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Background. Adolescentmarijuana use is associatedwith structural and functional differences in forebrain regionswhile performing
memory and attention tasks. In the present study, we investigated neural processing in adolescent marijuana users experiencing
rewards and losses. Fourteen adolescents with frequent marijuana use (>5 uses per week) and 14 nonuser controls performed
a computer task where they were required to guess the outcome of a simulated coin flip while undergoing magnetic resonance
imaging. Results. Across all participants, “Wins” and “Losses” were associated with activations including cingulate, middle frontal,
superior frontal, and inferior frontal gyri and declive activations. Relative to controls, users had greater activity in the middle and
inferior frontal gyri, caudate, and claustrum during “Wins” and greater activity in the anterior and posterior cingulate, middle
frontal gyrus, insula, claustrum, and declive during “Losses.” Effective connectivity analyses revealed similar overall network
interactions among these regions for users and controls during both “Wins” and “Losses.” However, users and controls had
significantly different causal interactions for 10 out of 28 individual paths during the “Losses” condition. Conclusions. Collectively,
these results indicate adolescent marijuana users have enhanced neural responses to simulated monetary rewards and losses and
relatively subtle differences in effective connectivity.

1. Introduction

Marijuana use among adolescents is prevalent and increasing
[1], and there is ample evidence that adolescents who use
marijuana are at increased risk for developing psychiatric
conditions including psychotic and affective disorders, as well
as more severe substance use disorders [2–6]. Additionally,
adult marijuana users who started in adolescence appear
to show the most robust cognitive impairments [7, 8]. An
emerging body of literature indicates that adolescent mari-
juana users have altered anatomy in prefrontal cortical and
other forebrain regions [9–12] and corresponding functional
differences while performing memory and attention tasks
[13–18]. While it is unclear to what degree these outcomes

are the result of marijuana use versus preexisting differ-
ences, there is evidence from animal models that adolescent
exposure to tetrahydrocannabinol (THC), the primary active
component of marijuana, can induce lasting structural brain
changes accompanied by persistent cognitive and behavioral
impairments [2, 19–21].

While reward processing has been studied rather exten-
sively for many drug use disorders [22], to date relatively few
studies have investigated neural substrates of reward process-
ing in adolescent marijuana users. Adult marijuana users had
increased striatal while anticipating rewards on themonetary
incentive delay task, possibly indicating increased sensitivity
to rewards [23]. Another study on adult marijuana users
undergoing themonetary incentive delay task showed greater
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responses in reward circuitry in response to positive, but not
negative, incentives, further suggesting that marijuana users
may bemore sensitive to rewards [24]. Adult marijuana users
had decreased activity in anterior cingulate, medial frontal
cortex, precuneus, superior parietal lobe, occipital lobe, and
cerebellum following losses to negative feedback on the Iowa
Gambling Task [25], also suggesting diminished response to
negative incentives. However, behavioral data suggests that
adolescent marijuana users are more sensitive to negative
consequences, suggesting that this may be an opportune time
to intervene behaviorally [26]. A better understanding of
how reward cicutiry uitry functioning is altered in adoles-
cent marijuana users may provide insight into mechanisms
contributing to their use of marijuana or other substances.

In the present study, we sought to examine brain func-
tioning in response to simulatedmonetary rewards and losses
in adolescent marijuana users versus controls. Our method-
ology included examining alterations in neural circuitry
using effective connectivity analyses. In contrast to more
commonly used functional connectivity methods which sim-
ply investigate correlations between different brain regions,
effective connectivity analyses offer the ability to investigate
causality between regions, to probe subtle yet dynamic effects,
such as differential patterns across clinical groups or devel-
opmental changes across the lifespan [27]. Given findings
of marijuana users having altered activity in striatal, frontal
cortical, and other regions during experiencing rewards and
losses [23–25], marijuana users may be expected to show
altered effective connectivity in these circuits as well. For
instance, regions with increased activity in marijuana users
may be less influenced by and/or have greater effects on other
regions. Consequently, we expected connectivity in forebrain
and other regions to be altered in adolescent marijuana users.

