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The ataxia telangiectasia mutated serine/threonine
kinase (ATM)/checkpoint kinase 2 (CHEK2, best known as
CHK2) and the ATM and Rad3-related serine/threonine
kinase (ATR)/CHEK1 (best known as CHK1) cascades are the
2 major signaling pathways driving the DNA damage
response (DDR), a network of processes crucial for the
preservation of genomic stability that act as a barrier
against tumorigenesis and tumor progression. Mutations
and/or deletions of ATM and/or CHK2 are frequently found
in tumors and predispose to cancer development. In
contrast, the ATR–CHK1 pathway is often upregulated in
neoplasms and is believed to promote tumor growth,
although some evidence indicates that ATR and CHK1 may
also behave as haploinsufficient oncosuppressors, at least
in a specific genetic background. Inactivation of the ATM–
CHK2 and ATR–CHK1 pathways efficiently sensitizes
malignant cells to radiotherapy and chemotherapy.
Moreover, ATR and CHK1 inhibitors selectively kill tumor
cells that present high levels of replication stress, have a
deficiency in p53 (or other DDR players), or upregulate the
ATR–CHK1 module. Despite promising preclinical results,
the clinical activity of ATM, ATR, CHK1, and CHK2
inhibitors, alone or in combination with other therapeutics,
has not yet been fully demonstrated. In this Trial Watch,
we give an overview of the roles of the ATM-CHK2 and
ATR-CHK1 pathways in cancer initiation and progression,
and summarize the results of clinical studies aimed at

assessing the safety and therapeutic profile of regimens
based on inhibitors of ATR and CHK1, the only 2 classes of
compounds that have so far entered clinics.

Introduction

The preservation of genomic integrity is crucial for the develop-
ment, homeostasis, and survival of all organisms, acting also as a bar-
rier against tumorigenesis. Genomic insults are, however,
continuously inflicted on cells by both exogenous and endogenous
sources, which may (directly or indirectly) induce DNA damage (as
in the case of genotoxic agents) and/or perturb DNA replication, for
instance by slowing or stalling replication fork progression (as in the
case of replicative-stress agents or DNA damaging agents).1 Among
the most common types of genotoxic agents/stresses are oxygen radi-
cals, ionizing/ultraviolet (UV) radiation, DNA replication errors,
and multiple chemotherapeutic agents.2,3 DNA lesions may affect
crucial physiological processes (e.g., DNA transcription, DNA repli-
cation, and chromosome segregation), be cytotoxic (in particular in
the case of double-strand breaks [DSBs]), and result in gene muta-
tions and genomic instability.3-6

Cells are endowed with a complex signaling pathway known as
the DNA damage response (DDR) that helps them to cope with
(and respond to) DNA insults and thereby maintain genomic stabil-
ity.3,4,6,7 DDR collectively refers to a network of cellular processes
that are specifically triggered by aberrant DNA structures generated
upon DNA damage, encompassing (1) cell cycle checkpoints, which
halt cell cycle progression;4,8 (2) DNA repair mechanisms, which
mediate the removal of specific DNA injuries;2,6 (3) DNA damage
adaptation/tolerance processes, which allow cells to overcome persist-
ing lesions in the absence of their repair9; and (4) cell death and cell
senescence, which selectively depletes (the former) and semi-perma-
nently arrests (the latter) irreversibly damaged cells.10-13 The DNA
damage signaling pathways regulate DDR by coordinating all of
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these processes. The twomain signaling axes that have been described
to date are (1) the ataxia telangiectasia mutated serine/threonine
kinase (ATM)/checkpoint kinase 2 (CHEK2, best known as CHK2)
cascade, and (2) the ataxia telangiectasia mutated and Rad3-related
serine/threonine kinase (ATR)/checkpoint kinase 1 (CHEK1, best
known as CHK1) cascade.14-17

ATM and ATR are phosphatidylinositol-3-kinase–related kin-
ases (PIKKs),18-21 belonging to a family of serine/threonine kin-
ases that also contains DNA-dependent protein kinase (DNA-
PK), which plays a role in the DNA DSB repair pathway of non-
homologous end joining (NHEJ),22,23 and mammalian target of
rapamycin (mTOR), a key autophagy regulator.24,25 ATM recog-
nizes and amplifies the signal generated by DSBs, whereas ATR is
activated by single-stranded DNA (ssDNA) generated for exam-
ple by UV-induced DNA damage or interstrand DNA crosslink-
ing (both of which lead to stalled replication forks), or by
resected DSBs.17,26-28 In all cases these kinases are recruited to
the DNA damage sites by specific DNA damage recognition pro-
teins (i.e., DNA damage sensors), which are believed to be the
meiotic recombination 11 homolog A (MRE11)–RAD50–
Nibrin (NBN, best known as nijmegen breakage syndrome 1,
NBS1) complex (MRN complex) for ATM29-32 and replication
protein A (RPA) complex-coated ssDNA for ATR.33,34

