
sensors

Article

Combining Inertial Sensors and Machine Learning to Predict
vGRF and Knee Biomechanics during a Double Limb Jump
Landing Task

Courtney R. Chaaban 1,* , Nathaniel T. Berry 2,3 , Cortney Armitano-Lago 1, Adam W. Kiefer 1,
Michael J. Mazzoleni 1,3 and Darin A. Padua 1

����������
�������

Citation: Chaaban, C.R.; Berry, N.T.;

Armitano-Lago, C.; Kiefer, A.W.;

Mazzoleni, M.J.; Padua, D.A.

Combining Inertial Sensors and

Machine Learning to Predict vGRF

and Knee Biomechanics during a

Double Limb Jump Landing Task.

Sensors 2021, 21, 4383. https://

doi.org/10.3390/s21134383

Academic Editors: Mark Robinson

and Jacqueline Alderson

Received: 14 May 2021

Accepted: 24 June 2021

Published: 26 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Exercise and Sport Science, University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599, USA; carmitan@email.unc.edu (C.A.-L.); awkiefer@email.unc.edu (A.W.K.);
mmazzoleni@underarmour.com (M.J.M.); dpadua@email.unc.edu (D.A.P.)

2 Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA;
nathaniel.berry@underarmour.com

3 Under Armour, Inc., Baltimore, MD 21230, USA
* Correspondence: rosscj@live.unc.edu

Abstract: (1) Background: Biomechanics during landing tasks, such as the kinematics and kinetics of
the knee, are altered following anterior cruciate ligament (ACL) injury and reconstruction. These
variables are recommended to assess prior to clearance for return to sport, but clinicians lack access
to the current gold-standard laboratory-based assessment. Inertial sensors serve as a potential
solution to provide a clinically feasible means to assess biomechanics and augment the return to sport
testing. The purposes of this study were to (a) develop multi-sensor machine learning algorithms for
predicting biomechanics and (b) quantify the accuracy of each algorithm. (2) Methods: 26 healthy
young adults completed 8 trials of a double limb jump landing task. Peak vertical ground reaction
force, peak knee flexion angle, peak knee extension moment, and peak sagittal knee power absorption
were assessed using 3D motion capture and force plates. Shank- and thigh- mounted inertial sensors
were used to collect data concurrently. Inertial data were submitted as inputs to single- and multiple-
feature linear regressions to predict biomechanical variables in each limb. (3) Results: Multiple-feature
models, particularly when an accelerometer and gyroscope were used together, were valid predictors
of biomechanics (R2 = 0.68–0.94, normalized root mean square error = 4.6–10.2%). Single-feature
models had decreased performance (R2 = 0.16–0.60, normalized root mean square error = 10.0–16.2%).
(4) Conclusions: The combination of inertial sensors and machine learning provides a valid prediction
of biomechanics during a double limb landing task. This is a feasible solution to assess biomechanics
for both clinical and real-world settings outside the traditional biomechanics laboratory.

Keywords: biomechanics; jump landing; inertial sensors; machine learning; return to sport testing

1. Introduction

Return to sport is of primary importance for a successful outcome following anterior
cruciate ligament reconstruction (ACLR) [1]. However, athletes who do return to sport
after ACLR are significantly more likely to sustain a second ACL injury compared to their
previously uninjured counterparts [2–4], leading to inferior functional outcomes [5]. Hence,
it is important to mitigate secondary injury risk through the identification and treatment of
associated risk factors.

One proposed category of such risk factors is biomechanics and, specifically, biome-
chanical asymmetry. Asymmetrical biomechanics are often present following ACLR, with
the involved limb exhibiting decreased peak vertical ground reaction force (vGRF), knee
flexion angle (KFA), knee extension moment (KEM), and sagittal plane knee power absorp-
tion (KPA) during landing tasks compared to the contralateral limb [6–8]. Accordingly, the
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resolution of asymmetry is a common criterion for clearance to return to sport [9]. However,
there are also differences in the contralateral limb relative to healthy controls [10,11]. This
highlights the limitations associated with limb symmetry and provides opportunities to
establish normative comparisons relative to previously uninjured athletes and to those
who do not sustain secondary injuries.

Importantly, biomechanics during double limb landing tasks are also predictive of sec-
ondary ACL injury [12], including both graft tears [13] and contralateral injuries [14]. These
changes include increased peak KFA as well as KEM and vGRF alterations throughout the
landing phase relative to those who do not sustain a second ACL injury. These findings
demonstrate that absolute measures of biomechanical variables (instead of limb symmetry)
are particularly important for secondary ACL injury risk. Additionally, targeted neuromus-
cular training is effective in improving biomechanical deficits at the knee in individuals
post-ACLR [15], and such interventions may decrease secondary injury risk [16]. Given
the prevalence, predictive capability, and responsiveness to intervention, the resolution of
biomechanical impairments should be a key target during rehabilitation [17].

Despite the importance of biomechanics within this paradigm, most clinicians lack
access to clinical solutions to objectively assess biomechanics. The gold-standard three-
dimensional motion capture and force plates used to index the previously mentioned
deficits are only available in select laboratory settings. This is because they are expen-
sive, require trained experts to administer, and require considerable time for set-up and
processing, all of which preclude wide-spread adoption. In contrast, inertial sensors are
inexpensive and portable, both of which address barriers associated with biomechanical
evaluation and clinical implementation. As commercially-available inertial sensor systems
with the capability to quantify external loading during sports-related activities become
more widely available [18], inertial sensors are being used to quantify biomechanics with
increasing frequency [19]. Most of these systems provide measures of global lower extrem-
ity loading, such as peak tibial acceleration, which correlates with vGRF metrics [20,21].
While often global (e.g., peak vGRF) and knee-specific (e.g., KEM) measures of loading
demonstrate impaired biomechanics during landing tasks post-ACLR [7,22], indexing only
global measures of loading can cause misrepresentations of tissue-specific loading [23].
Therefore, in order for inertial sensor solutions to provide optimal information to augment
clinical decision-making in rehabilitation post-ACLR, they should provide surrogates for
both global and knee-specific loading.