2. Methods

2.1. Participants. Fourteen marijuana using adolescents (11
males, 3 females) and 14 healthy control adolescents (11males,
3 females) were recruited from the community through radio,
newspaper, and television advertisements. Respondents to
advertising completed an initial telephone interview to assess
suitability for study participation, and potential participants
were invited to the laboratory for a more comprehensive
screening assessment of physical and psychiatric health,
drug/alcohol use history, and intelligence. Psychiatric health
was assessed using the Structured Clinical Interview for
DSM-IV psychiatric disorders (SCID [28]) administered by
trained research assistants and reviewed by a staff psychi-
atrist. Intelligence was assessed using the Wechsler Abbre-
viated Scale of Intelligence (WASI [29]). Family socioeco-
nomic status was measured using the Four Factor Index of
Socioeconomic Status (FFIS [30]). Self-reported impulsivity
was assessed using the Barratt Impulsiveness Scale (BIS-11
[31]). Marijuana users were required to use marijuana 5 or
more days per week.

Exclusionary criteria included physical or neurological
conditions that would interfere with task performance, DSM-
IV Axis I psychiatric disorder (other than cannabis use
disorders for the user group including other substance use

disorders), positive alcohol or drug screen (other than THC
for the user group), or IQ < 80. All participants were between
15 and 19 years old. Written informed consent was obtained
prior to study participation. The experimental protocol was
approved by the Institutional Review Board ofTheUniversity
of Texas Health Science Center at San Antonio (UTHSCA).

2.2. Experimental Procedure. All participants completed two
days of testing. Each day participants provided expired-air
samples to screen for recent alcohol use (AlcoTest 7110MKIII
C, Draeger Safety Inc., Durango, CO) and urine samples to
screen for recent drug use (THC metabolite, cocaine, ben-
zodiazepines, opiates, and amphetamines; Panel/Dip Drugs
of Abuse Testing Device, Redwood Biotech, Santa Rosa, CA).
Participants in the user group were instructed not to smoke
marijuana after midnight the night before testing sessions.
On the first visit, participants completed questionnaires and
interviews to verify study eligibility and obtain demographic
and other pieces of information. On the second visit, par-
ticipants underwent magnetic resonance imaging (MRI) on
a research-dedicated Siemens 3 T MRI (Siemens, Munich,
Germany) with a 12-channel head coil at the UTHSCA
Research Imaging Institute.

2.3. Win/Loss Task. A block design task based on a similar
paradigm used by Hariri and colleagues [32] was used to
study neural activity associated with simulated monetary
gains and losses. In this task, participants were presentedwith
6 blocks of 10 trials in which they were required to guess
whether a simulated coin flip would be “heads” or “tails”
interleaved; the coin flip blocks were alternated with 6 blocks
of perceptual motor control trials. All trials were separated
by a 0.2 s intertrial interval. On coin flip trials, participants
were shown an image of coin head and tail for 1.9 s with
the instruction “Please guess.” Participants were instructed
that they would win 1 dollar for every correct guess and
lose 1 dollar for every incorrect guess. However there was
no actual coin flip occurring, and the task was programmed
so that participants had an equal number of wins and losses
regardless of what they guessed. Participants responded via
button press on anMRI compatible response device and were
then shown the predetermined outcome of either a win (the
same coin face as guessed and the text “You Win $1”) or loss
(opposite coin face as guessed and the text “You Lose $1”) for
0.9 s. On half the blocks of guessing trials, participants were
given feedback that they won on 8 out of 10 trials (“Wins”).
For the remaining blocks of guessing trials, participants were
given feedback that they lost on 8 of 10 trials (“Losses”).
During the perceptual motor control trials, participants were
shown 2 blank coins with instructions to press either the left
or the right coin. Participants were given feedback for correct
or incorrect responses.