The principal substrates of ATM and ATR are the checkpoint
effector kinases CHK214,35-37 and CHK1,15,38-41 respectively.
Upon activation, CHK1 and CHK2 are released from chromatin
and halt cell cycle progression to allow repair.14,42 In response to
DSBs CHK2 triggers the G1-S checkpoint—a mechanism survey-
ing S-phase entry—by catalyzing the activating phosphorylation
of the tumor suppressor protein p53 (TP53, best known as p53),
which in turn inhibits the cyclin-dependent kinase 2 (CDK2)-
CCNE1 (best known as cyclin E1) complex by transactivating the
CDK inhibitor p21.43 In contrast, CHK1 is mainly involved in
the replication checkpoint (also known as the intra-S checkpoint)
and the G2-M checkpoint—surveillance mechanisms that monitor
S-phase replication and mitosis entry, respectively—by targeting
cell division cycle 25 (CDC25) family members and WEE1, the
main regulators of the S- and M-phase CDKs.44-51

To ensure the coordination of DNA damage repair with the acti-
vation of cell cycle checkpoints, ATM and ATR also phosphorylate
other relevant substrates involved in processes such as DNA replica-
tion, DNA repair, apoptosis, and the cell cycle,4,14,52,53 including
H2A histone family, member X (H2AFX, best known as
H2AX),42,54-57 a histone variant that upon phosphorylation (a post-
translational modification designated g-H2AX) acts as a platform
for the recruitment of a variety of DNA repair proteins.3,6 The
checkpoint effectors can alsomediate DNA repair in a direct fashion.
For instance, CHK1 contributes to homologous recombination
(HR) by recruiting the HR components breast cancer 2, early onset
(BRCA2) and RAD51 toDNAdamage foci,58,59 and to the Fanconi
anemia (FA) pathway.60,61 For a comprehensive overview of ATM–
CHK2 and ATR–CHK1 networks and the mechanisms of DDR
please refer to the following reviews.3-7,14-17,26,30,62-65

Deregulation in DDR has been linked to immune deficiency,
neurodegeneration, premature aging, genomic instability, cancer
predisposition, and tumorigenesis.2,3,66,67

Along the lines of our monthly Trial Watch series,68,69 here
we describe the impact of the DNA damage response signaling
pathways ATM–CHK2 and ATR–CHK1 on tumor initiation,
progression, and survival. We then summarize and discuss recent
clinical trials investigating the therapeutic use of inhibitors of
ATR and CHK1 in cancer patients.

DNA Damage Response Signaling Pathways
in Cancer

A large number of observations indicate that DDR acts as an
intrinsic barrier in the early phases of human tumorigenesis.70-74

DDR is indeed overactivated in premalignant lesions in response
to increased levels of endogenous genotoxic and replication
stress.75-77 The current view is that impairment of DDR during
the process of malignant transformation may promote and/or
fuel tumorigenesis leading to accumulated genetic lesions and
increased genomic instability.75,77

Further evidence links DDR impairment to cancer. First, loss,
germline polymorphism, and/or mutation(s) of genes encoding
components of DDR predispose to tumor.2 Second, DDR play-
ers (including those involved in the DNA damaging signaling
pathways) are frequently altered in human malignancies78,79 and
cancer signatures of the DNA repair pathways affected have been
reported (reviewed in ref.80). Third, some oncogenes (including
Harvey rat sarcoma viral oncogene homolog [H-RAS], v-myc
avian myelocytomatosis viral oncogene homolog [MYC], and
cyclin E1)75,81-83 induce replication stress, which can in turn trig-
ger chromosomal instability.84-86 In addition, persistent telomere
damage can generate tetraploidy in the early stages of tumorigen-
esis through a mechanism involving prolonged activation of
ATM–CHK2 and ATR–CHK1 signaling.87

Below, we summarize the specific impact of ATM–CHK2 and
ATR–CHK1 pathways on tumorigenesis.

Impact of the ATM/CHK2 network on cancerogenesis and
tumor progression

Malignant cells are frequently deficient in the G1-S check-
point as a result of mutation or deletion of TP53 or other com-
ponents of the ATM/CHK2 module.35,88-95 In particular,
somatic mutation, polymorphism, or epigenetic silencing of
ATM is found in a variety of human malignancies, including
adult acute lymphoblastic leukemia,96 breast cancer,97 chronic
lymphocytic leukemia,98 colon cancer,99 head and neck squa-
mouse cell carcinoma,100 lung adenocarcinoma,89 and sporadic
pancreatic ductal adenocarcinoma.101 In one of these settings,
ATM alterations have been associated with poor prognosis.102,103

Along similar lines, CHEK2 is frequently lost (>50%) or epige-
netically inactivated in lung cancers.104-106 CHEK2 mutations
are also present (albeit at lower frequencies) in other human
malignancies, including breast and ovarian tumors.35 Loss of
CHEK2 has also been found in 47% of human colorectal
cancers.107

Of note, ataxia telangiectasia (A-T), a human syndrome
caused by an inherited biallelic mutation of ATM, is
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characterized by radiosensitivity, neurodegeneration, and immu-
nodeficiency as well as a predisposition to tumors including thy-
mic lymphoma.108-110 In addition, heterozygous germline
mutations in ATM have been associated with risk of leukemia
and breast and pancreatic cancer,111-115 whereas heterozygous
germline mutations in CHEK2 have been identified in familial
cases of breast cancer35,116-118 and CHEK2 is considered a multi-
organ tumor susceptibility gene.35,36

The oncosuppressive impact of the ATM–CHK2 pathway has
been further demonstrated in vivo by employing distinct knock-
out models, including Atm¡/¡ mice,119-124 AtmC/¡ mice in a
transformation-related protein 53 (Trp53) heterozygous (but not
in a Trp53 wild type) background,125, 126 mice carrying the Atm
7636del9 deletion (a mutation commonly found in A-T patients
resulting in the expression of a functionally impaired ATM),126

and Chek2¡/¡ mice, but only when combined with inactivation
of genes encoding other DDR players (e.g., BRCA1, NBS1, or
MRE11).127-131

Apparently contrary to these results, ATM and/or CHEK2
have been found to be upregulated in some human cancers.71,132-
136 In addition, a significant percentage of cell lines (12%) from
the NCI-60 panel have endogenously activated CHEK2.137

In summary, the ATM-CHK2 pathway acts as a barrier
against oncogenesis and cancer growth.