Single variable inertial sensor solutions (e.g., peak angular velocity from one axis of a
gyroscope or peak acceleration from one axis of an accelerometer) provide surrogates of
knee-specific biomechanics during landing tasks both in healthy [24] and ACL-injured par-
ticipants [25,26]. Additionally, the use of inertial sensors combined with machine learning
to predict biomechanics in musculoskeletal-injured populations has grown exponentially
in recent years [19], serving as a promising interdisciplinary solution. This combined
approach has proven successful for predicting knee-specific biomechanics for single-limb
tasks including running, jump landing, and cutting [27–29]. However, these solutions
have not specifically targeted double limb landing tasks, which have clinical relevance
post-ACLR.

In order to address the clinical need for a simple, objective solution to quantify
biomechanics, this project seeks to combine inertial sensors and machine learning to predict
both global (peak vGRF) and knee-specific (peak KFA, KEM, and KPA) biomechanical
variables during a double limb landing task. We selected this task due to its recommended
use in return to sport testing [30] and its utility for the accurate prediction of secondary
injury risk [12–14]. The purposes of this study are, thus, to: (1) develop multi-sensor
machine learning algorithms for predicting biomechanics and (2) quantify the accuracy of
each algorithm. In order to provide context for our findings, we will concurrently present
single feature algorithms, which enable us to make recommendations for optimal solutions
in a clinical rehabilitation setting.
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2. Materials and Methods
2.1. Overview

To conduct this project, we simultaneously collected motion capture, force plate,
and inertial measurement unit (IMU) data while participants completed a jump-landing
task. We used inverse kinematics and inverse dynamics to calculate our laboratory-based
biomechanical variables of interest based on the gold-standard of motion capture and force
plate signals. Next, we used the IMU signals to predict the laboratory-based biomechanical
variables. To do so, we extracted IMU features (e.g., maximum and minimum acceleration)
then fit both simple and multiple regression models. We evaluated the performance of
these models against the laboratory-based values. A diagram outlining this process is
depicted in Figure 1.

Figure 1. Overview of project. For the calculation of laboratory-based biomechanics, we collected motion-capture and
force plates data. We used inverse kinematics and inverse dynamics to calculate vGRF (peak vertical ground reaction
force), KFA (peak knee flexion angle), KEM (peak knee extension moment), and KPA (peak sagittal plane knee power
absorption). For the modeling of inertial measurement unit (IMU)-based biomechanics, we collected IMU data concurrently.
We then selected the region of interest of these time series and extracted features (feature engineering). Next, we developed
algorithms to predict the lab-based biomechanics. We evaluated the error of the IMU-based biomechanics against the
lab-based biomechanics.

2.2. Participants

Twenty six healthy college students (25 female) participated in the study. Participants
averaged 20.0 ± 1.3 years of age, 171 ± 8 cm tall, and 68.8 ± 10.3 kg of mass. Inclusion
criteria included self-reported participation in moderate physical activity at least three
times per week for 30 min or more, per the guidelines of the American College of Sports
Medicine. Exclusion criteria included any lower extremity injury within the last six months.
This study was approved by our university’s institutional review board, and all participants
provided written informed consent for participation.

All participants wore black spandex and standard lab shoes (Under Armour HOVR
Sonic). We taped retroreflective markers over bony landmarks and segments of each
participant. We used 7 clusters of 3-4 markers each, which we placed over the sacrum,
bilateral lateral thighs, lateral shanks, and dorsal feet. We used 9 additional tracking
markers over the following landmarks: C7, sternum, L4/5, bilateral acromion, anterior
superior iliac spine (ASIS), and posterior calcaneus. We used an additional 10 markers
for the static calibration trial over the following landmarks: bilateral greater trochanters,
medial and lateral femoral epicondyles, 1st and 5th metatarsal heads.

We adhered two IMUs (Blue Trident, Vicon, Nexus, Oxford, UK) on each limb with
double-sided tape and secured the IMUs with pre-wrap and cloth tape. We placed the
thigh IMU on the distal thigh, directly lateral over the iliotibial band. The bottom of the
IMU was 8 cm proximal to the tibiofemoral joint line. We placed the shank IMU on the
flat aspect of the proximal anteromedial tibia. The top of the IMU was 5 cm distal to the
tibiofemoral joint line. Both IMUs were oriented so that the positive x-axis was pointing
superiorly. We selected these IMU locations to minimize soft tissue artefact and for their
proximity to the knee for potential incorporation into knee braces, similar although not
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identical to Stetter et al. [28]. We ensured that the thigh and shank marker clusters were
not in contact with the IMUs. Pictures of marker and IMU configurations can be seen in
Figure 2.

Figure 2. Pictures of marker and IMU configurations. (a) IMU placement; (b) Frontal view of full
marker configuration; (c) Sagittal view of full marker configuration.