2.4. Imaging Acquisition. Functional imaging used a gradi-
ent-echo, echo-planar sequence, acquiring continuous 43
slices parallel to the anterior commissure-posterior commis-
sure (AC-PC) plane (repetition time/echo time [TR/TE] =
3000/30ms, 1.72 × 1.72 × 2.6mm, and field of view [FOV] =
220mm). For anatomical reference, a 3D high resolution
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T1-weighted series was acquired (TR/TE = 2000/2.83ms, flip
angle = 13∘, 0.8 × 0.8 × 0.8mm, and FOV = 256mm).

2.5. Analysis of fMRI Data. Analysis of functional images
was carried out using FSL (FMRIB’s Software Library, http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/ [33]). Prior to statistical mod-
eling, data were motion corrected with MCFLIRT [34],
nonbrain tissue was removed [35, 36] and spatially smoothed
with a Gaussian kernel of FWHM 5mm, and a high-pass
temporal filtering was applied (Gaussian-weighted least-
squares straight line fitting, with sigma = 50.0 s). Time-series
statistical analysis was carried out using local autocorrelation
correction [37, 38]. Registration to high resolution and/or
standard images was carried out using FLIRT [39]. Higher-
level analysis was carried out using FLAME (FMRIB’s Local
Analysis ofMixedEffects)with amixed-effectsmodel [37, 38]
to generate 𝑧 statistical images contrasting the “Win” versus
control conditions and “Loss” versus control conditions.
Contrasts for all subjects and for marijuana users versus
controls were generated using conservative cluster thresholds
(corrected 𝑃 < 0.01, 𝑧3 2.3 [40]). The users versus controls
contrasts were further thresholded with a postcontrast mask
from each corresponding contrast with all subjects combined
to examine group activation differences only in regions show-
ing robust task effects across all subjects. Regions of interest
(ROIs) for unified structural equationmodelingwere selected
from user versus control contrasts (see Table 3). To identify
regions with robust differences in group activity, cortical and
subcortical activations with 15 or more voxels were selected,
and a 5mm diameter sphere was drawn centered on the peak
𝑍 stat coordinates.

2.6. Unified Structural Equation Modeling. The effective con-
nectivity of activated regions during “Wins” and “Losses”
was assessed using the unified structural equation modeling
(SEM) approach [41, 42]. The distinction between traditional
SEM and unified SEM is the inclusion of additional variables
that improve the temporal representation of fMRI data via
multivariate autoregressive modeling. Voxel-wise fMRI time
series were extracted from each ROI and averaged for each
subject’s data set.The data from each ROI were normalized to
a mean of zero and a variance of one. Due to the strong auto-
correlations present in fMRI time-series data, each ROI was
represented in the SEMby two variables based on amultivari-
ate autoregressive lag 1model: one of the time series extracted
from the data set and the other a delayed version [41].
Thus, to assess the interactions between two brain regions A
and B, four variables were created with three possible paths
representing all possible effects of region A loading on B,
including both contemporaneous effects and any longitudinal
(delayed) effects. This general procedure for examining the
relationships between two variables was then extended to
simultaneously model all interactions for all variables.

2.7. Exploratory Model Generation. Rather than rely on a
priori hypotheses for constructing paths in SEM, we applied
an exploratory approach that was previously developed for
identifying data-driven connectivity models [43], similar to