Impact of the ATR/CHK1 network on cancerogenesis and
tumor progression

The incidence of ATR or CHEK1 loss or mutations in human
malignancies is low, with rare exceptions such as colorectal, endo-
metrial, and sporadic stomach cancers exhibiting microsatellite
instability138-144 or breast tumors.145 It is worth noting that in
endometrial cancers heterozygous truncating mutations in exon
10 of the ATR gene (which abrogate the ATR-CHK1 module
activity)146 have been associated with poor clinical outcomes.142

Accumulating evidence suggests that ATR and CHK1 may
promote rather than suppress tumor growth. First, no homolo-
gous mutations in ATR or CHEK1 have so far been identified in
tumors, possibly because of the essential functions of the ATR/
CHK1 axis in cell survival.41,147-149 Second, ATR and CHEK1
are frequently upregulated in human neoplasms.150-158 This
applies particularly to CHEK1, whose promoter activity may be
induced by oncogenes such as the transcription factor E2F and
MYC,150,159 and which has been found to be overexpressed in
tumors including triple-negative breast carcinomas
(TNBC)150,151 and MYC–neuroblastoma-related (MYCN)-
amplified and high-risk tumors.152 Third, conditional hypomor-
phic suppression of Atr in adult mice (which reduces Atr expres-
sion to 10%) halted the development of MYC-induced
lymphomas or pancreatic tumors with high levels of replicative
stress,160 and potently suppressed the growth of MLL-ENL– and
N-RASG12D–driven acute myeloid leukemias as well as that of
p53-deficient fibrosarcomas expressing H-RASG12V.161 Accord-
ingly, ATR deficiency conferred protection from UV-induced
skin carcinogenesis in xeroderma pigmentosum, complementa-
tion group C (Xpc)¡/¡ mice.162 In line with these findings, con-
ditional deletion of both Chek1 alleles in mammary epithelial

cells induced cell death and developmental defects without pro-
moting tumorigenesis in mice.163 Moreover, homozygous loss of
Chek1 abrogated WNT-driven oncogenesis in the mouse small
intestine164 as well as chemically-induced mouse skin tumorigen-
esis.165 Of note, in these 2 latter settings, Chek1 haploinsuffi-
ciency led to tumorigenesis and/or accelerated tumor
progression.

Studies have reported that Atr/Chek1 heterozygosity in unper-
turbed conditions had no effect or induced a mild increase in the
incidence of spontaneous tumors.41,149,166 In contrast, deletion
of one copy of Trp53166 or monoallelic or biallelic deletion of
Chek2167 promoted tumor susceptibility in Chek1C/¡ mice.
Along similar lines, Atr haploinsufficiency boosted the incidence
of multiple K-RASG12D-induced cancers in Trp53 heterozygous
mice163,168 and favored early tumor development in mice with a
mismatch repair-deficient background.146,169 In these settings,
reduction of Atr/Chek1 expression led to genomic instability by
provoking unscheduled S phase entry, accumulation of DNA
damage during impaired DNA replication, and premature mito-
sis or, alternatively, by directly inducing mitotic abnormali-
ties.163,166,168 These results suggest that ATR and CHK1 may
act as haploinsufficient tumor suppressors in specific genetic
backgrounds.170

Further confirming the importance of balanced CHK1 levels
for counteracting replication stress, supra-physiological levels of
CHK1 in mice (resulting from an extra copy of Chek1) reduced
replication stress and promoted malignant transformation.171 In
addition, CHK1-S, an alternative splice variant of CHEK1 that
acts as an endogenous CHK1 inhibitor, was found to be overex-
pressed in multiple human tumors and showed increased expres-
sion during ovarian cancer progression.172

Together, these findings indicate that the ATR/CHK1 mod-
ule promotes the survival of cancer cells. Nevertheless, they also
suggest that, under a specific genetic context, the ATR–CHK1
network may limit tumorigenesis.

DNA Damage Response Signaling Pathways
in Cancer Therapy

Several lines of evidence suggest that the DDR pathways may
be attractive targets for cancer therapy. First, an efficient DDR
helps (and is often required for) tumor cells to cope with high
levels of genotoxic stress of endogenous (e.g., oncogene-induced
replication stress) or exogenous (e.g., radio/chemotherapy) ori-
gin.2,3,173,174 Second, alterations in DDR can render malignant
cells dependent on (or even addicted to) specific DDR cascades
for their survival.2,3,80,95,174,175 For instance, cancer cells with
defects in the G1 checkpoint are believed to rely more on the
ATR-CHK1 network, and are consequently more vulnerable to
its inhibition.95,176-178 Third, DDR pathways that are upregu-
lated in tumors may be targeted by specific anticancer
regimens.2,3,80,173

Inhibiting DNA damage signaling pathways may thus be an
efficient means to eliminate tumor cells or sensitize them to
DNA damaging agents or antimetabolites.
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Preclinical Evaluation of ATM, ATR, and CHK1
Inhibitors as Monotherapeutic Agents

