25687 measured reflections

 $R_{\rm int} = 0.056$ 

refinement  $\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$ 

6221 independent reflections

4014 reflections with  $I > 2\sigma(I)$ 

H atoms treated by a mixture of

independent and constrained

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (*E*)-3-(4-Decyloxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one

# Zainab Ngaini,<sup>a</sup> Norashikin Irdawaty Abd Rahman,<sup>a</sup> Hasnain Hussain,<sup>b</sup> Ibrahim Abdul Razak<sup>c</sup>\*‡ and Hoong-Kun Fun<sup>c</sup>§

<sup>a</sup>Department of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, <sup>b</sup>Department of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and <sup>c</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: arazaki@usm.my

Received 23 March 2009; accepted 24 March 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.058; wR factor = 0.165; data-to-parameter ratio = 24.1.

In the title compound,  $C_{25}H_{32}O_3$ , the enone group is in an *s*-*cis* configuration. The dihedral angle between the benzene rings is 8.84 (7)°. An intramolecular O-H···O interaction between the keto and hydroxy groups forms an *S*(6) ring motif. Intermolecular C-H···O interactions link the molecules into supramolecular chains along the *c* axis which are subsequently stacked down the *b* axis; the crystal structure is further consolidated by C-H··· $\pi$  interactions.

#### **Related literature**

For general background, see: Bhat *et al.* (2005); Xue *et al.* (2004); Satyanarayana *et al.* (2004); Won *et al.* (2005); Zhao *et al.* (2005). For related structures, see: Ng, Razak *et al.* (2006); Ng, Patil *et al.* (2006); Razak *et al.* (2009); Ngaini *et al.* (2009). For details of hydrogen-bond motifs, see: Bernstein *et al.* (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, 1986.



#### Experimental

#### Crystal data

#### Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005)  $T_{\rm min} = 0.967, T_{\rm max} = 0.997$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$  $wR(F^2) = 0.165$ S = 1.046221 reflections 258 parameters

 Table 1

 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                                                                                                           | D-H                                      | $H \cdot \cdot \cdot A$                  | $D \cdots A$                                                  | $D - \mathbf{H} \cdots A$           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------------------------|-------------------------------------|
| $\begin{array}{c} 01 - H1O1 \cdots O2 \\ C15 - H15A \cdots O3^{i} \\ C20 - H20B \cdots Cg1^{ii} \\ C22 - H22A \cdots Cg1^{iii} \\ C16 - H16A \cdots Cg2^{iii} \end{array}$ | 0.91 (2)<br>0.93<br>0.97<br>0.97<br>0.97 | 1.68 (2)<br>2.48<br>2.85<br>2.84<br>2.87 | 2.526 (2)<br>3.406 (2)<br>3.702 (2)<br>3.712 (2)<br>3.596 (2) | 152 (2)<br>174<br>147<br>149<br>132 |

Symmetry codes: (i)  $x, -y + \frac{1}{2}, z + \frac{1}{2}$ ; (ii) -x + 1, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 1. Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and IAR thank the Malaysian Government and Universiti Sains Malaysia for the award of the Science Fund grant No. 305/PFIZIK/613312 and for the Research University Golden Goose grant No. 1001/PFIZIK/811012. ZN and HH thank Universiti Malaysia Sarawak for the Geran Penyelidikan Dana Khas Inovasi, grant No. DI/01/2007(01). NIAR thanks the Malaysian Government and Universiti Malaysia Sarawak for providing a scholarship for postgraduate studies.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2402).

#### References

<sup>‡</sup> Thomson Reuters ResearcherID: A-5169-2009.

<sup>§</sup> Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). *Bioorg. Med. Chem. Lett.* 15, 3177–3180.

Bruker (2005). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

- Ng, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, 01228–01230.
- Ng, S.-L., Razak, I. A., Fun, H.-K., Shettigar, V., Patil, P. S. & Dharmaprakash, S. M. (2006). *Acta Cryst.* E62, o2175–o2177.
- Ngaini, Z., Fadzilah, S. M. H., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, 0879–0880.
- Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzilah, S. M. H. & Hussain, H. (2009). Acta Cryst. E65, 0881–0882.
- Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. Lett. 12, 883–889.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Won, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103–112.
- Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745–753.
- Zhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). *Chem. Lett.* **15**, 5027–5029.