what other investigators have proposed [42, 44]. Structural
equation modeling was carried out in Amos 19.0 (SPSS,
IMB, Inc.). Modeling began with the null model, which
specifies that all measured variables are uncorrelated (with
exception that the lag variable must be causally linked to
its nonlag variable). The working model evolves by using
modification indices to identify candidate connections, and
the best candidates are tested to determine which paths
(including contemporaneous and longitudinal effects) result
in the largest reduction in the root mean square error of
approximation (RMSEA). The RMSEA was selected to be
the primary fit criterion because it is not as sensitive to the
effects of sample size as other criteria [45]. The candidate
connection yielding the greatest RMSEA improvement is
selected, including both contemporaneous and longitudinal
paths, and added to the overall model. This procedure is
repeated to stepwise generate a best-fit model of the data.
After a satisfactory level of model fit has been reached (an
RMSEA of 0.05–0.08 [46]), the model is refined through
the application of Occam’s Razor: a specification search
is conducted to remove loadings between variables that
worsened or did not improve the key fit statistic of RMSEA
in favor of parsimony.

Four models were independently generated using this
technique; each model represents the best-fit model for each
group and condition. Models were systematically compared
using the procedure outlined in Figure 4. In addition, a
“hybrid” model was created for each condition, comprising
of all paths observed in either of the models controls or users
to compare fit statistics across data sets for the same model.
The fit statistics were computed for the hybrid model on
data sets of each subject group independently. The hybrid
model was then fit to the combination of both data sets,
and the fit statistics were computed for this joint data set
to assess controls and users simultaneously. To examine the
influence of specific paths in the hybrid model across groups,
we examined each path individually by constraining the path
coefficients to be identical for the joint data and compute
model fit statistics.

2.8. Assessing Goodness of Fit. Once a final model is iden-
tified, the goodness of fit is evaluated. Assessing model fit
is not a simple process, and there exists no definitive way
to determine how well a model represents an actual data
matrix [47]. Moreover, there is no single statistical test that
can be performed in order to identify that a givenmodel is the
correct model [48]. However, a large number of descriptive
statistics have been developed to aid researchers in evaluating
the adequacy or goodness of model relative to a given data
(covariance) matrix.The procedure that we have developed is
to evaluate finalmodel fit using a set ofmultiple descriptive fit
measures [43]. First, as stated above, we utilize the RMSEA as
an index of model fit. Second, to examine overall model ade-
quacy, the likelihood ratio chi-square statistic is used to test
whether the discrepancy between the implied versus actual
covariance matrices is statistically different [49]. Theoretical
models that fit the given data perfectly have a chi-square
value of zero. However, the chi-square statistic is sensitive
to sample size, and while it can be an effective metric for
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effective connectivitymodels derived from positron emission
tomography data, it is not as informative for fMRI models,
given the increased temporal sampling and consistent degrees
of freedom. Hence, we also consider both the Tucker-Lewis
index (TLI) and the goodness-of-fit index (GFI), which range
from values of 0 (no fit) to 1 (perfect fit), with values of 0.95
or greater indicating a good model [48]. Thus, for every final
model, we compute fit statistics of RMSEA, chi-square, TLI,
and GFI.

3. Results

3.1. Participants. The demographic characteristics, intelli-
gence scores, self-reported levels of impulsivity, and cur-
rent and lifetime recreational drug use histories reported
by participants are summarized (Tables 1 and 2). Use of
drugs other than marijuana in the user group was relatively
limited; 10 out of 14 user subjects drank 1 or fewer alcoholic
beverages per week and 9 out of 14 did not use any tobacco
products. The groups did not differ in age, ethnicity, gender,
intelligence (WASI), socioeconomic status (FFISS), or self-
reported impulsivity (BIS-11 [31]).

3.2. Analysis of fMRI Data. Across all participants, “Wins”
were associated with large, widespread activations with peaks
in the left cingulate, left superior frontal, right inferior
frontal, and left middle frontal gyrus and bilateral declive
(Table 3, Figure 1). “Losses” were similarly associated with
large activations that peaked in the right middle frontal,
cingulate, andmiddle occipital gyrus and left declive (Table 3,
Figure 1). Within these regions, marijuana users had greater
activity bilaterally in the middle frontal gyri, caudate, and
claustrum during “Wins” and in the right middle frontal
gyrus, right posterior and anterior cingulate, left insula,
and bilateral claustrum and declive during “Losses” (Table 4,
Figure 1). Controls did not show greater activity than users
across either of the task conditions.