Abrogation of the ATR-CHK1 module is reported to exert
antineoplastic activity by exacerbating the level of replication
stress.72,179,180 Hypomorphic suppression of ATR increased
genomic instability and efficiently depleted malignant cells
upon RAS activation.168 In addition, the sensitivity of tumor
cells to the inhibition of CHK1 has been correlated with lev-
els of endogenous DNA damage and/or replication stress.
This applies to multiple agents, including (1) the specific
CHK1 inhibitors chekin, in MYC-overexpressing cells
(including B-cell lymphoma/leukemia),159 and AR323 and
AR678, both in melanoma cells;181 (2) the CHK1/2 inhibitor
PF-00477736182 in Em-myc lymphoma cells;183 and (3)
UCN-01 (an inhibitor of multiple kinases including CHK1
but not CHK2)184-186 in acute myeloid leukemia with com-
plex karyotype samples154 and MYC-driven lymphomas.160

In this latter study, CHK1 inhibition did not show therapeu-
tic efficacy in K-RASG12V-driven pancreatic adenocarcinomas
displaying low levels of replicative stress.160 In line with these
findings, the cytotoxicity of ATR inhibitors in p53-deficient
cancer cells was increased by cyclin E1 overexpression-
induced replicative stress.187

CHK1 has also been identified as a therapeutic target for neu-
roblastoma in a loss-of-function screen of the protein kinome.152

Corroborating this finding, CCT244747 (a pharmacologic
inhibitor of CHK1)188 showed marked therapeutic activity in
MYCN-driven neuroblastoma either as a single agent189 or in
combination with WEE1 inhibitor.190 In addition, CHK1 inhi-
bition has been found to be particularly effective against
TNBC.151,191-193 The peculiar sensitivity of TNBC and
MYCN-driven neuroblastoma to CHK1 inhibitors has been
linked to CHK1 overexpression/activation (see above) and p53
status.150-152,191,192

A lethal interaction between inhibitors of ATR/CHK1 and
deficiency in other DDR players has also been reported. Thus,
pharmacologic inactivation of CHK1 by 2e194 or UCN-01
reduced cell growth in several cell lines depleted of BRCA2.195

Moreover, ATM- or p53-deficient cancer cells were selectively
killed by the ATR inhibitor VE-821,196 HR-deficient cancer cells
were preferentially targeted by ATR and/or CHK1 inhibitors,197

and FA-deficient tumors were found to be hypersensitive to
knockdown or pharmacologic inactivation of CHK1 (by
G€o6976 and UCN-01),198 as well as to the ATM inhibitor KU-
55933.199 This latter effect has been linked to the role of the FA
pathway in DNA replication.200-202

Intriguingly, inactivation of CHK1, ATM, and ATR dis-
played enhanced anticancer activity in hypoxic conditions, most
likely due to the role of DDR in hypoxia/reoxygenation,203-205

whereas CHK1 inhibitors demonstrated preferential activity
against genomically unstable polyploid cells.206

Finally, pharmacologic inactivation of ATR (by AZ20),
CHK1 (by LY2603618, CCT244747 or CHK1A) or ATM (by
KU-60019) displayed potent in vitro and/or in vivo cytotoxic-
ity.188,207-211

Taken together, these findings support the use of inhibi-
tors of ATR and CHK1 in cancer therapy, at least against
neoplasms bearing a specific genetic background (e.g., defi-
ciency in p53 or in other DNA damage repair pathways),
with upregulation of the ATR-CHK1 axis, or presenting high
levels of replication stress.

Preclinical Evaluation of ATM, CHK2, ATR, or CHK1
Inhibitors as Radiochemosensitizing Agents

Inactivation of ATM–CHK2 and/or ATR–CHK1 pathways is
reported to boost the anticancer activity of a variety of therapeu-
tic agents (Table 1).65,95,176-178,212-214 Of note, this sensitization
was proven to be particularly successful in tumor cell lines defec-
tive for p53 or p53 signaling.215-221

