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Insights from prospective, longitudinal studies of individuals at risk for developing
type 1 diabetes have demonstrated that the disease is a continuum that
progresses sequentially at variable but predictable rates through distinct identifi-
able stages prior to the onset of symptoms. Stage 1 is defined as the presence of
b-cell autoimmunity as evidenced by the presence of two or more islet autoanti-
bodies with normoglycemia and is presymptomatic, stage 2 as the presence of
b-cell autoimmunity with dysglycemia and is presymptomatic, and stage 3 as
onset of symptomatic disease. Adoption of this staging classification provides a
standardized taxonomy for type 1 diabetes and will aid the development of ther-
apies and the design of clinical trials to prevent symptomatic disease, promote
precision medicine, and provide a framework for an optimized benefit/risk ratio
that will impact regulatory approval, reimbursement, and adoption of interven-
tions in the early stages of type 1 diabetes to prevent symptomatic disease.

Type 1 diabetes is a chronic autoimmune disease with both genetic and environ-
mental contributions that results over time in an immune-mediated loss of func-
tional pancreatic b-cell mass, leading to symptomatic diabetes and lifelong insulin
dependence (1–3). The disorder represents a disease continuum that begins prior to
its symptomatic manifestations. The risk of developing symptomatic type 1 diabetes
can be identified and quantified, the disease can be characterized into well-defined
stages, and the rate of progression to symptomatic disease can be predicted with
appreciable accuracy. The ability to screen for risk and to stage type 1 diabetes prior
to symptomatic type 1 diabetes provides an opportunity to intervene to delay and
ultimately to prevent the onset of clinical symptoms.
Herein, we propose a staging classification system that recognizes the earliest

stages of human type 1 diabetes. Adoption of this staging classification will 1)
provide a new standardized taxonomy for human type 1 diabetes; 2) accelerate
the clinical development of therapies to prevent symptomatic disease; 3) aid the
design of clinical trials through the use of risk profiles, subject stratification, and
stage-specific clinical trial end points; 4) promote precision medicine involving
the tailoring of optimal therapies to specific individuals at specific stages of the
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disease; and 5) provide a framework
and approach for an optimized bene-
fit/risk ratio that should impact regula-
tory approval, reimbursement, and
adoption of interventions in the early
stages of type 1 diabetes to prevent
symptomatic disease.

OVERVIEW OF STAGING OF TYPE 1
DIABETES

As originally proposed over 25 years ago,
human type 1 diabetes arises from both
genetic and environmental factors that
lead to immune-mediated destruction of
pancreatic b-cells and loss of b-cell func-
tion. After onset of islet autoimmunity,
the disease progresses through a pre-
symptomatic stage identified by markers
of autoimmunity and glucose intolerance,
or so-called dysglycemia, arising from fur-
ther loss ofb-cell function and culminates
ultimately with clinical symptoms and
signs of diabetes (1–3). In children and
adults, the rate of progression fromonset
ofb-cell autoimmunity to glucose intoler-
ance and then to symptomatic disease is
variable, lasting from months to decades
(2,3).
Today, type 1 diabetes is typically di-

agnosed based on clinical symptomatol-
ogy associated with overt hyperglycemia
andmetabolic imbalance. As detailed be-
low, however, the disease can now be
identified at earlier presymptomatic
stages. Indeed, first- or second-degree
relatives of individuals with type 1 diabe-
tes or children identified from the gen-
eral population are being screened for
increased risk for developing type 1 di-
abetes in the research setting (4–6). Dis-
tinct asymptomatic stages of type 1
diabetes with prognostic implication have
been identified, and prevention clinical tri-
als are ongoing with enrollment criteria
and end points based on specific disease
stages.
As shown in Fig. 1 and as detailed

below, a broad body of evidence sup-
ports a standardized classification of dis-
tinct early stages of type 1 diabetes with
prognostic significance.

Stage 1: Autoimmunity1/
Normoglycemia/Presymptomatic
Type 1 Diabetes
Stage 1 represents individuals who have
developed two ormore type 1 diabetes–
associated islet autoantibodies but are
normoglycemic. For children who were
screened for genetic risk at birth and

reach this stage, the 5-year and 10-
year risks of symptomatic disease are
approximately 44% and 70%, respec-
tively, and the lifetime risk approaches
100% (7). The risk at this stage is quite
similar in genetically at-risk children and
in relatives of individuals with type 1 di-
abetes, as detailed below (7–9).