Acta Cryst. (2009). E65, 0889-0890 [doi:10.1107/S1600536809010848]

# (E)-3-(4-Decyloxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one

# Z. Ngaini, N. I. A. Rahman, H. Hussain, I. A. Razak and H.-K. Fun

# Comment

Chalcone is one of the important intermediates in the biosynthesis of flavonoid. Chalcones derivatives are reported to exhibit biological properties such as an anti-malarial (Xue *et al.*, 2004), anti-cancer (Bhat *et al.*, 2005), anti-inflammatory (Won *et al.*, 2005), anti-platelet (Zhao *et al.*, 2005), and as well as anti-hyperglycemic (Satyanarayana *et al.*, 2004) activities.

Chalcone derivatives possessing alkyl chains of varying length have been synthesized in our laboratory. They were tested against *E. coli* ATCC 8739 for their anti-bacterial activities and showed anti-microbial activity. In this paper, we report the structure of one of the chalcone derivatives mentioned above.

In (I), Fig. 1, the enone group is in an *s-cis* configuration as indicated by the torsion angle O2—C7—C8—C9 of 1.2 (2)°. The least-square plane through the enone moiety makes dihedral angle of 3.64 (10)° with C1—C6 benzene ring whereas the dihedral angle formed with the C10—C15 benzene ring is  $7.72 (10)^\circ$ . The dihedral angle between these benzene rings is  $8.84 (7)^\circ$ . The alkoxyl group is co-planar with the attached benzene ring as shown by the torsion angle C16—O3—C13—C14 of -1.6 (2)°.

The strain induced by a short H5A···H8A contact (2.11 Å) leads to the slight opening of the C5—C6—C7 angle to 123.03 (13)°. Likewise, the widening of C8—C9—C10 (128.65 (14)°) and C9—C10—C11 (123.18 (13)°) angles are the result of a close H8A···H11A (2.32 Å) interatomic contact. These features were also observed in related structures reported previously (Ng, Razak *et al.*, 2006; Ng, Patil *et al.*, 2006; Razak *et al.*, 2009; Ngaini *et al.*, 2009). An intramolecular O1-H101···O2 interaction between the keto group and the hydroxy generates an S(6) ring motif (Bernstein *et al.*, 1995).

In the crystal structure, C15—H15A···O3 (x, -y + 1/2, z + 1/2) intermolecular interactions link the molecules into extended chains along the *c* axis (Table 1 and Fig. 2). These chains are subsequently stacked down the *b* axis. The crystal packing is further stabilized by the presence of C—H··· $\pi$  interactions formed between atoms C16, C20 and C22 in the alkoxyl tail and the benzene rings (Table 1).

## **Experimental**

A mixture of 2-hydroxyacetophenone (2.72 ml, 20 mmol), 4-decyloxybenzaldehyde (5.25 ml, 20 mmol) and KOH (4.04 g, 72 mmol) in methanol (60 ml) was heated at reflux for 10 h. The reaction mixture was cooled to room temperature and acidified with cold diluted HCl (2 N). The resulting precipitate was filtered, washed and dried. After redissolving in hexane and followed by few days of slow evaporation, crystals were collected.

## Refinement

All the C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å. The  $U_{iso}$  values were constrained to be 1.5U<sub>eq</sub>(C) for methyl-H and 1.2U<sub>eq</sub>(C) for other H atoms. The rotating model group

was applied for the methyl group. In the case of O1, the hydrogen atom was located from a difference Fourier map and refined without constraints.

# Figures



Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2. The crystal packing viewed down the *b* axis.