3.3. Effective Connectivity Analyses. For “Wins,” network
circuitry was evaluated across the left insula (LIns), anterior
cingulate cortex (ACC), posterior cingulate cortex (PCC),
bilateral claustrum (LClaust, RClaust), and leftmiddle frontal
gyrus (LMFG). For “Losses,” circuitry was examined in
the bilateral and left ventral middle frontal gyrus (LMFG,
RMFG, and LMFGv), bilateral caudate (LCaud, RCaud),
and bilateral claustrum (LClaust, RClaust). Exploratory
SEM identified best-fit models for “Wins” in controls
(RMSEA = 0.063), “Wins” in users (RMSEA = 0.064),
“Losses” in controls (RMSEA = 0.059), and “Losses” in
users (RMSEA = 0.064) (Table 5, Figure 2). Reasonable
model fits were obtained when controls and users data
were tested on the reversed models, indicating that there
were not any substantial network differences across groups
(see S Table 1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2015/783106). However, we note
that the controls fit the users data better than the users
fit the controls data, which was likely due to the relatively
parsimonious controls models.

Table 1: Participant characteristics.

Controls Users
𝑛 = 14 𝑛 = 14

Characteristics (mean ± SD)
Age 17.3 ± 1.3 17.6 ± 1.0
WASI total IQ score 104.8 ± 9.4 99.6 ± 7.6
FFISS 37.8 ± 15.2 34.7 ± 17.2
BIS-11 attentional 13.9 ± 3.7 17.4 ± 4.2∗

BIS-11 motor 20.1 ± 3.1 24.2 ± 4.0∗

BIS-11 nonplanning 21.0 ± 3.4 23.8 ± 5.0
Gender (𝑛 (%))
Male 11 (76%) 11 (76%)
Female 3 (24%) 3 (24%)

Ethnicity (𝑛 (%))
African-American 2 (14%) 4 (29%)
Caucasian 5 (36%) 4 (29%)
Hispanic 7 (50%) 6 (42%)

∗

𝑃 < 0.05.

Table 2: Marijuana and drug use summary.

Controls Users
Weekly drug use (mean ± SD)
Marijuana (uses/week) 0 6.7 ± 1.5
Cigarettes (cigarettes/week) 0 5.4 ± 9.1
Alcohol (drinks/week) 0 3.7 ± 5.6

Lifetime drug use (# ever used)
Marijuana (# ever used) 0 14
Stimulants 0 2
Opiates 0 3
Benzodiazepines 0 2
Hallucinogens 0 3

Additionally, both controls and users data were observed
to fit the hybrid model well, including “Wins” in controls
(RMSEA = 0.047), “Wins” in users (RMSEA = 0.052),
“Losses” in controls (RMSEA = 0.050), and “Losses” in users
(RMSEA = 0.056) (S Table 2). These results indicate that the
overall networks could not be differentiated across subjects
for both “Wins” and “Losses.” However, we next analyzed the
individual paths in each hybrid model to assess more subtle
differences across subject groups that did not affect the entire
network. We found no differences across subject groups for
“Wins” paths, regardless of which path was constrained.
In contrast, we identified 10 paths of 28 total paths in the
“Losses” hybrid model that significantly differed between
users and controls; 9 of these were contemporaneous effects
and one path (lag-ACC→PCC) was a longitudinal effect (S
Table 3, Figure 3). Relative to controls, users showed weaker
connectivity (1) between the anterior and posterior cingulate,
(2) from the anterior cingulate to the right claustrum, (3)
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Table 3: Activations across all subjects.