Stage 2: Autoimmunity1/
Dysglycemia/Presymptomatic Type 1
Diabetes
Stage 2, like stage 1, includes individuals
with two or more islet autoantibodies
but whose disease has now progressed
to the development of glucose intoler-
ance, or dysglycemia, from loss of func-
tional b-cell mass. The 5-year risk of
symptomatic disease at this stage is ap-
proximately 75%, and the lifetime risk
approaches 100% (10).

Stage 3: Autoimmunity1/
Dysglycemia/Symptomatic Type 1
Diabetes
Stage 3 represents manifestations of the
typical clinical symptoms and signs of
diabetes, which may include polyuria,
polydipsia, weight loss, fatigue, diabetic
ketoacidosis (DKA), and others.

PRE-STAGE 1: GENETIC
SUSCEPTIBILITY AND GENETIC
RISK DETECTION OF TYPE 1
DIABETES

The HLA region on chromosome 6 ac-
counts for about 30–50% of the genetic
risk of type 1 diabetes (11), with the
greatest association with HLA class II
haplotypes DRB1*0301-DQB1*0201
(DR3-DQ2) and DRB1*0401-DQB1*0302
(DR4-DQ8) (Table 1). The genotype associ-
ated with the highest risk for type 1
diabetes is the heterozygous DR3/4
genotype. HLA class II DRB1*1501 and
DQA1*0102-DQB1*0602 confer disease re-
sistance, at least in children younger than
12 years of age. The rising incidence of type
1 diabetes (12–14) has been accompanied
by a decrease in the relative contribution
from the highest risk HLA genotype (15,16).

The remaining genetic r isk for
type 1 diabetes can be attributed to
the approximately 50 non-HLA genes
or loci identified via candidate gene
and genome-wide association study
approaches, each with modest to small
effects on disease risk. The highest
non-HLA genetic contribution arises
from the INS, PTPN22, CTLA4, and
IL2RA genes, with the latter three genes

also contributing to susceptibility to
other autoimmune diseases (17). Non-
HLA genetic contribution may be acting
through immune regulation (18), al-
though the recent demonstration of
gene expression commonly in pancre-
atic islets and the alternative splicing
of several of these gene products in
cytokine-stimulated islets have raised the
question of whether some of these genes
may in part be acting in the b-cell (19).

Genetic variation likely influences
both immune regulation and the host
response to environmental etiologies,
which determine an individual’s initial
disease susceptibility and progression
through sequential homeostatic check-
points prior to onset of symptomatic
disease. In fact, unlike the HLA type 1
diabetes susceptibility genes that ap-
pear to have a limited effect on the
rate of progression to symptomatic dis-
ease after the onset of islet autoim-
munity (20), several non-HLA type 1
diabetes susceptibility genes have
been demonstrated to influence dis-
ease progression, including IL2, CD25,
INS VNTR, IL18RAP, IL10, IFIH1, and
PTPN22 (21). As a result, non-HLA single
nucleotide polymorphisms and risk al-
lele scores have been used to stratify
risk for both developing islet autoanti-
bodies and progressing from islet au-
toimmunity to symptomatic type 1
diabetes (22,23). With larger databases,
this analysis will likely be refined and
improved.

Multiple environmental factors have
been invoked as contributing to the
pathogenesis of type 1 diabetes, includ-
ing, but not limited to, maternal and
intrauterine environment, route of
neonatal delivery, viruses, host micro-
biome, antibiotics, and food/diet (24–
26). The Environmental Determinants
of Diabetes in the Young (TEDDY) study
(27) is exploring the role of putative en-
vironmental etiologies. Because causal-
ity of type 1 diabetes has not been
conclusively demonstrated, environ-
mental factors do not currently contrib-
ute to screening for risk, staging, or
prevention of the disease.

The impact of HLA and non-HLA ge-
netic risk is observed in relatives of in-
dividuals with type 1 diabetes, who
have a 10-fold to more than 100-fold
greater risk than the general population
(Table 1). The cumulative risk of
developing type 1 diabetes among
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monozygotic twins is reported to be as
high as 65–70% (28), with higher rates
observed when the proband develops
type 1 diabetes at an earlier age (29). A
high risk is also observed in siblings of
individuals with type 1 diabetes who
are DR3-DQ2/DR4-DQ8 and have

inherited both HLA haplotypes identical
by descent with their proband sibling,
with a risk as high as 80% for developing
type1diabetes–associated autoimmunity
by age 15 years (30). In siblings with
shared DR3-DQ2/DR4-DQ8 HLA haplo-
types, the age of onset of symptomatic

type 1 diabetes in the proband is a
prominent risk factor, with a 12-fold
higher risk of developing symptomatic
disease by age 15 years in the sibling if
the proband develops the disease be-
fore age 10 years (31).