# (E)-3-(4-Decyloxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one

| Crystal data                                   |                                                 |
|------------------------------------------------|-------------------------------------------------|
| C <sub>25</sub> H <sub>32</sub> O <sub>3</sub> | $F_{000} = 824$                                 |
| $M_r = 380.51$                                 | $D_{\rm x} = 1.194 {\rm ~Mg~m}^{-3}$            |
| Monoclinic, $P2_1/c$                           | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc                           | Cell parameters from 3600 reflections           |
| a = 21.2700 (4)  Å                             | $\theta = 2.8 - 30.1^{\circ}$                   |
| <i>b</i> = 7.6779 (2) Å                        | $\mu = 0.08 \text{ mm}^{-1}$                    |
| c = 13.2330(3) Å                               | T = 100  K                                      |
| $\beta = 101.720 \ (1)^{\circ}$                | Plate, yellow                                   |
| $V = 2116.01 (8) \text{ Å}^3$                  | $0.44 \times 0.28 \times 0.04 \text{ mm}$       |
| Z = 4                                          |                                                 |

## Data collection

| Bruker APEXII CCD area-detector diffractometer              | 6221 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: sealed tube                               | 4014 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.056$                  |
| T = 100  K                                                  | $\theta_{\text{max}} = 30.1^{\circ}$   |
| $\pi$ and $\omega$ scans                                    | $\theta_{\min} = 1.0^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2005) | $h = -30 \rightarrow 30$               |
| $T_{\min} = 0.967, \ T_{\max} = 0.997$                      | $k = -10 \rightarrow 10$               |
| 25687 measured reflections                                  | $l = -18 \rightarrow 18$               |

## Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map     |
|---------------------------------|----------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites |
| $R[F^2 > 2\sigma(F^2)] = 0.058$ | H atoms treated by a mixture of                          |

independent and constrained refinement

| $wR(F^2) = 0.165$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $w = 1/[\sigma^2(F_o^2) + (0.085P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| <i>S</i> = 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(\Delta/\sigma)_{\rm max} < 0.001$                                      |
| 6221 reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$                      |
| 258 parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Delta \rho_{min} = -0.26 \text{ e} \text{ Å}^{-3}$                     |
| Determine the state of the stat |                                                                          |

Primary atom site location: structure-invariant direct Extinction correction: none methods