Condition Coordinates (mm) Region Brodmann area Cluster size
𝑋 𝑌 𝑍

Win

0 28 30 L cingulate gyrus 32 692
−30 50 14 L superior frontal gyrus 10 566
34 18 −4 R inferior frontal gyrus 47 537
28 46 −10 R middle frontal gyrus 11 2256
46 −80 −18 R declive ∗ 3125
−36 −78 −18 L declive ∗ 2442

Loss

44 28 38 R middle frontal gyrus 8 2024
2 28 30 R cingulate gyrus 32 533
36 −82 −8 R middle occipital gyrus 18 2471
−32 −84 −18 L declive ∗ 1658

𝑃 < 0.01, 𝑧 ≥ 2.3.
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Figure 1

from the right medial frontal gyrus to the posterior cingulate,
and (4) from the right claustrum to the left insula. Users also
showed stronger connectivity from the right to left claustrum
and altered connectivity between the left insula and posterior
cingulate and anterior cingulate and left claustrum.

4. Discussion

As expected, this study confirms previous work showing
that adolescent marijuana users have altered functioning
in forebrain regions. Across all participants, “Wins” were
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Table 4: Group activation differences.

Condition Coordinates (mm) Region Brodmann area Cluster size
𝑋 𝑌 𝑍

Win

40 32 18 R middle frontal gyrus 46 212
12 6 10 R caudate ∗ 100
−36 42 8 L middle frontal gyrus 10 226
−10 4 6 L caudate ∗ 56
−24 24 0 L claustrum ∗ 251
26 16 −4 R claustrum ∗ 390
−32 42 −6 L middle frontal gyrus 11 68

Loss

48 6 36 R middle frontal gyrus 9 38
4 −32 24 R posterior cingulate 23 23
6 30 14 R anterior cingulate 24 17
30 12 4 R claustrum ∗ 121
−44 12 2 L insula 13 32
−24 18 −6 L claustrum ∗ 43
−40 −62 −18 L declive ∗ 834
32 −66 −18 R declive ∗ 138

𝑃 < 0.01, 𝑧 ≥ 2.3.

Table 5: Model fit statistics. Exploratory SEM was applied to identify best-fit models observed during “Wins” and “Losses” for marijuana
users and healthy controls. Model fit was assessed using the root mean square error of approximation (RMSEA), chi-square statistic, degrees
of freedom (dof), Tucker-Lewis index (TLI), and goodness-of-fit index (GFI).

RMSEA Chi-square dof TLI GFI
Marijuana users

“Wins” model 0.064 496.223 62 0.915 0.960
“Losses” model 0.064 285.827 36 0.898 0.974

Healthy controls
“Wins” model 0.063 483.507 63 0.904 0.961
“Losses” model 0.059 285.764 42 0.908 0.972

associated with large activations that peaked in the cingulate,
middle frontal, superior frontal, and inferior frontal gyri
and declive and “Losses” were associated with similar large
activations that peaked in the cingulate, middle frontal, and
occipital gyri and declive. Within these regions, marijuana
users demonstrated greater functional activation in the mid-
dle and inferior frontal gyri, caudate, and claustrum during
“Wins” and greater activation in the anterior and posterior
cingulate,middle frontal gyrus, insula, claustrum, and declive
during “Losses.” These data indicate adolescent marijuana
users show enhancedneural responses to simulatedmonetary
rewards and losses. This may suggest that both positive and
negative feedback may be helpful in behavioral modification
of marijuana users.

Our finding of increased activity in the caudate dur-
ing “Wins” suggests adolescent marijuana users may have
increased responsiveness to rewards.However, our data failed
to confirm prior work noting a decreased activity in cannabis
using adults during negative feedback [24, 25]. In fact, we
observed increased brain activity in marijuana users during
“Losses” in structures associated with reward processing such
as the insula, claustrum, and declive.Thus, our findings over-
all suggest that adolescent marijuana users may also exhibit

enhanced sensitivity during negative feedback, consistent
with findings from behavioral studies [24, 26]. Larger scale
studies are needed to further elucidate the underlying reward
mechanisms in adolescent marijuana users.