This increased risk in relatives of indi-
viduals with type 1 diabetes has been
exploited in the research setting to iden-
tify at-risk individuals to better under-
stand the natural history of type 1
diabetes and to conduct trials to prevent
symptomatic disease, as exemplified by
the Diabetes Prevention Trial–Type 1
(DPT-1) (4,32) and the National Institute
of Diabetes and Digestive and Kidney
Diseases–sponsored Type 1 Diabetes
TrialNet studies (33). Approximately
15,000 children and young adults who
are first- or second-degree relatives of
individuals with type 1 diabetes are
screened annually for the presence of
islet autoantibodies through TrialNet
(33). A recent position statement of
the American Diabetes Association
(ADA) recommended that at-risk rela-
tives of individuals with type 1 diabetes
be informed of the opportunity to have
their relatives tested for type 1 diabetes
risk in the setting of a clinical research
study (34). Although screening more

Figure 1—Early stages of type 1 diabetes.

Table 1—Type 1 diabetes risk stratification by family history and genetic susceptibility

Population
Risk of type 1
diabetes (%)

Frequency in
population (%)

Frequency in all type 1
diabetes (%)

Low risk (,1%)
Newborns: European/U.S. population 0.4–1 100 100
Newborns with HLA protective genotypes (124) ,0.05 75 7.2
FDR with HLA protective genotypes (124) 0.3 0.3 ,1
FDR with low gene risk score* (HLA and non-HLA

risk genes) (23) ,1 0.1 ,1

Intermediate risk (1–12%)
Newborns with HLA high-risk genotypes (37) 4 4–5 36
Newborns with high gene risk score** (HLA and non-HLA

risk genes) (23) 12 1 27
Newborn first-degree relatives of people with type 1

diabetes
5 0.5–1 10

High risk (12–25%)
FDR plus HLA high-risk genotypes (125) 10–20 0.1 ,5
FDR plus high gene risk score*** (HLA and non-HLA risk

genes) (23) 40 0.1 ,5
Multiple affected FDRs (126) 20–25 ,,0.1 ,,5

Very high risk (.25%)
Identical twin of a patient with type 1 diabetes (28,29) 30–70 ,,0.1 ,,5
Multiple affected FDRs plus HLA risk genotypes (126) 50 ,,0.1 ,,5
Sibling affected plus HLA risk genes, identical by

descent (30) 30–70 ,,0.1 ,,5

FDR, newborn first-degree relatives of people with type 1 diabetes. HLA risk genotypes: HLA DRB1*03 and *04 and DQB1*0302. HLA protective
genotypes: HLA DQB1*0602, *0301, *0303, *0603, and *0503. Genetic risk score derived from HLA plus nine single nucleotide polymorphisms
from PTPN22, INS, IL2RA, ERBB3, ORMDL3, BACH2, IL27, GLIS3, and RNLS genes. *Threshold set to lower 10th centile of FDR; **threshold set to
upper 99th centile of general population; ***threshold set to upper 90th centile of FDR.
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than 150,000 individuals over the past
decade by TrialNet represents a formi-
dable accomplishment, screening of rel-
atives leaves a large gap in identifying
individuals at risk for developing type 1
diabetes because a family history of
type 1 diabetes is present in only up to
;15% of cases of newly diagnosed type
1 diabetes (35,36).
On the basis of HLA genotype risk of

type 1 diabetes, newborns and infants in
the general population have also been
screened for risk in the research setting
and subsequently recruited into natural
history studies. TheTEDDY study screened
newborns from the general population
using four high-risk HLA genotypes
(90% specificity, 69% sensitivity, and
22% positive predictive value) and new-
borns with first-degree relatives using 10
HLA genotypes (94% specificity, 50%
sensitivity, and 4.8% positive predictive
value), a strategy predicted to identify
50% of type 1 diabetes cases from the
general population study and 70% of
cases among relatives that occurred by
age 15 years (37). It should be empha-
sized that the majority of HLA at-risk
individuals never develop symptomatic
type 1 diabetes and thus the positive
predictive value of HLA is low, necessi-
tating follow-up with additional bio-
markers to detect risk of developing
symptomatic disease, such as the pres-
ence of islet autoantibodies.