#### Special details

**Experimental**. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|      | x           | У             | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|-------------|---------------|--------------|---------------------------|
| 01   | 0.77177 (6) | -0.18603 (17) | 1.07201 (8)  | 0.0262 (3)                |
| O2   | 0.67717 (5) | -0.08052 (16) | 0.93853 (8)  | 0.0229 (3)                |
| O3   | 0.46966 (5) | 0.31479 (15)  | 0.38134 (8)  | 0.0184 (3)                |
| C1   | 0.80643 (7) | -0.1716 (2)   | 0.99763 (11) | 0.0190 (3)                |
| C2   | 0.87159 (7) | -0.2144 (2)   | 1.02373 (12) | 0.0221 (4)                |
| H2A  | 0.8895      | -0.2502       | 1.0905       | 0.026*                    |
| C3   | 0.90932 (8) | -0.2037 (2)   | 0.95104 (13) | 0.0238 (4)                |
| H3A  | 0.9527      | -0.2317       | 0.9691       | 0.029*                    |
| C4   | 0.88302 (7) | -0.1510 (2)   | 0.85025 (12) | 0.0243 (4)                |
| H4A  | 0.9087      | -0.1447       | 0.8012       | 0.029*                    |
| C5   | 0.81885 (7) | -0.1087 (2)   | 0.82397 (12) | 0.0202 (4)                |
| H5A  | 0.8015      | -0.0748       | 0.7566       | 0.024*                    |
| C6   | 0.77893 (7) | -0.1153 (2)   | 0.89626 (11) | 0.0164 (3)                |
| C7   | 0.71034 (7) | -0.0670 (2)   | 0.87122 (11) | 0.0168 (3)                |
| C8   | 0.68075 (7) | -0.0001 (2)   | 0.76851 (11) | 0.0170 (3)                |
| H8A  | 0.7050      | 0.0083        | 0.7176       | 0.020*                    |
| C9   | 0.61889 (7) | 0.0488 (2)    | 0.74806 (11) | 0.0162 (3)                |
| H9A  | 0.5973      | 0.0365        | 0.8021       | 0.019*                    |
| C10  | 0.58106 (7) | 0.1188 (2)    | 0.65252 (11) | 0.0148 (3)                |
| C11  | 0.60383 (7) | 0.1283 (2)    | 0.56004 (11) | 0.0173 (3)                |
| H11A | 0.6451      | 0.0898        | 0.5583       | 0.021*                    |
| C12  | 0.56528 (7) | 0.1943 (2)    | 0.47184 (11) | 0.0181 (3)                |
|      |             |               |              |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| H12A | 0.5806      | 0.1993     | 0.4109        | 0.022*     |
|------|-------------|------------|---------------|------------|
| C13  | 0.50347 (7) | 0.2538 (2) | 0.47327 (11)  | 0.0155 (3) |
| C14  | 0.48019 (7) | 0.2480 (2) | 0.56425 (11)  | 0.0169 (3) |
| H14A | 0.4393      | 0.2891     | 0.5661        | 0.020*     |
| C15  | 0.51927 (7) | 0.1794 (2) | 0.65231 (11)  | 0.0178 (3) |
| H15A | 0.5037      | 0.1738     | 0.7130        | 0.021*     |
| C16  | 0.40477 (7) | 0.3738 (2) | 0.37618 (11)  | 0.0166 (3) |
| H16A | 0.4040      | 0.4690     | 0.4241        | 0.020*     |
| H16B | 0.3784      | 0.2798     | 0.3935        | 0.020*     |
| C17  | 0.37994 (7) | 0.4340 (2) | 0.26649 (11)  | 0.0167 (3) |
| H17A | 0.3836      | 0.3389     | 0.2198        | 0.020*     |
| H17B | 0.4068      | 0.5286     | 0.2512        | 0.020*     |
| C18  | 0.31030 (7) | 0.4956 (2) | 0.24639 (11)  | 0.0174 (3) |
| H18A | 0.3063      | 0.5922     | 0.2919        | 0.021*     |
| H18B | 0.2830      | 0.4018     | 0.2613        | 0.021*     |
| C19  | 0.28817 (7) | 0.5531 (2) | 0.13439 (11)  | 0.0171 (3) |
| H19A | 0.3153      | 0.6484     | 0.1212        | 0.021*     |
| H19B | 0.2946      | 0.4571     | 0.0899        | 0.021*     |
| C20  | 0.21838 (7) | 0.6114 (2) | 0.10436 (11)  | 0.0179 (3) |
| H20A | 0.2113      | 0.7086     | 0.1476        | 0.022*     |
| H20B | 0.1906      | 0.5167     | 0.1161        | 0.022*     |
| C21  | 0.20115 (7) | 0.6662 (2) | -0.00900 (11) | 0.0197 (3) |
| H21A | 0.2293      | 0.7608     | -0.0197       | 0.024*     |
| H21B | 0.2095      | 0.5690     | -0.0512       | 0.024*     |
| C22  | 0.13201 (7) | 0.7246 (2) | -0.04652 (11) | 0.0198 (3) |
| H22A | 0.1231      | 0.8218     | -0.0048       | 0.024*     |
| H22B | 0.1034      | 0.6300     | -0.0375       | 0.024*     |
| C23  | 0.11847 (7) | 0.7792 (2) | -0.15963 (12) | 0.0210 (4) |
| H23A | 0.1467      | 0.8751     | -0.1677       | 0.025*     |
| H23B | 0.1289      | 0.6826     | -0.2006       | 0.025*     |
| C24  | 0.04954 (7) | 0.8345 (2) | -0.20226 (12) | 0.0223 (4) |
| H24A | 0.0400      | 0.9375     | -0.1657       | 0.027*     |
| H24B | 0.0208      | 0.7424     | -0.1899       | 0.027*     |
| C25  | 0.03726 (8) | 0.8736 (3) | -0.31744 (13) | 0.0296 (4) |
| H25A | -0.0062     | 0.9124     | -0.3402       | 0.044*     |
| H25B | 0.0441      | 0.7700     | -0.3544       | 0.044*     |
| H25C | 0.0662      | 0.9630     | -0.3304       | 0.044*     |
| H1O1 | 0.7313 (10) | -0.153 (3) | 1.0406 (17)   | 0.053 (7)* |
|      |             |            |               |            |