2.3. Data Collection

All participants performed eight trials of a double-limb jump landing task as previ-
ously described [31,32]. We instructed participants to jump forward from a 30 cm tall box
to side-by-side embedded force plates then complete a maximal vertical jump immediately
upon landing. The distance from the box to the force plates was half of the participant’s
height. We deemed a trial successful if the participant (1) jumped forward with both feet to
reach the force plates, (2) jumped vertically during the maximal jump, and (3) completed
the task in a fluid motion. We gave participants a minimum of two practice trials prior to
data collection.

Three-dimensional coordinates of retroreflective markers were collected at a sampling
frequency of 250 Hz using a 10-camera motion capture system (Vicon, Nexus, Oxford,
UK). The x-axis was pointing forward, y-axis was pointing toward the left, and z-axis was
pointing upward. Ground reaction forces were collected at a sampling frequency of 1000 Hz
from two embedded force plates (FP406020, Bertec Corp, Columbus, OH, USA). IMU data
were collected at a sampling frequency of 1125 Hz including dual-g accelerometers (high:
±200 g, low: ±16 g), gyroscope (±2000◦/s), and magnetometer (±4900 µT). All data were
time-synchronized and collected in Nexus software (v2.10, Vicon, Oxford, UK).

2.4. Laboratory-Based Biomechanical Analysis (Motion Capture and Force Plates)

We fit all time-series data with linear interpolation and resampled at 1250 Hz. We
used a fourth order, 15 Hz low-pass Butterworth filter for marker trajectories and force
plate data that were used in joint moment calculations [33,34]. Additionally, we used a
fourth order, 100 Hz low-pass Butterworth filter for force plate data used to calculate the
peak vGRF.

The hip joint center was defined using the Bell method [35]. The knee joint center
was defined as the midpoint between the lateral and medial femoral epicondyles. The
ankle joint center was defined as the midpoint between the lateral and medial malleoli. An
inverse kinematics approach was used to calculate Cardan angles between thigh and shank
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segments in an order of flexion-extension, abduction-adduction, and internal-external
rotation. A standard inverse dynamics approach was used to calculate joint moments and
power of the distal segments relative to proximal segments. Moments were expressed
as internal moments. These tasks were completed in Visual 3D software (C-Motion Inc.,
Rockville, MD, USA).

We selected one response variable to represent overall limb loading during landing:
peak vGRF (normalized by body weight in N). We selected three response variables to
represent the sagittal plane kinematics and kinetics of the knee during landing: peak KFA
in degrees, peak internal KEM in Nm and normalized by the product of body weight in
N and height in m, and peak KPA in watts, normalized by the product of body weight in
N and height in m. All variables were extracted from time-series data as the maximum
(or minimum) values during the landing phase of the first jump from the frame of initial
contact (when the vGRF first exceeded 10 N) until maximum knee flexion. A visualization
of this region can be seen in Figure 3A. KPA values, which were negative by definition,
were multiplied by −1 for ease of interpretation.

2.5. Inertial Measurement Unit (IMU)-Based Biomechanical Analysis

We processed all IMU data and completed model training with custom MATLAB
scripts (v2019a, The Mathworks Inc., Natick, MA, USA).

2.5.1. Region of Interest

We examined time-series GRF and IMU signals for each limb-trial with a goal of
defining a region of interest (ROI) from the IMUs alone. Our goal was for this region
to coincide with the landing phase (from initial contact to maximum knee flexion) after
the first jump. While the IMU ROI could be detected with assistance from the force plate
data, we considered that the ability to determine the ROI from the IMU data alone was
critical to make our algorithms clinically feasible. Ultimately, we accomplished this through
two steps:

1. We corrected all right limb IMUs to mirror the axes of the left limb IMUs. We applied a
second-order, 1.5 Hz low-pass Butterworth filter [36] on the thigh high-g accelerometer
time-series for all three axes and then calculated the resultant acceleration. We found
the two most prominent [37] local minima of the resultant acceleration and defined
the initial ROI as the region between these two points. An example trial can be seen
in Figure 3B.

2. To further refine the ROI, we used the selected region from step one, then determined
“start” and “end” points within this region. Since optimal filtering parameters of
inertial sensors during landing tasks have not been established, we explored a range
of low pass filtering parameters from 15 Hz [28] up to unfiltered. Ultimately, we
elected to apply a second-order, 50 Hz low-pass Butterworth filter on all IMU time-
series data. This filter allowed for reliable feature extraction while visually appearing
to reduce high frequency noise. The start point occurred at the local minimum directly
preceding when the shank x (aligned axially on the shank) high-g accelerometer first
exceeded 20 g’s for five consecutive frames (4 ms). The end point occurred after
the start point, when the thigh z (aligned with the medial-lateral axis of the thigh)
gyroscope exceeded 0 rad/sec for at least 50 frames (40 ms) forward, indicating
angular velocity of the thigh towards relative extension. All trials were visually
inspected with overlaid vGRF and KFA to ensure these steps yielded an appropriate
region. A visualization of these steps for a representative limb-trial is shown in
Figure 3C,D.
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Figure 3. Description of task and steps to select region of interest (ROI)-based on IMUs. (A) Task. Participants jumped
forward from a 30 cm tall box to side-by-side force plates positioned 1