The therapeutics that have been combined with ATM,
CHK2, ATR or CHK1 inhibitors include the following classes:
(1) DNA damaging agents. Administration of pharmacologic
agents that specifically or non-specifically inhibit
ATM,210,211,215,222-227 ATR,218,228-230 CHK2,216,220,231-235 or
CHK1,216,217,220,232-235 (Table 1) as well as inactivation of these
DDR kinases by alternative approaches (e.g., overexpression of
an inactive, dead mutant kinase or transfection of specific small
interfering [si]RNAs)236-239 sensitized multiple human tumors to
radiation and/or chemotherapy based on cisplatin (a platinum
derivative commonly employed against several solid neo-
plasms)240-242 or temozolomide (an alkylating agent currently
used in the treatment of anaplastic astrocytoma and glioblastoma
multiforme).243-245 In some of these settings cancer cells dis-
played higher radio- or chemosensitization than non-malignant
cells.211,222,229,230,234 The sensitizing effect of CHK2 inhibitors,
however, remains a matter of contention as radioprotection has
been also reported in malignant cells (especially in a p53-profi-
cient context) and T cells upon CHK2 inactivation.178,246-250 (2)
Antimetabolites. Abrogation of the ATR-CHK1 module by spe-
cific pharmacologic agents186,189,218,221,229,251-255 (Table 1) or
by transfecting cells with specific siRNAs251,256,257 exacerbated
cancer cell killing by the ribonucleotide reductase inhibitor
hydroxyurea and by the nucleoside analogs gemcitabine and/or
cytarabine, 2 agents that are currently used for the treatment of
several solid tumors or hematologic malignancies, respec-
tively.258-260 Similar results were achieved using non-specific
inhibitors of CHK1182,220,251,261-265 (Table 1). This chemosen-
sitization to antimetabolites, a class of compounds that cause rep-
lication fork arrest by depleting nucleotides, has been linked to
the specific role of the ATR–CHK1 pathway in DNA replication
and DNA replication stress.72,176,177,266 In line with this hypoth-
esis, the absence of ATM or CHK2 was not effective in sensitiz-
ing cancer cells to antimetabolites.251,267,268 (3) Topoisomerase
inhibitor. Pharmacologic inactivation of the ATR-CHK1 cas-
cade189,219,220,228,254,255,264,269 significantly potentiated the anti-
tumor effect of the 2 topoisomerase I inhibitors irinotecan and
topotecan as well as that of the topoisomerase II inhibitor etopo-
side, all agents that are approved by the FDA for the treatment of
several solid neoplasms270-273 (Table 1). Despite some
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Table 1. Preclinical evaluation of ATM, CHK2, ATR, or CHK1 inhibitors as radiosensitizing and/or chemosensitizing agents

Target(s) Agent Combinations Refs

ATM CP466722 Radiation 227
ATM KU55933 Camptothecin, doxorubicin, etoposide, or radiation 223

Radiation 222
ATM KU59403 Camptothecin, doxorubicin or etoposide 225
ATM KU60019 Radiation 210

215
224

Radiation and TMZ 211
ATM/ATR Caffeine Radiation 226
ATR Compound 45 Cisplatin or radiation 230
ATR NU6027 Camptothecin, cisplatin, doxorubicin, hydroxyurea, radiation, rucaparib or TMZ 218
ATR VE-821 Camptothecin or indotecan 269

Cisplatin, topotecan or veliparib 279
Radiation 228

ATR VE-822 Gemcitabine or radiation 229
Irinotecan 269

CHK1 AR458323 MK-1775 288
CHK1 CHIR-124 Camptothecin or irinotecan 219
CHK1 CCT244747 Gemcitabine or irinotecan 189
CHK1 GNE-783 TMZ 252
CHK1 GNE-900 Gemcitabine, irinotecan or TMZ 252
CHK1 LY2603618 Gemcitabine 221

NU1025, olaparib, rucaparib or veliparib 283
CHK1 SAR-020106 Gemcitabine or irinotecan 255

254
Radiation 217

CHK1 SB-218078 Gemcitabine 251
PD-407824 251

CHK1 MK-8776 Cytarabine, gemcitabine or hydroxyurea 186
Gemcitabine or hydroxyurea 253
MK-1775 290

190
CHK1/2 AZD7762 Gemcitabine and/or MK-1775 291

Olaparib, radiation and/or veliparib 281
NU1025, olaparib, radiation or veliparib 283
Gemcitabine 261

263
Gemcitabine, irinotecan, or topotecan 264
Gemcitabine and radiation 235
Olaparib 282
Olaparib and radiation 285
PD184352, PP2, saracatinib, or selumetinib 287
PD184352, radiation, saracatinib and/or selumetinib 286
Radiation 234

216
Veliparib 278
5-FU and/or radiation 232

CHK1/2 PF-00477736 Carboplatin or gemcitabine 182
MK-1775 289

CHK1/2 V158411 Several chemotherapeutic drugs including camptothecin or gemcitabine 220
CHK1/2 XL-844 Gemcitabine 262

Radiation 233
CHK1/WEE1 PD-321852 Gemcitabine 265
CHK1/WEE1 PD-407824 Gemcitabine 251
CHK1 and multiple other kinases UCN-01 Olaparib 281

NU1025, olaparib or veliparib 283
PD184352 or selumetinib 286
Dasatinib, PD184352, PP2 or selumetinib 287
Gemcitabine 261
Monastrol 293
Sagopilone 292

CHK2 CCT241533 Olaparib or rucaparib 246
CHK2 PV1019 Camptothecin, radiation or topotecan 231

Abbreviation: 5-FU, 5-fluorouracil; TMZ, temozolomide
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contradictory reports274,275 a similar chemosensitization activ-
ity is ascribed to inhibitors of ATM223,225 and CHK2231

(Table 1). (4) Poly(ADP-ribose) polymerase (PARP) inhibi-
tors. ATM deficiency or depletion sensitized mantle cell lym-
phoma cells and breast cancer cells, respectively, to PARP
inhibition.276,277 In addition, CHK2 deficiency combined
with PARP inhibitors elicited a synergistic lethal response
upon MYC overexpression.278 Along similar lines, pharmaco-
logic inhibition of ATR,218,279 inactivation of CHK2 and/or
CHK1,246,278,280-283 and administration of UCN-01281,283

increased the antineoplastic activity of specific PARP inhibi-
tors (Table 1). Moreover, AZD7762 combined with olaparib
(AZD2281, a pharmacologic inhibitor of PARP1)284 radio-
sensitized p53-mutant pancreatic cancer cells.285

Inactivation of CHK1 or CHK2 has also been reported to
induce sensitization to other agents, including inhibitors of mito-
gen-activated protein kinase 1/2 (MAPK1/2) (e.g., PD184352 or
selumetinib),286 SRC family kinases,287 or WEE1 (e.g., MK-
1775),190,288-291 as well as antimitotics (e.g., monastrol or sago-
pilone)292,293 (Table 1).