# Atomic displacement parameters $(Å^2)$

|    | $U^{11}$   | $U^{22}$    | U <sup>33</sup> | $U^{12}$   | $U^{13}$    | $U^{23}$    |
|----|------------|-------------|-----------------|------------|-------------|-------------|
| O1 | 0.0252 (6) | 0.0380 (8)  | 0.0154 (5)      | 0.0058 (6) | 0.0043 (4)  | 0.0038 (5)  |
| O2 | 0.0205 (6) | 0.0322 (7)  | 0.0166 (5)      | 0.0022 (5) | 0.0052 (4)  | 0.0040 (5)  |
| O3 | 0.0157 (5) | 0.0255 (7)  | 0.0137 (5)      | 0.0054 (5) | 0.0025 (4)  | 0.0040 (4)  |
| C1 | 0.0206 (8) | 0.0206 (9)  | 0.0152 (7)      | 0.0009 (7) | 0.0024 (6)  | -0.0017 (6) |
| C2 | 0.0218 (8) | 0.0255 (10) | 0.0162 (7)      | 0.0055 (7) | -0.0025 (6) | 0.0014 (6)  |
| C3 | 0.0182 (8) | 0.0260 (10) | 0.0258 (8)      | 0.0050 (7) | 0.0008 (6)  | -0.0011 (7) |

| C4  | 0.0202 (8) | 0.0302 (10) | 0.0234 (8) | 0.0027 (8)  | 0.0066 (6)  | 0.0020 (7)  |
|-----|------------|-------------|------------|-------------|-------------|-------------|
| C5  | 0.0207 (8) | 0.0217 (9)  | 0.0178 (7) | 0.0012 (7)  | 0.0027 (6)  | 0.0028 (6)  |
| C6  | 0.0160 (7) | 0.0162 (8)  | 0.0161 (7) | 0.0003 (6)  | 0.0009 (5)  | 0.0002 (6)  |
| C7  | 0.0180 (7) | 0.0154 (8)  | 0.0164 (7) | -0.0009 (6) | 0.0020 (5)  | -0.0005 (6) |
| C8  | 0.0191 (7) | 0.0172 (8)  | 0.0147 (7) | -0.0002 (7) | 0.0033 (5)  | 0.0011 (6)  |
| C9  | 0.0194 (7) | 0.0155 (8)  | 0.0139 (7) | -0.0026 (6) | 0.0039 (5)  | -0.0023 (6) |
| C10 | 0.0151 (7) | 0.0147 (8)  | 0.0140 (6) | -0.0009 (6) | 0.0018 (5)  | -0.0003 (6) |
| C11 | 0.0155 (7) | 0.0187 (9)  | 0.0181 (7) | 0.0020 (6)  | 0.0041 (5)  | -0.0015 (6) |
| C12 | 0.0187 (7) | 0.0221 (9)  | 0.0146 (7) | 0.0018 (7)  | 0.0062 (5)  | 0.0011 (6)  |
| C13 | 0.0169 (7) | 0.0152 (8)  | 0.0136 (7) | 0.0003 (6)  | 0.0016 (5)  | -0.0003 (6) |
| C14 | 0.0135 (7) | 0.0204 (9)  | 0.0170 (7) | 0.0015 (6)  | 0.0034 (5)  | -0.0016 (6) |
| C15 | 0.0167 (7) | 0.0230 (9)  | 0.0144 (7) | -0.0017 (7) | 0.0048 (5)  | -0.0004 (6) |
| C16 | 0.0131 (7) | 0.0211 (9)  | 0.0159 (7) | 0.0018 (6)  | 0.0036 (5)  | 0.0008 (6)  |
| C17 | 0.0165 (7) | 0.0180 (8)  | 0.0154 (7) | 0.0013 (6)  | 0.0024 (5)  | 0.0010 (6)  |
| C18 | 0.0162 (7) | 0.0207 (9)  | 0.0153 (7) | 0.0017 (7)  | 0.0027 (5)  | 0.0016 (6)  |
| C19 | 0.0161 (7) | 0.0197 (9)  | 0.0154 (7) | 0.0004 (6)  | 0.0030 (5)  | 0.0018 (6)  |
| C20 | 0.0168 (7) | 0.0190 (9)  | 0.0178 (7) | 0.0006 (7)  | 0.0028 (5)  | 0.0007 (6)  |
| C21 | 0.0179 (7) | 0.0232 (9)  | 0.0175 (7) | 0.0037 (7)  | 0.0023 (6)  | 0.0015 (6)  |
| C22 | 0.0192 (7) | 0.0213 (9)  | 0.0186 (7) | 0.0018 (7)  | 0.0029 (6)  | 0.0009 (6)  |
| C23 | 0.0194 (8) | 0.0236 (9)  | 0.0191 (7) | 0.0021 (7)  | 0.0016 (6)  | 0.0005 (6)  |
| C24 | 0.0180 (7) | 0.0244 (10) | 0.0228 (8) | 0.0023 (7)  | 0.0005 (6)  | 0.0014 (7)  |
| C25 | 0.0279 (9) | 0.0333 (11) | 0.0238 (8) | 0.0024 (8)  | -0.0038 (7) | 0.0034 (7)  |
|     |            |             |            |             |             |             |