2 body height forward in distance. Immediately
upon landing, they completed a maximum vertical jump and landed back on the force plates. The region of interest to
extract biomechanical variables was from initial contact of the first landing until maximum knee flexion during that landing.
(B) Step 1. Identification of the initial ROI based on the 2 most prominent local minima of the resultant thigh acceleration
after applying a 1.5 Hz low-pass filter. Circles indicate these two points. (C). Step 2, “Start.” Identification of the “start”
within the ROI from step 1, based on the local minimum immediately preceding when the high-g shank x signal crossed
20 g’s. A black circle indicates this point. (D). Step 3, “Stop.” Identification of the end of the ROI when the thigh gyroscope
data was greater than 0 for at least 50 frames. A red circle indicates this point. vGRF and knee flexion angles are overlaid to
show that the ROI targeted the first half of the landing, from approximate initial contact to maximum knee flexion angle.
IMUs, inertial measurement units. ROI, region of interest. vGRF, peak vertical ground reaction force. KFA, peak knee
flexion angle. KEM, peak internal knee extension moment. KPA, peak sagittal plane knee power absorption. BW, body
weight. HT, height.
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2.5.2. Feature Engineering

Consistent with step two in selecting the ROI, we used a second order, 50 Hz low-pass
Butterworth filter on IMU time-series data and then calculated resultants for each signal.
Next, we extracted features from each high-g accelerometer and gyroscope time-series
(x axis, y axis, z axis, and the resultant) within the ROI. A full list of the 14 features extracted
from each time-series along with definitions can be found in Table 1. We used the length of
time (range) of the ROI as an additional feature for each IMU. This yielded 225 features
(14 features × 8 time-series × 2 IMUs + 1 ROI range = 225) for each limb per trial. After
feature extraction, we normalized all features to center at 0 with a standard deviation of
1 prior to model training.

Table 1. Features extracted from each time-series ROI.

Category Variable Name Calculation

Max

Max Maximum value

Time to max Frame number at maximum value

Max prominence 1 Height of maximum relative to surrounding
time-series

Width of max Width (number of frames) at half-prominence 1

Min

Min Minimum value

Time to min Frame number at minimum value

Min prominence 1 Height of minimum relative to surrounding
time-series

Width of min Width (number of frames) at half-prominence 1

Max-min
Max-min difference Maximum value–minimum value

Max-min time difference Time to max–time to min

Other

Start value Value at start of ROI

Stop value Value at end of ROI

Standard deviation Standard deviation of all elements

Area under the curve Approximate integral using trapezoidal
numerical integration

1 For a detailed description of the prominence calculation, see [37]. ROI, region of interest.

2.5.3. Algorithm Development

For a summary of model characteristics, including input parameters, model training,
model selection, and performance evaluation, see Table 2. We collapsed trials across limbs
for analysis. Each participant had eight right limb-trials and eight left-limb trials, yielding
416 total limb-trials across all participants. To reference single-sensor, single-feature IMU
algorithms that are either available commercially or presented in research [24,26], we
performed simple linear regression between each predictor variable and response variable
for each task, then we selected the predictor variable from each IMU with the highest R2.
These models are referred to as “single feature shank” and “single feature thigh.” We then
used machine learning to fit multiple-sensor, multiple-feature models using stepwise linear
regressions for all accelerometer features (“multiple feature accel”) and all accelerometer
and gyroscope features (“multiple feature accel + gyro”). These combinations were selected
due to some clinically available sensors containing only accelerometers, while others
contain both accelerometers and gyroscopes. We allowed constant and linear terms in
these models. We utilized hyperparameter optimization by performing a grid search on
the criteria for terms to be added or removed from the models. Specifically, we set a range
of thresholds for the p-value of an F-test of the change in the sum of squared error (SSE)
resulting from adding or removing a term from the model. We selected the final models
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based on maximizing R2 while minimizing the number of features required, with a target
of no more than 41 features (1 feature per 10 limb-trials). This technique was used to avoid
overfitting our models [38]. For each selected multi-feature model, we also performed
k-fold cross-validation (n = 10) by randomly assigning each limb-trial to 1 of 10 folds.
Based on this random fold-assignment, individual participant limb-trials were dispersed
throughout multiple folds. We trained models on 9 folds then tested on the remaining
fold and repeated this process across each fold. We then calculated the mean and standard
deviations of R2, root mean square error (RMSE), and normalized root mean square error
(nRMSE) across all folds.

Table 2. Algorithm development, selection, and performance evaluation.

Model

Single Feature Multiple Feature

Shank Thigh Accel Accel + Gyro

Model input parameters

Sensor location(s) Shank Thigh Shank and thigh

Signals Accel, gyro Accel Accel, gyro

Potential features 113 113 113 225

Model training and
selection

Model used Simple linear regression Stepwise linear regression

Hyperparameter
optimization No Yes

# of selected features 1 Up to 41

Model selection Highest R2 High R2, low # of features

Cross-validation No Yes, k-fold, n = 10

Performance evaluation
Goodness of fit R2 R2

Error RMSE, nRMSE RMSE, nRMSE

RMSE, root mean square error. nRMSE, normalized root mean square error.

2.5.4. Algorithm Evaluation

For each selected model, we calculated the coefficient of determination (R2) across all
trials. Since there is no widely accepted threshold of R2 in exploratory research such as this,
we referenced similar algorithm development [39], which used R2 > 0.80 as high algorithm
accuracy. We calculated the RMSE to present the error of the model in absolute terms in
the units of measurement. We then calculated the nRMSE by dividing the RMSE over the
range (maximum–minimum values across all participants) of the data. The nRMSE allows
relative comparisons of percent model error between models with different units, thus
allowing us to compare the relative error between response variables.

3. Results

A summary of descriptive data on the four response variables, including mean values
by trial can be found in Table 3. The distribution of KPA was significantly positively-
skewed, with three limb-trials greater than the mean + 3.5 standard deviations in magnitude
(average z-score of 4.5). We considered these to be outliers and removed these limb-trials
from the KPA models. We calculated within-participant variation by calculating each
participant’s standard deviation across all trials from both limbs then averaging across all
participants. We calculated between-participant variation by calculating each participant’s
mean across all trials then calculating the standard deviation between participants.
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Table 3. Summary data on response variables. N represents the number of limb-trials.