In conclusion, inhibition of ATM, ATR, CHK1, or CHK2
exacerbates the in vitro antitumor efficacy of DNA damaging
agents and PARP inhibitors. Abrogation of the ATR-CHK1 axis
displays a much broader sensitization activity than that of the
ATM-CHK2 module because it also potentiates the cancer kill-
ing effect of other chemotherapeutic agents, including antimeta-
bolites and WEE1 inhibitors.

Clinical Investigation of ATR and CHK1 Inhibitors

To date, inhibitors of ATR and CHK1 are the only 2 classes
of compounds that have entered clinical trials either as stand-
alone agents or combined with radio- or chemotherapy (Tables 2
and 3, sources http://www.ncbi.nlm.nih.gov/pubmed and http://
www.clinicaltrials.gov/).

Preliminary Phase I studies showed that specific (i.e.,
LY2603618 and MK-8776) and non-specific (i.e., UCN-01 and
CBP501) inhibitors of CHK1 are well tolerated in individuals
with advanced solid tumors or lymphomas294-298 (Table 2).
Nonetheless, in a Phase I dose-escalation study, AZD7762
showed cardiac dose-limiting toxicities in individuals with
advanced solid tumors, an observation that arrested the further
development of this agent.299 It should be noted, however, that
cardiotoxicity has not been reported for inhibitors of CHK1 that
are more specific than AZD7762 (e.g., MK-8776),298 suggesting
that this effect may be caused by the inactivation of targets dis-
tinct from CHK1. In addition, in a Phase II interventional study,
UCN-01 induced serious adverse effects (including anemia, neu-
tropenia, vomiting, and fatigue) in the vast majority of patients
with hematologic neoplasms (NCT00082017). In this clinical
trial, 27% of subjects had a partial or complete response upon 2
cycles of intravenous infusion of UCN-01 (total dose 135 mg/
m2 and 68 mg/m2, respectively) repeated over 28 d (http://www.
clinicaltrials.gov). On the contrary, UCN-01 did not demon-
strate significant antitumor activity as a stand-alone agent in 2

Table 2. Completed clinical trials testing the therapeutic profile of CHK1 inhibitors in cancer patients

Target(s) Agent Indication(s) Phase Notes Ref.

CHK1 LY2603618 Advanced solid tumors I As single agent 294
Combined with cisplatin and pemetrexed 326
Combined with desipramine 328
Combined with pemetrexed 317

CHK1 MK-8776 Acute Leukemia I Combined with cytarabine 319
Advanced solid tumors I Alone or combined with gemcitabine 298

CHK1/2 AZD7762 Advanced solid tumors I Combined with gemcitabine 318
299

CHK1/2 CBP501 Advanced solid tumors I Alone or combined with cisplatin 295
Malignant pleural mesothelioma II Combined with cisplatin and pemetrexed 327

CHK1/2 PF-00477736 Advanced solid tumors I Combined with gemcitabine NCT00437203
CHK1 and multiple

other kinases
UCN-01 Advanced solid tumors I As single agent 296

Combined with carboplatin 306
Combined with cisplatin 307

308
Combined with fluorouracil 325
Combined with irinotecan 311

310
Combined with topotecan 309

Advanced tumors I As single agent 297
Combined with prednisone 332

Breast cancer II Combined with irinotecan 313
Hematological neoplasms I Combined with perifosine 330
Lymphoma I Combined with fludarabine 322

II As single agent NCT00082017
Melanoma II As single agent 301
Ovarian cancer II Combined with topotecan 312
Renal cell carcinoma II As single agent 300
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Phase 2 trials performed in patients with renal cell carcinoma or
metastatic melanoma (Table 2).300,301 UCN-01 has been
reported to display high binding affinity to alpha1-acid glycopro-
tein in plasma,302 an observation that may explain its limited bio-
availability and poor pharmacokinetics. Given the serious side
effects induced by this agent in cancer patients, its non-specific
nature, and its limited clinical efficacy, further development of
UNC-01 in clinics has been halted. No results regarding the ther-
apeutic activity of more specific inhibitors of CHK1 when
administered alone have been published to date (http://www.
ncbi.nlm.nih.gov/pubmed).

Official sources list 3 ongoing (i.e., not terminated, with-
drawn, suspended, or completed) clinical trials that have been
launched worldwide with the aim of testing the safety and anti-
neoplastic activity of ATR or CHK1 inhibitors in cancer patients
as a single agent (Table 3, http://www.clinicaltrials.gov/). The
clinical profile of LY2606368 is being investigated in subjects
with advanced solid tumors (NCT01115790) and breast or ovar-
ian cancers (NCT02203513), whereas the ATR inhibitor
AZD6738 is being employed in patients with advanced solid
tumors (NCT02223923), alone or together with radiotherapy
(see below). In addition, the pharmacokinetics and pharmacody-
namics of the CHK1 inhibitor GDC-0575 are being assessed in
individuals with refractory solid tumors or lymphomas
(NCT01564251). Finally, the clinical study NCT00234481
(evaluating the safety and efficacy of XL-844 in subjects with
lymphocytic lymphoma) has been terminated due to slow enroll-
ment, while, to the best of our knowledge, the results of
NCT01955668 (assessing the clinical profile of AZD6738 in
patients with hematologic neoplasms) have not yet been released
(http://www.clinicaltrials.gov).