# Geometric parameters (Å, °)

| O1—C1   | 1.3488 (18) | C16—C17  | 1.5126 (19) |
|---------|-------------|----------|-------------|
| 01—H101 | 0.91 (2)    | C16—H16A | 0.9700      |
| O2—C7   | 1.2479 (17) | C16—H16B | 0.9700      |
| O3—C13  | 1.3643 (17) | C17—C18  | 1.526 (2)   |
| O3—C16  | 1.4411 (17) | С17—Н17А | 0.9700      |
| C1—C2   | 1.398 (2)   | С17—Н17В | 0.9700      |
| C1—C6   | 1.418 (2)   | C18—C19  | 1.5263 (19) |
| C2—C3   | 1.375 (2)   | C18—H18A | 0.9700      |
| C2—H2A  | 0.9300      | C18—H18B | 0.9700      |
| C3—C4   | 1.397 (2)   | C19—C20  | 1.524 (2)   |
| С3—НЗА  | 0.9300      | С19—Н19А | 0.9700      |
| C4—C5   | 1.377 (2)   | С19—Н19В | 0.9700      |
| C4—H4A  | 0.9300      | C20—C21  | 1.529 (2)   |
| C5—C6   | 1.403 (2)   | C20—H20A | 0.9700      |
| C5—H5A  | 0.9300      | C20—H20B | 0.9700      |
| C6—C7   | 1.476 (2)   | C21—C22  | 1.521 (2)   |
| С7—С8   | 1.469 (2)   | C21—H21A | 0.9700      |
| C8—C9   | 1.342 (2)   | C21—H21B | 0.9700      |
| C8—H8A  | 0.9300      | C22—C23  | 1.524 (2)   |
| C9—C10  | 1.4563 (19) | C22—H22A | 0.9700      |
| С9—Н9А  | 0.9300      | C22—H22B | 0.9700      |
| C10—C15 | 1.394 (2)   | C23—C24  | 1.520 (2)   |
| C10—C11 | 1.406 (2)   | C23—H23A | 0.9700      |
| C11—C12 | 1.379 (2)   | С23—Н23В | 0.9700      |
|         |             |          |             |