STAGE 1: AUTOIMMUNITY1/
NORMOGLYCEMIA/
PRESYMPTOMATIC TYPE 1
DIABETES

Stage 1 is defined as the presence of two
or more islet autoantibodies to insulin,
GAD65, IA-2, and/or ZnT8. The mecha-
nisms leading to b-cell autoimmune re-
activity have not been completely
elucidated. (Pro)insulin, GAD65, IA-2,
and ZnT8 and their peptides have been
identified as target antigens in type 1 di-
abetes (38,39). Although T lymphocytes
are thought to be primarily responsible
forb-cell destruction, they are rare in the
circulating blood, and no standardized
and validated human T-cell assays have
been developed to screen for T-cell–
mediated b-cell reactivity. However, islet
autoantibodies are also generated and re-
main in the circulation and can be mea-
sured with standardized, sensitive, and
high-throughput assays. Ongoing studies

of T-lymphocyte phenotype, cytokine
patterns of antigen-specific T cells,
lymphocyte-mediated immunoregu-
lation, and responses of effector T cells
to immunoregulation of autoantibody-
positive subjects prior to symptomatic
disease should provide further insights
into the role of T-cell responses and ul-
timately may provide useful biomarkers.

In Finnish and German at-risk children
followed longitudinally from birth, islet
autoantibodies were initially detected
after 6 months of age and peaked be-
tween 9 and 24 months of age with a
median age of detection of 15 months
(40,41). In the TEDDY study of at-risk
infants and children, the initial detec-
tion of islet autoantibodies occurred
rarely prior to 6 months of age and
peaked between 9 and 24 months of
age (42). In most cases, autoantibodies
to insulin developed earlier than auto-
antibodies to GAD65, whereas IA-2 and
ZnT8 were rarely the first autoantibody
to develop (9,40–44).

Progression from single to two or
more autoantibodies occurs more com-
monly in children less than 5 years of
age, usually occurs within 2 years of ini-
tial seroconversion, and is less frequent
after 4 years of initial seroconversion
(40–45).

Early autoantibody seroconversion is
most common in children with the high-
risk HLA DR3/4-DQ8 or DR4/4-DQ8/8
genotype (40–42), and the order of ap-
pearance of autoantibodies is related
to HLA-DQ genotype. In the TEDDY
study, HLA-DQ2/8, DQ8/8, and DQ4/8
children developed primarily insulin
autoantibodies as the first autoanti-
body, whereas DQ2/2 children initially
developed GAD65 autoantibodies (42).
The associations between insulin auto-
antibodies and HLA-DQ8, but not DQ2,
and between GAD65 autoantibodies
and HLA-DQ2, but not DQ8, are also ob-
served in new-onset type 1 diabetes
(46–48). These findings suggest the pos-
sibility of a distinct etiopathogenesis re-
lated to HLA.

TrialNet autoantibody screening of
relatives of individuals with type 1 dia-
betes has a yield of ;5% autoantibody
positivity, and those with autoantibod-
ies are further staged for risk with met-
abolic and genetic tests (33). For those
subjects who are initially autoantibody
negative, the rate of seroconversion is
higher in relatives younger than age 10

years, with about 75% of seroconver-
sions occurring by age 13 years (49,50).

The detection of two or more islet
autoantibodies increases the rate of
progression to symptomatic type 1
diabetes. In a study of 585 high-risk chil-
dren with two or more islet autoanti-
bodies enrolled in three prospective
birth cohort studies (U.S. Diabetes Au-
toimmunity Study in the Young
[DAISY], Finnish Diabetes Prediction
and Prevention [DIPP] study, and Ger-
man BABYDIAB and BABYDIET studies),
symptomatic type 1 diabetes developed
in 43.5%, 69.7%, and 84.2% at 5, 10,
and 15 years of follow-up (Fig. 2) (7).
Thus, the lifetime risk of developing
symptomatic type 1 diabetes approaches
100% once two or more islet autoanti-
bodies are detected in genetically at-risk
children.