Variable N Mean ± SD Range
[Min, Max]

Mean within-
Participant SD

Mean between-Participant
SD

vGRF (xBW) 416 2.07 ± 0.57 [0.96, 4.63] 0.32 0.48
KFA (deg) 416 93.9 ± 14.4 [58.9, 136.9] 5.0 13.8

KEM (xBW xHT) 416 0.262 ± 0.046 [0.138, 0.402] 0.033 0.031
KPA (xBW xHT) 413 2.01 ± 0.48 [0.87, 3.72] 0.33 0.38

vGRF, peak vertical ground reaction force. KFA, peak knee flexion angle. KEM, peak internal knee extension moment. KPA, peak sagittal
plane knee power absorption. BW, body weight. HT, height.

Scatterplots depicting the fit and nRMSE of each selected model can be seen in Figure 4,
and additional details regarding the accuracy, error, and cross-validation of the models can
be found in Table 4. Cross-validation resulted in minimal increases in model prediction
error, suggesting that our models were not overfit. Tables of all features used in each
selected model can be found in Appendix A.

Table 4. Model prediction, accuracy, and cross-validation by response variable.

Model Cross-Validation

Single Feature Multiple Feature Multiple Feature

Shank Thigh Accel Accel + Gyro Accel Accel + Gyro

vGRF
(xBW)

Features (#) 1 1 21 27

R2 0.58 0.36 0.82 * 0.87 * 0.78 ± 0.01 0.83 ± 0.01
RMSE 0.37 0.46 0.24 0.21 0.25 ± 0.003 0.22 ± 0.002

nRMSE (%) 10.0 12.5 6.5 5.7 6.8 + 0.08 6.0 ± 0.05

KFA
(deg)

Features (#) 1 1 23 41
R2 0.24 0.60 0.83 * 0.94 * 0.80 ± 0.01 0.92 ± 0.003

RMSE 12.6 9.1 6.1 3.6 6.2 ± 0.05 3.8 ± 0.04
nRMSE (%) 16.2 11.7 7.8 4.6 7.9 ± 0.06 4.9 ± 0.05

KEM
(xBW xHT)

Features (#) 1 1 24 31
R2 0.17 0.16 0.59 0.68 0.50 ± 0.01 0.60 ± 0.01

RMSE 0.042 0.042 0.030 0.027 0.031 ± 0.0002 0.028 ± 0.0002
nRMSE (%) 15.9 15.9 11.4 10.2 11.7 ± 0.07 10.6 ± 0.07

KPA
(xBW xHT)

Features (#) 1 1 30 33
R2 0.27 0.34 0.63 0.72 0.53 ± 0.02 0.64 ± 0.01

RMSE 0.41 0.39 0.30 0.26 0.32 ± 0.003 0.27 ± 0.003
nRMSE (%) 14.3 13.7 10.5 9.1 11.2 ± 0.1 9.5 ± 0.1

* Indicates R2 values greater than or equal to 0.80, the benchmark for high accuracy. Cross-validation includes the mean ± standard
deviation across all folds. vGRF, peak vertical ground reaction force. KFA, peak knee flexion angle. KEM, peak internal knee extension
moment. KPA, peak sagittal plane knee power absorption. BW, body weight. HT, height. RMSE, root mean squared error. nRMSE,
normalized root mean squared error.
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Figure 4. Scatter plots of expected (based on motion capture and force plates) vs. predicted (based on IMUs) values for each
model by response variable. Each dot represents a limb-trial. Dots are colored according to the average nRMSE (normalized
root mean square error) of the model, meaning darker colored models had a higher percent of normalized error, while
lighter colored models had a lower percent of normalized error. vGRF, peak vertical ground reaction force. KFA, peak knee
flexion angle. KEM, peak internal knee extension moment. KPA, peak sagittal plane knee power absorption. BW, body
weight. HT, height.

4. Discussion

Our findings indicate that leveraging data science approaches in combination with
inertial sensors yields valid predictions of global and knee-specific loading during a double-
limb landing task. Additionally, the methods employed in this project lend themselves
to clinical implementation by reducing barriers of cost, set-up time and space, as well
as processing time. We will contextualize our findings and discuss opportunities for
advancement and implementation.
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4.1. Overview of Findings

We first sought to understand if the degree of error in our algorithms was acceptable to
recommend their use. To provide clinical context of the error in our models, we compared
the RMSE of each model to prior research that reported the difference in means between
the involved limb post-ACLR and healthy control limbs during the same double limb
landing task. In the case of multiple studies reporting these variables, we used the one
with the largest sample size. For KPA only, we were unable to identify prior work based on
our defined criteria. Instead, we referenced White et al. [40], who reported a single limb
landing task. We scaled the reported joint powers due to differing normalization so that
the reported mean in the healthy controls (17.21) was equivalent to our mean of 2.01.

To interpret these findings, we used the following guidelines: If the clinical differ-
ence was larger than our error, we could be more confident in recommending use of the
algorithm. In contrast, if the clinical difference was smaller than our error, the algorithm
may not function at a sufficient level of accuracy. The results of this comparison can be
seen in Table 5. Across vGRF, KFA, KEM, and KPA, both multiple feature models had
smaller RMSE compared to the clinical difference, supporting their use. In contrast, both
single feature models had larger RMSE compared to the clinical difference, limiting their
clinical utility.