| C11—H11A     | 0.9300      | C24—C25       | 1.523 (2)   |
|--------------|-------------|---------------|-------------|
| C12—C13      | 1.395 (2)   | C24—H24A      | 0.9700      |
| C12—H12A     | 0.9300      | C24—H24B      | 0.9700      |
| C13—C14      | 1.393 (2)   | C25—H25A      | 0.9600      |
| C14—C15      | 1.390 (2)   | C25—H25B      | 0.9600      |
| C14—H14A     | 0.9300      | С25—Н25С      | 0.9600      |
| C15—H15A     | 0.9300      |               |             |
| C1-O1-H1O1   | 104.5 (14)  | C16—C17—H17A  | 108.9       |
| C13—O3—C16   | 118.47 (11) | С18—С17—Н17А  | 108.9       |
| O1—C1—C2     | 117.51 (14) | С16—С17—Н17В  | 108.9       |
| O1—C1—C6     | 122.27 (14) | С18—С17—Н17В  | 108.9       |
| C2—C1—C6     | 120.21 (14) | H17A—C17—H17B | 107.7       |
| C3—C2—C1     | 120.24 (14) | C17—C18—C19   | 110.85 (12) |
| C3—C2—H2A    | 119.9       | C17—C18—H18A  | 109.5       |
| C1—C2—H2A    | 119.9       | C19—C18—H18A  | 109.5       |
| C2—C3—C4     | 120.52 (14) | C17—C18—H18B  | 109.5       |
| С2—С3—Н3А    | 119.7       | C19—C18—H18B  | 109.5       |
| С4—С3—Н3А    | 119.7       | H18A—C18—H18B | 108.1       |
| C5—C4—C3     | 119.56 (15) | C20—C19—C18   | 115.48 (12) |
| С5—С4—Н4А    | 120.2       | C20—C19—H19A  | 108.4       |
| C3—C4—H4A    | 120.2       | С18—С19—Н19А  | 108.4       |
| C4—C5—C6     | 121.68 (14) | С20—С19—Н19В  | 108.4       |
| C4—C5—H5A    | 119.2       | С18—С19—Н19В  | 108.4       |
| С6—С5—Н5А    | 119.2       | H19A—C19—H19B | 107.5       |
| C5—C6—C1     | 117.76(13)  | C19—C20—C21   | 111.31 (12) |
| C5—C6—C7     | 123.03 (13) | С19—С20—Н20А  | 109.4       |
| C1—C6—C7     | 119.21 (13) | C21—C20—H20A  | 109.4       |
| O2—C7—C8     | 119.42 (13) | С19—С20—Н20В  | 109.4       |
| O2—C7—C6     | 119.67 (13) | C21—C20—H20B  | 109.4       |
| C8—C7—C6     | 120.90 (13) | H20A—C20—H20B | 108.0       |
| C9—C8—C7     | 120.17 (14) | C22—C21—C20   | 115.12 (12) |
| С9—С8—Н8А    | 119.9       | C22—C21—H21A  | 108.5       |
| С7—С8—Н8А    | 119.9       | C20—C21—H21A  | 108.5       |
| C8—C9—C10    | 128.65 (14) | C22—C21—H21B  | 108.5       |
| С8—С9—Н9А    | 115.7       | C20—C21—H21B  | 108.5       |
| С10—С9—Н9А   | 115.7       | H21A—C21—H21B | 107.5       |
| C15-C10-C11  | 118.18 (13) | C21—C22—C23   | 112.27 (12) |
| C15—C10—C9   | 118.64 (13) | C21—C22—H22A  | 109.2       |
| C11—C10—C9   | 123.18 (13) | С23—С22—Н22А  | 109.2       |
| C12-C11-C10  | 120.31 (14) | C21—C22—H22B  | 109.2       |
| C12—C11—H11A | 119.8       | С23—С22—Н22В  | 109.2       |
| C10-C11-H11A | 119.8       | H22A—C22—H22B | 107.9       |
| C11—C12—C13  | 120.56 (13) | C24—C23—C22   | 114.63 (13) |
| C11—C12—H12A | 119.7       | C24—C23—H23A  | 108.6       |
| C13—C12—H12A | 119.7       | С22—С23—Н23А  | 108.6       |
| O3—C13—C14   | 124.49 (13) | С24—С23—Н23В  | 108.6       |
| O3—C13—C12   | 115.33 (12) | С22—С23—Н23В  | 108.6       |
| C14—C13—C12  | 120.18 (13) | H23A—C23—H23B | 107.6       |
| C15—C14—C13  | 118.67 (14) | C23—C24—C25   | 112.51 (14) |