The number of detectable islet auto-
antibodies correlates with risk. In the
high-risk birth cohort noted above,
symptomatic disease occurred by 15
years after seroconversion in 12.7%,
61.6%, and 79.1% of children with a sin-
gle, two, and three autoantibodies, re-
spectively (7) (Fig. 3). In the TEDDY
study, the 5-year risk of symptomatic di-
abetes was 11%, 36%, and 47%, respec-
tively, in those with one, two, and three
autoantibodies (9). Faster progression
to symptomatic disease after serocon-
version is also observed with younger
age of seroconversion (,3 years) and
HLA DR3-DQ2/DR4-DQ8 genotype and
in female participants (7,9). In relatives
of individuals with type 1 diabetes in
DPT-1, the 5-year risk of developing
symptomatic disease with multiple
autoantibodies ranged from ;25% for
two autoantibodies to 40% for three
autoantibodies and 50% for four auto-
antibodies (Fig. 4) (8).

On the basis of these observations,
universal childhood population–based
screening for multiple autoantibodies
was initiated in January 2015 in 200,000
healthy children at well-child visits at
ages 3 and 4 years in Bavaria, Germany, in
the Fr1da study (51).Multiple autoantibody-
positive children will be offered the
opportunity to enroll in an interven-
tional clinical trial to arrest disease
progression.

The rate of progression to symptom-
atic disease in the presence of two or
more islet autoantibodies is asso-
ciated not only with the number of
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autoantibodies detected and the age
of autoantibody seroconversion but
also with the magnitude of the autoim-
munity titer, affinity of the autoanti-
body, and the type of autoantibody
(9,42,52–56). Higher titers of insulin and
IA-2 autoantibodies are associated with
earlier onset of symptomatic type 1 di-
abetes. The presence of IA-2 or ZnT8
autoantibodies is associated with faster
progression to symptomatic disease com-
pared with when both are absent. In first-
degree relatives of individuals with type 1
diabetes, IA-2 and/or ZnT8 autoantibody

seroconversion is associatedwith a 5-year
progression rate to diabetes of 45% (57),
and the presence of either of these auto-
antibodies is detected in 78% of progres-
sors to symptomatic disease (58).

Thus, the presence of two or more
autoantibodies is used as the major cri-
terion for stage 1. The majority of indi-
viduals (85%) with a single autoantibody
do not progress to overt symptomatic
type 1 diabetes within 10 years. How-
ever, some single autoantibody subjects
can progress, and progression appears
to occur more frequently in children

aged ,5 years (44,45), if the single au-
toantibody is directed to IA-2 (7), or if
the single autoantibody displays higher
affinity (56,59,60). Assays that preferen-
tially detect high-affinity autoantibodies
or detect those single autoantibodies
associated with progression to symp-
tomatic type 1 diabetes are being inves-
tigated (56,59–62) and, if validated, may
modify the criteria for the detection of
two autoantibodies in stage 1 to include
detection of single autoantibodies predic-
tive of progression.

STAGE 2: AUTOIMMUNITY1/
DYSGLYCEMIA/PRESYMPTOMATIC
TYPE 1 DIABETES

Stage 2, like stage 1, includes individuals
with islet autoantibodies but whose
disease has now progressed to the de-
velopment of glucose intolerance, or
dysglycemia, that arises from loss of
functional b-cell mass. Dysglycemia in
this stage of type 1 diabetes has been
defined in several studies by impaired
fasting plasma glucose of $100 mg/dL
($5.6 mmol/L) or $110 mg/dL ($6.2
mmol/L), impaired glucose tolerance
with 2-h plasma glucose with a 75-g
oral glucose tolerance test (OGTT) of
$140 mg/dL ($7.8 mmol/L), high glu-
cose levels at intermediate time points
on OGTT (30, 60, 90 min levels of $200
mg/dL [$11.1 mmol/L]), and/or HbA1c
$5.7% ($39 mmol/mol). At this stage
of the disease, there is ;60% risk in 2
years and ;75% risk in 4–5 years of
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developing symptomatic type 1 diabe-
tes, with a positive predictive value of
96% within 5 years (Fig. 5) (10,63). It is
not clear, however, whether the ADA or
the American Association of Clinical En-
docrinologists (AACE) diagnostic labora-
tory criteria, which were developed to
diagnose prediabetes in the type 2 di-
abetes setting (64,65), are the optimal
values for predicting rate of progression
to onset of symptomatic type 1 diabetes,
or stage 3 of type 1 diabetes. Metabolic
testing, however, has been the key mea-
surement of functional b-cell mass in
this stage of the disease (66,67).
There is an accelerated decline in the

first-phase insulin response on intrave-
nous glucose tolerance tests during the
progression to type 1 diabetes, which
becomes especially marked between

1.5 and 0.5 years before diagnosis (68).
A first-phase insulin response less than
the first percentile is associated with a
50% risk of developing symptomatic
type 1 diabetes within 1 year (69).