Inactivation of CHK1 has also been evaluated as a means
to boost the therapeutic potential of other classes of chemo-
therapeutics in several studies (Table 2): (1) The safety and
tolerability of the combination of CHK1 inhibitors (includ-
ing UCN-01 and CBP501) and DNA damaging agents
(including cisplatin and carboplatin, a platinum derivative
used for the treatment of solid tumors, including ovarian

carcinoma)303-305 have been demonstrated in some Phase I
studies.295,306-308 In contrast to these observations, dose-lim-
iting toxicities were reported by Lara and colleagues for the
combination of cisplatin and prolonged infusion of UCN-
01.295,306-308 Further clinical trials employing specific inhibi-
tors of CHK1 are required to uncover the true potential of
these CHK1 inhibitor-based antineoplastic regimens. (2) Pre-
liminary evidence reported acceptable toxicity and partial effi-
cacy for the combination of UCN-01 and topoisomerase
inhibitors.309,310 Nonetheless, UCN-01 combined with irino-
tecan or topotecan did not display significant antitumor
activity either in a Phase I clinical study in patients with solid
tumors311 or in 2 Phase II trials in individuals with advanced
recurrent ovarian cancer312 or TNBC.313 In contrast with
this observation, in a Phase I dose-escalation study of the
combination AZD7762 plus irinotecan in subjects with
advanced solid tumors, one patient with metastatic small-cell
cancer bearing a hypomorphic mutation in RAD50 (and con-
sequent attenuation of the ATM signaling) displayed a com-
plete and durable response.314,315 (3) The effect of CHK1
inhibitors in potentiating antimetabolite activity has not been
fully proven. In Phase I dose-escalation studies performed in
patients with advanced solid tumors, the combinations of
LY2603618 with pemetrexed (an inhibitor of the enzyme
thymidylate synthase that is approved by the FDA for the
treatment of various solid malignancies including malignant
pleural mesothelioma)316 and MK-8776 with gemcitabine
showed acceptable safety and pharmacokinetic profiles with
adverse effects commonly associated with the antimetabolites
with which the CHK1 inhibitors are combined.298,317 In
contrast, AZD7762 combined with gemcitabine caused
multiple adverse effects, including cardiac toxicity, fatigue,
neutropenia/leukopenia, bradycardia, hypertension, and/or
rash.299,318 Early evidence of clinical efficacy was observed in
2 of these 4 studies.298,299 In line with this observation, com-
plete remission was observed in 8 of 24 (33%) patients with
relapsed and refractory acute leukemias upon treatment with
SCH900776 (also known as MK-8776) and cytarabine.319

Table 3 Ongoing clinical trials recently launched to evaluate the safety and efficacy of ATR or CHK1 inhibitors in cancer patients.*

Target(s) Agent Indication(s) Phase Status Notes Ref.

ATR AZD6738 Advanced solid tumors I Recruiting Alone or combined with radiotherapy NCT02223923
I/II Recruiting Combined with carboplatin or olaparib NCT02264678

ATR VE-822 Advanced solid tumors I Recruiting Combined with cisplatin, etoposide
and gemcitabine

NCT02157792

CHK1 GDC-0575 Advanced tumors I Recruiting Alone or combined with gemcitabine NCT01564251
CHK1 LY2603618 Advanced solid tumors I Active,

not recruiting
Combined with gemcitabine NCT01341457

CHK1 MK-8776 Acute myeloid leukemia II Active,
not recruiting

Combined with cytarabine NCT01870596

CHK1/2 LY2606368 Advanced solid tumors I Active,
not recruiting

As single agent NCT01115790

Recruiting Combined with cetuximab or cisplatin NCT02124148
Breast or ovarian cancer II Recruiting As single agent NCT02203513

*Not terminated, suspended, withdrawn, unknown, or completed as of the date of submission (January 25th, 2015)
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Nevertheless, no objective responses were found for the com-
binations of UCN-01 with fludarabine (a nucleotide antime-
tabolite analog currently employed in chronic lymphocytic
leukemia patients)320,321 in relapsed lymphomas322 and for
AZD7762 plus gemcitabine, UCN-01 plus fluorouracil (a
nucleoside analog currently used for the adjuvant and pallia-
tive treatment of patients with a variety of solid malignan-
cies),323,324 or LY2603618 plus pemetrexed plus cisplatin in
patients with advanced solid tumors.325.326 Moreover, of the
35 patients enrolled in an interventional study testing the
therapeutic potential of the CHK1/2 inhibitor PF-00477736
combined with gemcitabine, only 4 reported an objective
response (NCT00437203) (http://www.clinicaltrials.gov).
This latter study was terminated prematurely for business rea-
sons. Also, CBP501 failed to improve the efficacy of peme-
trexed or cisplatin in a randomized Phase II trial performed
in patients with advanced malignant pleural mesothelioma.327

Finally, limited antineoplastic responses were observed for the
combination of CHK1 inhibitors (LY2603618 or UCN-01) and
(1) the cytochrome P450 isoform 2D6 (CYP2D6) inhibitor
desipramine (a compound prescribed for the treatment of depres-
sion) in patients with advanced solid tumors,328 (2) the AKT
inhibitor perifosine329 in individuals with hematologic neo-
plasms,330 and (3) the synthetic glucocorticoid prednisone (an
agent licensed for use in cancer patients)331 in subjects with
advanced solid tumors and lymphomas.332