| C15—C14—H14A    | 120.7        | C23—C24—H24A    | 109.1        |
|-----------------|--------------|-----------------|--------------|
| C13—C14—H14A    | 120.7        | C25—C24—H24A    | 109.1        |
| C14-C15-C10     | 122.08 (14)  | C23—C24—H24B    | 109.1        |
| C14—C15—H15A    | 119.0        | C25—C24—H24B    | 109.1        |
| C10-C15-H15A    | 119.0        | H24A—C24—H24B   | 107.8        |
| O3—C16—C17      | 106.62 (11)  | C24—C25—H25A    | 109.5        |
| O3—C16—H16A     | 110.4        | C24—C25—H25B    | 109.5        |
| С17—С16—Н16А    | 110.4        | H25A—C25—H25B   | 109.5        |
| O3—C16—H16B     | 110.4        | C24—C25—H25C    | 109.5        |
| С17—С16—Н16В    | 110.4        | H25A—C25—H25C   | 109.5        |
| H16A—C16—H16B   | 108.6        | H25B—C25—H25C   | 109.5        |
| C16—C17—C18     | 113.54 (12)  |                 |              |
| O1—C1—C2—C3     | 179.46 (16)  | C9-C10-C11-C12  | 179.31 (15)  |
| C6—C1—C2—C3     | -0.6 (3)     | C10-C11-C12-C13 | 0.5 (2)      |
| C1—C2—C3—C4     | -0.4 (3)     | C16—O3—C13—C14  | -1.6 (2)     |
| C2—C3—C4—C5     | 0.4 (3)      | C16—O3—C13—C12  | 178.28 (13)  |
| C3—C4—C5—C6     | 0.6 (3)      | C11—C12—C13—O3  | -179.46 (14) |
| C4—C5—C6—C1     | -1.5 (2)     | C11—C12—C13—C14 | 0.4 (2)      |
| C4—C5—C6—C7     | 178.57 (16)  | O3—C13—C14—C15  | 178.78 (14)  |
| O1—C1—C6—C5     | -178.55 (15) | C12—C13—C14—C15 | -1.1 (2)     |
| C2-C1-C6-C5     | 1.5 (2)      | C13—C14—C15—C10 | 0.9 (2)      |
| O1—C1—C6—C7     | 1.4 (2)      | C11-C10-C15-C14 | 0.0 (2)      |
| C2-C1-C6-C7     | -178.58 (15) | C9-C10-C15-C14  | -179.99 (14) |
| C5—C6—C7—O2     | 178.04 (16)  | C13—O3—C16—C17  | 179.70 (13)  |
| C1—C6—C7—O2     | -1.9 (2)     | O3—C16—C17—C18  | 178.01 (13)  |
| C5—C6—C7—C8     | -3.0 (2)     | C16—C17—C18—C19 | -179.58 (13) |
| C1—C6—C7—C8     | 177.06 (15)  | C17—C18—C19—C20 | 177.93 (14)  |
| O2—C7—C8—C9     | 1.2 (2)      | C18—C19—C20—C21 | 179.96 (14)  |
| C6—C7—C8—C9     | -177.73 (15) | C19—C20—C21—C22 | 179.28 (14)  |
| C7—C8—C9—C10    | 179.58 (15)  | C20—C21—C22—C23 | 179.36 (14)  |
| C8-C9-C10-C15   | -172.82 (16) | C21—C22—C23—C24 | 178.50 (14)  |
| C8-C9-C10-C11   | 7.2 (3)      | C22—C23—C24—C25 | -175.39 (15) |
| C15—C10—C11—C12 | -0.7 (2)     |                 |              |

# Hydrogen-bond geometry (Å, °)

| D—H···A                                                                                     | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D\!\!-\!\!\mathrm{H}^{\ldots}\!A$ |
|---------------------------------------------------------------------------------------------|-------------|--------------|--------------|------------------------------------|
| 01—H101···O2                                                                                | 0.91 (2)    | 1.68 (2)     | 2.526 (2)    | 152 (2)                            |
| C15—H15A···O3 <sup>i</sup>                                                                  | 0.93        | 2.48         | 3.406 (2)    | 174                                |
| C20—H20B···Cg1 <sup>ii</sup>                                                                | 0.97        | 2.85         | 3.702 (2)    | 147                                |
| C22—H22A····Cg1 <sup>iii</sup>                                                              | 0.97        | 2.84         | 3.712 (2)    | 149                                |
| C16—H16A…Cg2 <sup>iii</sup>                                                                 | 0.97        | 2.87         | 3.596 (2)    | 132                                |
| Symmetry codes: (i) $x, -y+1/2, z+1/2$ ; (ii) $-x+1, -y, -z+1$ ; (iii) $-x+1, -y+1, -z+1$ . |             |              |              |                                    |

Fig. 1