Individuals in this stage have, on
average, a prolonged, gradual metabolic
deterioration with the persistence of
substantial b-cell function until at least
6 months before type 1 diabetes occurs
(70). The 2-h OGTT glucose levels best
predicted progression to disease in DPT-1
(71) but did not begin to change until
;0.8 years before diagnosis and then
rose rapidly (72). In high-risk relatives of
individuals with type 1 diabetes, b-cell
glucose sensitivity as measured by the
OGTT decreases up to 1.45 years prior
to symptomatic disease and correlates
with type 1 diabetes progression

independent of sex, age, BMI, and clinical
risk (72). Impaired b-cell glucose sensitiv-
ity is also prognostic for progression from
prediabetes to type 2 diabetes (73,74). In
contrast, baseline insulin sensitivity, fast-
ing insulin secretion, and total postglu-
cose insulin output were not predictive
of progression (72). There can be transient
reversion from a dysglycemic to a normal
OGTT in this setting, but such does not
alter the rate of progression to symptom-
atic disease in at-risk children (63,75).

A decrease in stimulated C-peptide lags
behind changes in the OGTT. An accelera-
ted decline in stimulated C-peptide levels
is observed;6months prior to symptom-
atic type 1 diabetes, with a faster decline
3monthsprior to the symptoms (76),while
fasting C-peptide levels are maintained in
thenormal rangeduring this period (70). At
4 years from the time of a 20% decrease in
C-peptide frombaseline, there is a 47% risk
of symptomatic type 1 diabetes, with a
positive predictive value of symptomatic
type 1 diabetes within 5 years of 78% (10).

Increased insulin resistance or de-
creased insulin sensitivity can be observed
in the later stages of progression to symp-
tomatic type 1 diabetes and may contrib-
ute to b-cell dysfunction (75,77–79).

Although used as a diagnostic crite-
rion for type 2 diabetes, an increased
HbA1c level has variable performance
as a marker for type 1 diabetes. In the
prospective DPT-1, TEDDY, Trial to Re-
duce IDDM in the Genetically at Risk
(TRIGR), and TrialNet Natural History
studies, HbA1c $6.5% ($48 mmol/mol)
had very low sensitivity but high speci-
ficity for progression (80). However, in-
creasing HbA1c at levels ,6.5% (,48
mmol/mol) may be observed in the
12–18 months before symptomatic dis-
ease and occurs independent of abnor-
mal random fasting glucose levels and
the number of autoantibodies. Thus, in-
creasing HbA1cmay serve as a biomarker
of type 1 diabetes progression (10,81,82).
Analysis of TrialNet Natural History data
showed that a 10% increase in HbA1c
above baseline in subjects with multiple
autoantibodies was associated with an
84% 3-year risk of developing either
ADA diabetes diagnostic laboratory crite-
ria or symptomatic type 1 diabetes, and a
20% increase in HbA1c was associated
with a nearly 100% risk over 3–5 years,
with a 5-year positive predictive value of
98% (10). In the Finnish HLA at-risk child-
hood cohort, a 10% increase in HbA1c

Figure 4—Probability of progression in islet autoantibody-positive relatives of individuals with
type 1 diabetes stratified for number of autoantibodies (8).

Figure 5—Probability of progression from dysglycemia stage 2 in DPT-1. IGT, impaired glucose
tolerance (unpublished data from DPT-1 [4,32]).
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levels in samples taken 3–12 months
apart increased risk 6-fold and predicted
the diagnosis of clinical diabetes (hazard
ratio5.7),whichhad itsonsetwithamedian
time of 1.1 years. In addition, two consecu-
tive HbA1c values$5.9% ($41 mmol/mol)
were associated with a 12-fold risk (haz-
ard ratio 11.9) with a median time until
diagnosis of 0.9 years (82).
At-risk children and adults who have

been intensively followed in prospective
natural history clinical research studies
with monitoring for dysglycemia (i.e.,
OGTT, intravenous glucose tolerance
test, HbA1c) are frequently started on
insulin replacement therapy in the ab-
sence of symptoms based on exhibiting
ADA or AACE diagnostic laboratory cri-
teria for diabetes. It has not been deter-
mined, however, whether the ADA or
AACE diabetes diagnostic laboratory cri-
teria, which were developed for type 2
diabetes, are optimized for recommend-
ing initiation of insulin therapy in pre-
symptomatic type 1 diabetes.

