidly synthesize large
quantities of IFN-I in response to TLR ligands (122). Recent
studies suggest that pDC precursors diversify in response to
a single TLR ligand and not all the resulting subpopulations
are IFN-I-producing cells (123). Single cell RNA sequencing
of human pDC suggests that only a small subpopulation is
stimulated to produce IFN-I. IFN-I production of this population
results from stochastic events rather than from developmental
predetermination and IRF7 is indeed not a prognostic marker for
future IFN-I production (124). Based on this study the concept
how IFN-producing cells arise may have to be revised.

STAT5 is required for the production of myeloid DC by
GM-CSF in vitro. It also mediates the suppressive function of
GM-CSF on pDC development (58). Type I IFN stimulate DC
maturation (125) andwere shown in a recent study to regulate the
glycolytic switch required for DC activation (126). In contrast,
IFN-I suppress CD8+ DC generation in vitro and during viral
infection in vivo. Intriguingly, this effect was shown to require
STAT2, but not STAT1 (127). The seeding of Payer’s patches with
pDC also requires IFN-I/STAT activity (128).

As during macrophage polarization, IRF8 and IRF4 determine
different DC fates. IRF8 is critical for the development of pDC,
tissue-resident CD103+ DC, CD8+ DC and Langerhans cells
(129–133). Intriguingly, the R294C mutant allows to distinguish
the role of IRF8 in the generation of pDC vs. CD8+ and
CD103+ DC with the former being unaffected and development
of the latter being inhibited (88, 131, 134). The property of this
mutation to disrupt the interaction between IRF8 and Pu.1 (88)
supports the assumption that composite Pu.1/IRF8 elements are
important for CD103+ and CD8+ DC, but not for pDC. The
IRF8 transcriptional network in CD103+ and CD8+ DC includes
Id2, BATF3, and Notch2, whereas in pDC IRF8 functionally
interacts with E2-2 and Bcl-11a (119). The suppressive effect of
GM-CSF on pDC development requires STAT5 binding to a GAS
in the IRF8 promoter where it inhibits IFN/STAT1-mediated
upregulation of IRF8 expression (58).

IRF4 is expressed in cDC expressing CD4 and CD11b (also
called cDC2) in a transcriptional network including RelB and
Notch2 (119, 135). IRF4 may support cDC2 function more than
their development. cDC2 are linked to both type 2 and type 3
immunity (135).

DC Activation
Similar to the studies defining the hierarchical action of
transcription factors and the distinction between LDTFs
and SRTFs in macrophages, Garber and colleagues defined
analogous networks of preexisting pioneers (LDTFs) for lineage
commitment, broad binders for priming, and dynamic factors
(SRTFs) for execution (136). The authors used myeloid, IRF4+

DC, generated in vitro with GM-CSF, for stimulation with LPS.
Prominent LDTFs were Pu.1 and C/EBP as in macrophages.
However, whether they occupy different sites in the two cell
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types has not been determined. In the LPS response the
authors distinguished immediate and delayed response gene
clusters that differed in priming factors (immediate: IRF4,
JUNB, ATF3, EGR2, MAFf; delayed: IRF4, JUNB, ATF3)
and dynamic association of the SRTFs IRF1 and NFκB. As
might be expected from the kinetics of IFN production
during the LPS response, STATs 1 and 2 associated with
the delayed, but not the immediate LPS-responsive gene
cluster.

The data in DC support the notion that the molecular
principles governing enhancer accessibility, priming, and signal-
regulated response are very similar between macrophages and
DC, although the detailed usage of transcription factors for each
stage of the transcriptional response during inflammation may
differ.

CONCLUDING REMARKS

This review is focused on the role of macrophages in
inflammation, with lesser attention to DC or non-hematopoietic
cells. We realize this is only one chapter of a complex story but,
based on available data, have focused on the cells allowing for the
closest inspection of transcriptional networks in inflammation.
Detailed views of the inflammatory response in other cells of
the innate immune system are needed. In an organismic context,
macrophages are shaped by their local environment (137). The
impact of the resulting diversity on inflammatory responses
remains to be determined. In future work ongoing large-scale
efforts will integrate dynamic changes of the 3D genome structure

into current knowledge about regulatory networks (138) and cell
atlases based on single cell transcriptomes will further resolve
distinct cell populations of the inflammatory response (139).
However, while genome-wide perspectives have yielded new
insight at an amazing pace in recent years and will continue to
do so, future research needs to follow up on these data with
biochemical approaches toward mechanisms of transcription
factor cooperativity and antagonism. For example, it will be
exciting to determine the different modes of action of LDTFs and
SRTFs or to provide further insight how combinations of SRTFs
feed into a common overall mechanism of promoter activation.
Determining dynamic structures of the complexes they form at
near atomic resolution will be invaluable support for such efforts
(140). Cas9-mediated editing is and will be an extremely useful
tool to test the impact of regulatory DNA (141). The recent
past has given us a panoply of powerful new tools to advance
our understanding of transcriptional mechanisms behind the
inflammatory response.
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