According to official sources (http://www.clinicaltrials.
gov), 9 ongoing clinical trials involving inhibitors of the
ATR-CHK1 cascade together with conventional radio- or
chemotherapy have been launched worldwide (Table 3): (1)
Two pharmacological inhibitors of ATR—VE-822 (also
known as VX-970) and AZD6738—are being employed in
individuals with advanced solid tumors, the former in combi-
nation with cisplatin, etoposide, and gemcitabine
(NCT02157792) and the latter alone (see above) or com-
bined with radiotherapy (NCT02223923) or carboplatin/ola-
parib (NCT02264678). (2) Among the specific
pharmacological inhibitors of CHK1, (i) GDC-0575 is being
tested alone (see above) or in combination with gemcitabine
in patients with refractory solid tumors or lymphomas
(NCT01564251), (ii) LY2603618 is being combined with
gemcitabine (NCT01341457) to treat individuals with
advanced solid tumors, and (iii) MK-8776 is being adminis-
tered together with cytarabine in patients with relapsed acute
myeloid leukemia (NCT01870596). (3) The CHK1/2 inhibi-
tor LY2606368 is being used together with cetuximab (a
FDA-approved epidermal growth factor inhibitor currently
employed for the treatment of human neoplasms, including
colorectal cancer)333 or cisplatin in a clinical study performed
in subjects with advanced solid tumors (NCT02124148).
The clinical trial NCT00045513, investigating the therapeu-
tic profile of UCN-01 plus fludarabine in individuals with
hematologic neoplasms is listed as “unknown”, whereas
NCT01521299, assessing the therapeutic profile of MK-8776

together with hydroxyurea in patients with advanced solid
tumors was withdrawn prior to enrollment due to the insuffi-
cient population of eligible patients (http://www.clinicaltrials.
gov). To the best of our knowledge, the clinical study
NCT00475917 (assessing the therapeutic profile of XL-844
combined with gemcitabine in patients with advanced
tumors) has been terminated, whereas the results of
NCT00988858 (evaluating the clinical profile of LY2603618
together with pemetrexed in patients with non-small cell lung
cancers), NCT00779584 (determining the safety and efficacy
of MK8776 alone or combined with gemcitabine in patients
with advanced tumors), NCT00839332 (assessing the clinical
profile of LY2603618 in combination with gemcitabine in
patients with pancreatic cancer), and NCT01359696 (evalu-
ating the therapeutic profile of GDC-0425 together with
gemcitabine in patients with advanced tumors) have not yet
been released (http://www.clinicaltrials.gov).

Concluding Remarks

A large body of preclinical studies supports the use of
inhibitors of DNA damage signaling pathways for cancer
therapy, either as single agents, for example in cancer cells
with high levels of endogenous DNA damage or deficiencies
in other DDR players including p53 (for those affecting the
ATR-CHK1 pathway), or in combination with radio- and/or
chemotherapy (for those affecting the ATM-CHK2 or the
ATRCHK1 cascade).65,95,176-178,212-214,334 Nevertheless, com-
pelling clinical evidence is still lacking. Moreover, the onco-
suppressive role of the ATM–CHK2 signal and, at least in
specific genetic background of the ATR-CHK1 pathway, may
cast doubts over further development of ATM- or CHK2-
based antineoplastic regimens.

The results of some preliminary clinical studies employing
CHK1 inhibitors are not encouraging, probably due to inade-
quate specificity and/or poor pharmacokinetics of the inhibitors
used to date (e.g., UCN-01 or AZD7762).335,336 Early evidence
of clinical efficacy and safety of chemotherapy regimens based on
more specific CHK1 inhibitors298 seems to support this hypothe-
sis, although further confirmations are awaited. An additional
limitation to the development of CHK1 inhibitor-based chemo-
therapies is the absence of reliable markers predicting tumor
response, even though some recent observations show hypersensi-
tivity to CHK1 inhibitors of tumors with mutations in compo-
nents of the MRN complex.214,315,337 In addition, further
knowledge of the biological functions of CHK1 and other DDR
players is still needed. In this context, the existence of significant
crosstalk between the ATM–CHK2 and ATR–CHK1 pathways
is becoming increasingly evident, and moreover at multiple lev-
els, encompassing shared components, substrate overlap, and
functional redundancy.4,16,338,339 Moreover, in addition to oper-
ating in DDR these kinases are involved in multiple signaling
networks. Thus, ATM is a key player in cell metabolism,
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oxidative stress, chromatin remodeling, response to uncapped
telomeres and spindle assembly checkpoint (reviewed in
refs.17,28), CHK2 plays a role in mitosis and is required for the
maintenance of chromosomal stability,36,104,340 and ATR and
CHK1 exert multiple functions in S phase and mitosis, also
under unperturbed conditions.15,26,266,341,342 These additional
roles may affect cancer development/progression and the
response to cytotoxic agents and should be considered in the con-
text of cancer therapy.

Current clinical trials involve only inhibitors of ATR and
CHK1. A significant improvement in our knowledge of DDR
may increase the efficacy of these ATR- or CHK1-based regi-
mens, limiting the undesirable effects on normal cells/tissues and
allowing for patient stratification, while at the same time shed-
ding light on the true potential of ATR–CHK1 inhibition for
cancer therapy.
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