In contrast to our results using functional activation,
we did not anticipate the results derived from our effective
connectivity analyses, which showed little difference between
overall network interactions for users and controls. These
results indicate that, despite the activation differences, the
overall functional circuitry inmarijuana users is not substan-
tially altered. In contrast, previous studies have found more
profound connectivity differences among adult heavy users
of marijuana as well as those dependent on cocaine, heroin,
or methamphetamine [50–53]. For instance, adults with
histories of more than 10 years of daily marijuana use show
greater functional connectivity between the prefrontal and
occipital parietal cortices while performing a cognitive inter-
ference task, possibly suggesting compensatory processes to
overcome cannabis related cognitive impairments [50]. Addi-
tionally, cocaine dependent individuals had reduced resting
state functional connectivity between the ventral tegmental
area and striatum, amygdala and medial prefrontal cor-
tex, and hippocampus and dorsal medial prefrontal cortex,
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and functional connectivity between the ventral tegmental
area and striatum was negatively correlated with years of
cocaine use [52]. Related, stimulant-dependent individuals
had reduced resting state functional connectivity between
the orbitofrontal cortex and dorsal medial premotor and
cingulate cortices, similar to deficits observed in individuals
with obsessive compulsive disorder [53]. Finally, heroin
dependent individuals were observed to have reduced func-
tional connectivity at rest between the right dorsolateral
prefrontal cortex and left inferior parietal lobe which was
also negatively correlated with years of use [51].While overall
the adolescent marijuana users in our study showed more
modest connectivity differences, it is possible that individuals
with longer total exposure tomarijuana (i.e., heavier daily use
or more chronic use) display more pronounced connectivity

differences or that connectivity differences may be different
whether subjects are at rest or while performing more cogni-
tively challenging tasks.

In order to investigate more subtle connectivity dif-
ferences, we further assessed the individual paths which
revealed no differences between users and controls for the
“Wins” condition; however, users and controls demonstrated
significantly different causal interactions for 10 out of 28 total
paths during the “Losses” condition. These data suggest that
marijuana users may process negative feedback differently
relative to controls, which if true may provide specific cog-
nitive or behavioral interventions for use in therapy. Further
research on the differences in causal interactions between
adolescent marijuana users and controls is needed to clarify
the connectivity differences.
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Finally, the exploratory unified SEM approach offers an
excellent opportunity for modeling effective connectivity in
fMRI data. However, the results of this study may be limited
in several ways. First, the sample size for this study was
fairly modest. It is a possible that with additional subjects we
would have had additional power to detect more substantive,
network-wide connectivity differences. Related, our sample
was mostly male and different activation and connectivity
patterns could be present in female marijuana users. Addi-
tionally, while use of other drugs such as alcohol and tobacco
was limited, we cannot rule out that other substances’ use
may have influenced our findings. In addition, there is a
potential for the introduction of bias in our modeling due to
the selection of ROIs based on the results of the activation
analyses.Thismethod for ROI selectionmay be considered as
a form of “double-dipping.” Our rationale for this procedure

was the lack of prior work in this domain, thereby decreasing
our options for meta-analytically derived regions of interest.
It is possible that with additional subjects our future work
will include less-biased regional selection in a second data set
[54, 55].

5. Conclusions

In summary, these results provide evidence that alterations
in reward circuitry in this population cannot be determined
as a network-wide phenomenon, which is not surprising
given that subjects were neurologically and psychiatrically
healthy aside from frequent marijuana use. However, by
examining specific pathways during “Losses,” we identified
that 1/3 of the total paths analyzed demonstrated differences
between groups.These results may be related to the increased
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risk of future substance use disorders and other psychiatric
conditions and may provide target neural connections to be
monitored in these high-risk populations.
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