CURRENT BENEFITS OF STAGING
TYPE 1 DIABETES

There are beneficial short-term clinical
outcomes for subjects followed pro-
spectively in natural history studies. In
DAISY, a study of genetically at-risk chil-
dren, only 3% of study participants were
hospitalized at diagnosis compared with
44% of age- and sex-matched children
diagnosed in the community (83). In
the TEDDY study, 30% of children aged
,5 years were presymptomatic at the
time of diagnosis of type 1 diabetes
based on ADA diagnostic criteria and, if
symptomatic, were significantly less
likely to experience DKA at onset than
comparable populations (84). Similarly,
in the German BABYDIAB and the Mu-
nich Family Study, children who were
followed after screening positive for is-
let autoantibodies had a lower preva-
lence of DKA (85). A majority of DPT-1
study participants (63.3%) were diag-
nosed with type 1 diabetes based on
laboratory metabolic parameters with-
out symptoms, with only 3.67% devel-
oping DKA (86). In contrast, DKA at onset
of type 1 diabetes was observed in
;30% of youth in the population-based
SEARCH for Diabetes in Youth (SEARCH)
study (87) and affected 46% of youth at
diagnosis in Colorado in 2012, repre-
senting a 55% increase from 1998 to
2012 (88). DKA at onset of type 1 diabetes

is associated with increased mortality
and longer hospitalizations; is less likely
to be associated with a partial remis-
sion, or “honeymoon phase”; and is
more commonly associated with lower
residual b-cell function, worse metabolic
control, higher insulin requirements, and
adverse short-term neurocognitive out-
comes (85,89–91).

Children diagnosed through prospec-
tive natural history studies of type 1 di-
abetes often have better metabolic
indicators both at and shortly after the
diagnosis, which over the long-termmay
make the disease easier to manage, de-
crease hypoglycemic episodes, delay
the development of long-term compli-
cations, and decrease cost. Preservation
of C-peptide secretion is linked to
reduced risk of progression of retinopa-
thy, nephropathy, and neuropathy and a
lower risk of hypoglycemia (92,93).
Moreover, intensive diabetes treatment
begun after the diagnosis of symptom-
atic type 1 diabetes improves the likeli-
hood of a honeymoon phase (94), helps
patients to maintain higher C-peptide
levels (92), and decreases mortality
(95), suggesting that patients who are
treated as early as possible will have im-
proved long-term outcomes.

About one-half of diagnosed DPT-1
participants had HbA1c levels within
the normal range with an average
HbA1c value of 6.4% (46 mmol/mol)
(86), a figure much less than the 10.9%
(96 mmol/mol) average HbA1c value in a
cohort of children diagnosed in the com-
munity (83). A significant proportion of
DPT-1 participants (35.4%) had normal
fasting glucose levels at diagnosis, and
nearly all (96.6%) had detectable
C-peptide levels .0.2 ng/dL (86).
DAISY children had lower HbA1c levels
for at least 1 month and lower insulin
requirements for 12 months after the
diagnosis compared with children diag-
nosed in the community (83), and chil-
dren participating in the Diabetes
Prediction in Skåne (DiPiS) longitudinal
study had lower HbA1c levels at 12 and 24
months after the diagnosis in the face of
similar daily insulin dose requirements (96).

DESIGN OF STAGE-SPECIFIC
CLINICAL TRIALS TO DELAY AND
PREVENT TYPE 1 DIABETES
PROGRESSION

The increasing incidence and prevalence
of type 1 diabetes (12–14), the daily

burden and challenges of living with
type 1 diabetes with poor daily glucose
and metabolic control (97,98), and the
significant morbidity and premature
mortality of the disease (95,99,100)
have catalyzed approaches to prevent
progression and onset of symptomatic
disease. The predictable progression of
type 1 diabetes from the onset of auto-
immunity to dysglycemia prior to the
onset of symptomatic disease may facil-
itate the design of smarter, shorter, and
less expensive clinical trials using sub-
ject stratification and intermediate end
points (10). Some current clinical trials
have leveraged this concept (Table 2).
For example, the TrialNet CTLA4-Ig (aba-
tacept) trial (ClinicalTrials.gov identifier
NCT01773707) is enrolling subjects who
are autoantibody positive and at risk of
type 1 diabetes at stage 1with transition
to stage 2 as the trial primary outcome.