Table 5. Model error compared to mean clinical difference in anterior cruciate ligament reconstruction (ACLR) subjects vs.
healthy controls.

Prior Research
Current Models (RMSE)

Single Feature Multiple Feature

Variable Reference ACLR
Involved

Healthy
Control Diff. Shank Thigh Accel Accel + Gyro

vGRF Paterno et al. [41] 1.77 2.01 0.24 0.37 0.46 0.24 0.21
KFA Delahunt et al. [42] 62.0 69.5 7.5 12.6 9.1 6.1 3.6
KEM Goerger et al. [43] 0.169 0.204 0.035 0.042 0.042 0.030 0.027
KPA White et al. [40] 1.65 2.01 0.36 0.41 0.39 0.30 0.26

Bold indicates RMSE values that are ≤ mean clinical difference. vGRF, peak vertical ground reaction force. KFA, peak knee flexion angle.
KEM, peak internal knee extension moment. KPA, peak sagittal plane knee power absorption. RMSE, root mean squared error.

When considering the combination of model goodness of fit (R2) and clinical context
of error, we suggest that all multiple feature models presented are valid predictors of
biomechanics, with the addition of the gyroscope improving models across all variables.
While the R2 for the KEM and KPA models did not exceed the benchmark of 0.8 for high
accuracy, the error did not exceed the expected differences between ACLR and healthy
control limbs, hence there is still clinical value in these models.

Models may not extrapolate well to data outside the range of the data on which they
were trained. Across all response variables, the range of our data included the mean
values observed in ACLR limbs. However, our range likely did not include all possible
values observed in ACLR limbs. Our models would be strengthened by the addition of a
wider range of values, including those from ACLR limbs. Prior to advocating for clinical
use of our models, we suggest additional model training that includes the population of
interest. We anticipate that these models would have similar error, but they would also
have improved accuracy on data outside the range of the current dataset.

4.2. Absolute vs. Relative Measures of Biomechanical Variables

We advocate for absolute measures of biomechanical variables as opposed to the
relative symmetry of these variables between limbs. Absolute measures of biomechanical
variables are predictive of secondary ACL injury [13,14], while the utility of limb symmetry
indices has been called into question [10]. Our algorithms were developed with the goal
of predicting absolute measures of biomechanical variables. Given that limb symmetry is
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currently utilized clinically, but not a focus of our project, we have included a symmetry
analysis in Appendix B.

4.3. Comparing and Contrasting Double and Single Limb Landings

Most of the projects we identified that have used inertial sensors to predict knee-
specific biomechanics have analyzed single limb landing tasks, in contrast to the double
limb landing task we assessed. Double limb landing tasks have more capacity for asym-
metry in GRF due to their bipedal nature, which in turn influences joint-specific kinetic
variables, including those at the knee. Thus, the accuracy of predicting biomechanics
during this task appears to be more challenging. Stetter et al. [28] used inertial sensors
in combination with an artificial neural network (ANN) to predict knee joint forces and
reported decreased model accuracy during double limb landings in comparison to single
leg landings. They suggested using an activity-recognition approach to improve model
accuracy, which is feasible when performing tasks as a part of a return to sport battery.

The variance in loading during double limb tasks is corroborated in athletes after
ACLR, in whom differences are observed in peak vGRF and peak KEM for double but not
single limb landings [6]. This may help explain why double limb landing mechanics are
predictive of secondary ACL injury risk [13,14], despite the primary mechanism of ACL
injury being largely during single limb loading [44]. Combined, these findings support
that while there are challenges of accurately modeling double limb landings due to force
distribution variability between limbs, it is important to identify solutions that are able to
do so.

4.4. Benefits and Drawbacks of Single-Feature vs. Multiple-Feature Solutions

We presented single-feature models alongside the multiple-feature models in order
to reference currently available algorithms. There is considerable appeal to the simplicity
of using one feature (e.g., a maximum value) to provide surrogate information regarding
biomechanical parameters of interest. Accordingly, there has been success in using this
approach, particularly with single limb tasks. At the knee, specifically, Morgan et al. [24]
used a shank accelerometer for single leg landings during “preferred”, “soft”, and “stiff”
conditions and found a strong correlation between peak posterior acceleration and peak
KEM in healthy participants (R2 = 0.76). Pratt et al. [26] used a thigh gyroscope for single
leg landings in participants post-ACLR and found correlations between peak thigh angular
velocity and peak KPA (r = 0.81) and peak KEM (r = 0.59).

Real time biofeedback interventions using single features have successfully altered
both inertial sensor measures (angular velocity and accelerations) as well as biomechanics
assessed through traditional laboratory measures. Specific to jump landing tasks, Dowling
et al. [45] altered both thigh angular velocity and knee abduction moment through inertial
sensor-driven feedback. There is also a body of literature demonstrating the effective-
ness of modifying GRF loading rates during running using single features from shank
accelerometers [46–48].

Despite these successful feedback interventions, we emphasize that our multiple
feature models, for knee kinetics in particular, had large improvements in accuracy and
decreases in error compared to our single feature models: KEM R2 improved from 0.17 at
best to 0.68, with a decrease in nRMSE from 15.9% to 10.2%, and KPA R2 improved from
0.34 at best to 0.72, with a decrease in nRMSE from 13.7% to 9.12%. While there is still error
in these models, they provide superior predictive capabilities.

Based on our findings and prior research, we draw two conclusions regarding single
vs. multiple feature models:

1. We recommend that the use of single features is ideally suited for feedback inter-
ventions, and we advocate for future interventional research to demonstrate the
effectiveness of manipulating knee-specific biomechanics post-ACLR.