REFINEMENT OF STAGING

Staging type 1 diabetes and predicting
its progressionwill be refined during this
decade. As described above, improved
assays for detecting autoantibodies,
and especially single, high-affinity auto-
antibodies, are being developed, and fu-
ture efforts will need to focus on their
clinical significance and standardization.
Furthermore, in a small number of peo-
ple who appear clinically to have type 1
diabetes at the time of clinical diagnosis,
existing antibody measurements may
fail to detect the presence of autoimmu-
nity. Whether these individuals have an
autoimmune process to an as-yet-
unidentified antigen or another disease,
such as monogenic diabetes, is un-
known, and studies are ongoing to ex-
plore this. Efforts are under way to
better predict the risk of development
of autoimmunity and its earliest stages
using metabolomics (101–105), micro-
biome metagenomics (106–110), and
transcriptomics (111,112), among
others. Decreased levels of phospholi-
pids, especially choline-containing
phospholipids, in umbilical cord blood
have been detected in at-risk children
who progress to symptomatic type 1
diabetes early in life (101–103) and, if
validated, may provide informative
markers for earlier staging. A type I in-
terferon signature is detected in HLA
genetically predisposed children prior
to the development of autoantibodies
(113,114) and may provide a novel
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diagnostic for early risk detection. These
approaches may ultimately help to
define a new stage that occurs prior to
the current stage 1.
New diagnostic approaches to refine

staging are under development. A ma-
jor limitation of detecting islet inflam-
mation or insulitis associated with type
1 diabetes is the inability to image in-
flammation in the pancreas. Refined
islet imaging approaches have demon-
strated the ability to detect islet inflam-
mation in new-onset type 1 diabetes
(115) and will likely be applied to
earlier stages of the disease. Analysis of
ongoing b-cell destruction by detecting
circulating demethylated insulin DNA is
being investigated in both new-onset
type 1 diabetes and the at-risk settings,
and the assays are being refined and val-
idated (116–120). There are also ongoing
efforts to integrate and model diverse
data (genetic, immunologic, metabolic,
age, etc.) to develop composite predictive
risk scores to better predict progression
(121–123).
For broad application and accep-

tance, it will prove critical to have well-
standardized validated biomarker assays.
Long-term efforts will need to focus on
working with regulatory authorities
around biomarker qualification and

adoption of surrogate biomarkers that
can substitute for true clinical end points
for clinical trials to arrest progression to
symptomatic type 1 diabetes.

CONCLUSIONS AND
RECOMMENDATIONS

Disease staging classification approaches
have been used successfully for other dis-
orders and have provided a framework
for both diagnosis and therapeutic inter-
ventions. The type 1 diabetes staging clas-
sification recommendation presented
herein captures the natural history and
predictability of progression in at-risk in-
dividuals and provides a framework for
research and development of preventive
therapies and, ultimately, their adoption
for clinical care.

At the present time, this classifica-
tion system should be used for clinical
research where it will aid in design of
risk screening, clinical trial subject
stratification, and design of natural
history and intervention clinical trials,
but risk screening and staging as out-
lined here are not recommended at
this time for clinical practice in the ab-
sence of cost-effective screening, stag-
ing, and effective interventions that
delay progression to symptomatic
type 1 diabetes.

Human type 1 diabetes is a contin-
uum that can be staged, starting with
the detection of two or more islet auto-
antibodies (stage 1) and progressing
at a variable rate to a second stage of
glucose intolerance or dysglycemia
(stage 2) before becoming clinically
symptomatic (stage 3). The time of on-
set of symptomatic disease can be pre-
dicted based on stage-specific
biomarkers. This classification system,
which will be continuously refined
with the development of novel stage-
specific biomarkers, provides a new
taxonomy of type 1 diabetes and a
framework for clinical trial design,
benefit/risk decisions around inter-
ventions, and, ultimately, the practice
of precision medicine to prevent symp-
tomatic type 1 diabetes.
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