2. We recommend the use of multiple feature models for improved fidelity in objectively
assessing biomechanics during landing tasks outside a laboratory setting.
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4.5. Machine Learning Approaches

In order, the most commonly reported machine learning algorithms utilized in human
movement biomechanics are support vector machines (SVMs), ANNs, and generalized
linear models, such as our project [19]. Specific to knee biomechanics, Stetter et al. used
IMUs on the thigh and shank combined with ANNs to predicted knee joint forces [28]
and moments [27] across a variety of athletic maneuvers. The only double limb task
used was a two-leg jump, and reported percent difference between the expected and
predicted peak vertical knee force was 22.9%, highlighting the challenges of estimating
double limb tasks. Gholami et al. [29] used a single accelerometer on the foot combined
with a convolutional neural network (CNN) to predict lower extremity kinematics during
running gait, but did not predict kinetics. In relation to the work cited above, our project
strategy specifically targeted the task and biomechanical variables of interest in post-ACLR.
Additionally, the stepwise linear regressions that we used are straightforward to implement
and less susceptible to overfitting than other methods, which we view as a strength for
clinical translation. We recommend that future work explore additional machine learning
algorithms, such as support vector machines or neural networks.

4.6. Variability of Landing Strategy

As this was a proof-of-concept approach to predict absolute measures of loading,
we did not manipulate participants’ preferred landing strategies. For future work, we
recommend systematic manipulation of landing (e.g., through instructions to “land softer”
or “land stiffer”) in addition to the inclusion of participants post-ACLR. This will result
in greater within-subject variability and will also increase the range of data on which the
algorithm is trained. It will also provide understanding as to the degree to which the
algorithm can assess change within individuals, which will be important when imple-
menting interventions aimed to alter biomechanics. This, in addition to establishing the
between-day reliability of these algorithms, will be important foundational knowledge
necessary to support the utilization of IMUs for interventions and serial assessments.

4.7. Additional Considerations

There are several important considerations when selecting inertial sensors to be
used in a similar manner. The inertial sensors we utilized in this project are marketed
for both research and clinical purposes, thus we believe sensors such as these to be a
clinically feasible solution. Based on the parameters identified in this project, we suggest
that sampling frequency and accelerometer range are important to consider during jump
landing tasks given both the speed of the task and acceleration generated from ground
impact. We did not use the low-g accelerometer in our analyses because the range of this
accelerometer was often exceeded upon initial contact. Furthermore, our sensors were
aligned and oriented based on anatomical landmarks. Since features from most axes were
included in our selected multiple feature models (see Appendix A for details), the models
will be sensitive to the sensor orientation. Care should be taken to mount and fix the
sensors as described. Gyroscope drift is another consideration, as it can create significant
error during longer duration tasks. However, we do not expect drift to have a strong
influence on data fidelity for a short duration jump landing task.

5. Conclusions

In summary, we combined data science techniques with inertial sensors to predict
global and knee-specific biomechanics during a double limb landing task. This work
provides a simple clinical solution to objectively quantify biomechanics. Our multiple
feature algorithms, particularly with the addition of the gyroscope, were valid predictors
of biomechanics (normalized error ranging between 4.6–10.2%). Additionally, all multiple
feature model errors were lower than the clinical differences between ACLR involved limbs
and healthy control limbs, further supporting the utility in this patient population. Future



Sensors 2021, 21, 4383 14 of 19

research should focus on increasing variability in landing strategy, testing on more varied
populations (including patients), and establishing between-day reliability.

Author Contributions: Conceptualization, C.R.C., M.J.M., and D.A.P.; methodology, C.R.C., M.J.M.,
and D.A.P.; formal analysis, C.R.C. and N.T.B.; investigation, C.R.C. and C.A.-L.; writing—original
draft preparation, C.R.C., N.T.B., and M.J.M.; writing—review and editing, C.R.C., N.T.B., C.A.-L.,
A.W.K., M.J.M., D.A.P.; supervision, A.W.K. and D.A.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study was approved by the biomedical Institutional
Review Board at the University of North Carolina at Chapel Hill (IRB #19-2797).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not Applicable.

Acknowledgments: The authors gratefully acknowledge Spencer Cain and Amanda Robertson for
assistance with data collection and Alexa Cardoso for assistance with data processing.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

We have included a full list of features included in each model. The abbreviations for
all feature names are included in Table A1. The features used in single feature models are
listed in Table A2. The features used in multiple feature accel models are in Table A3. The
features used in multiple feature accel and gyro models are in Table A4.

When examining single feature models, all models used features were from the
accelerometer, with the exception of thigh KFA, which used a gyroscope feature. When
further exploring the features used in multiple feature models, the top five features (as
defined by the highest absolute values of coefficients) always included both thigh and
shanks sensors, suggesting that the combination of both sensors may be important for high
algorithm accuracy across variables.

Table A1. Abbreviations for feature names.

Feature Name Abbreviation

Max max
Time to max ttmax

Max prominence pmax
Width of max wmax

Min min
Time to min ttmin

Min prominence 1 pmin
Width of min wmin

Max-min difference mmdiff
Max-min time difference mmtdiff

Start value start
Stop value stop

Standard deviation std
Area under the curve auc

Table A2. Variables used in single feature models.

Response Shank Thigh

vGRF Accel R: std Accel R: std
KFA Accel Z: std Gyro Z: auc
KEM Accel X: std Accel Y: std
KPA Accel X: std Accel Y: std
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For variable abbreviations, see Table A1. vGRF, peak vertical ground reaction force.
KFA, peak knee flexion angle. KEM, peak internal knee extension moment. KPA, peak
sagittal plane knee power absorption. RMSE, root mean squared error.

Table A3. Features used in multiple feature accel models.

Response Shank Accel Thigh Accel Other

vGRF

X: start, auc
Y: max, pmax
Z: wmax, min

R: stop, std, auc

X: auc
Y: start, ttmax, pmin, auc
Z: start, pmax, wmin, auc

R: start, stop, mmdiff

KFA

X: start, std, min, pmin, mmtdiff, auc
Y: start

Z: std, ttmin, mmdiff
R: start, stop

X: wmin, auc
Y: min, wmin, auc

Z: start, pmin, mmdiff
R: auc

Range

KEM
X: start, ttmax
Z: start, w max

R: std, max, ttmax, min

X: std, wmax, mmdiff, auc
Y: start, wmax, auc

Z: wmax, pmax, mmdiff, mmtdiff, auc
R: start, ttmax, wmin, auc

KPA

X: min, ttmin, pmin, mmtdiff
Y: ttmax, wmin, auc

Z: wmax, pmax, mmtdiff
R: std, max, wmax

X: auc
Y: start, std, max, pmax, pmin

Z: start, std, ttmax, pmax, wmin, auc
R: start, wmax, pmax, ttmin, pmin

Bolded variables are the top 5 features from each selected model based on the highest absolute value of model coefficients. For variable
abbreviations, see Table A1. vGRF, peak vertical ground reaction force. KFA, peak knee flexion angle. KEM, peak internal knee extension
moment. KPA, peak sagittal plane knee power absorption. RMSE, root mean squared error.

Table A4. Features used in multiple feature accel + gyro models.

Shank Thigh

Response Accel Gyro Accel Gyro Other

vGRF
X: start, ttmin, auc

Y: std, min
R: start, std, ttmax

Y: start, std, pmax,
ttmin

Z: ttmin
R: start, max, pmax

Y: pmin
Z: wmin, pmin, auc

R: stop
X: ttmax, wmax
Y: mmdiff, auc

Z: auc
R: start

KFA

X: std, mmdiff,
mmtdiff, auc
Y: mmtdiff

Z: ttmax
R: start, stop

X: wmax, pmax, auc
Y: std, wmax

R: start, std, min

X: std, mmdiff
Y: start, pmax, auc

Z: start, std, auc
R: wmax, auc

X: std, ttmax, auc
Y: start, auc

Z: start, std, wmax,
pmax, pmin, auc
R: start, mmtdiff

Range

KEM

X: std
Y: ttmax

Z: start, mmdiff
R: std, ttmax, pmax,

min

X: wmax
Z: std, min

R: start, ttmax

X: wmax, pmax, auc
Y: start, wmax, auc

Z: mmdiff
R: ttmax, wmax, wmin

X: std, max
Z: std, mmdiff

R: ttmax, wmax, wmin,
pmin

KPA

X: std, ttmax
Y: wmin

Z: wmax, ttmin,
pmin, mmdiff
R: std, pmax

X: min
Z: stop, std

R: start

X: ttmax, auc
Y: start, std, max, pmax

Z: std, ttmax, pmax,
wmin, pmin

R: start, ttmax, ttmin,
pmin

X: std, mmdiff
Y: std

Z: max, wmax

Bolded variables are the top 5 features from each selected model based on the highest absolute value of model coefficients. For variable
abbreviations, see Table A1. vGRF, peak vertical ground reaction force. KFA, peak knee flexion angle. KEM, peak internal knee extension
moment. KPA, peak sagittal plane knee power absorption. RMSE, root mean squared error.
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Appendix B

While we advocate for the use of absolute measures of biomechanics as opposed to
relative symmetry between limbs, we recognize that limb symmetry may be of interest.
Towards these ends, we calculated the limb symmetry index (LSI) of all lab-based response
variables as: (left limb/right limb) × 100. We repeated this LSI calculation for all IMU-based,
model-predicted values. We then calculated the RMSE of the IMU-based LSI compared to
the lab-based LSI. The mean and standard deviation of the LSI for each response variable
and the RMSE values for each model can be found in Table A5. Figure A1 depicts scatter
plots of the IMU-based LSIs compared to the lab-based LSI.

Table A5. Limb symmetry analysis.

Model RMSE (%)

LSI (%) Single Feature Multiple Feature

Mean ± SD Shank Thigh Accel Accel + Gyro

vGRF 89.8 ± 19.5 15.2 17.9 14.7 14.3

KFA 102.2 ± 4.1 4.1 4.2 4.0 3.5

KEM 92.4 ± 16.8 15.8 16.3 13.9 12.7

KPA 92.3 ± 23.2 21.9 20.2 17.0 15.8
vGRF, peak vertical ground reaction force. KFA, peak knee flexion angle. KEM, peak internal knee extension
moment. KPA, peak sagittal plane knee power absorption. BW, body weight. HT, height. RMSE, root mean
squared error. LSI, limb symmetry index. RMSE, root mean squared error.
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Figure A1. Scatter plots of expected (based on motion capture and force plates) vs. predicted (based on IMUs) limb
symmetry index (LSI) values for each model by response variable. Each dot represents a limb-trial. Dots are colored
according to the average RMSE (root mean square error) of the model, meaning darker colored models had higher error,
while lighter colored models had a lower error. vGRF, peak vertical ground reaction force. KFA, peak knee flexion angle.
KEM, peak internal knee extension moment. KPA, peak sagittal plane knee power absorption.
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