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Abstract: Isothermal titration microcalorimetry (ITC) is mostly used to investigate the 

thermodynamics of “specific” host-guest interactions in biology as well as in 

supramolecular chemistry. The aim of this review is to demonstrate that ITC can also 

provide useful information about non-specific interactions, like electrostatic or 

hydrophobic interactions. More attention will be given in the use of ITC to investigate 

polyelectrolyte-polyelectrolyte (in particular DNA-polycation), polyelectrolyte-protein as 

well as protein-lipid interactions. We will emphasize that in most cases these “non 

specific” interactions, as their definition will indicate, are favoured or even driven by an 

increase in the entropy of the system. The origin of this entropy increase will be discussed 

for some particular systems. We will also show that in many cases entropy-enthalpy 

compensation phenomena occur. 
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1. Introduction: Specific Versus Non-specific Interactions, What Is the Best Criterion? 

 

One of the fundamental challenge in biophysical chemistry, as well as in all physicochemical events 

implying a solvent, is to attribute the contribution of different non-covalent interactions (electrostatic 

in the most general sense, solvation and hydrophocic interactions, hydrogen bonding, Van der Waals 

interactions) to the free energy change of a given molecule upon its interaction with a binding partner. 

This is also of prime interest in pharmacology, where the design of drugs aimed at binding to a given 

target relies on engineering contributions that will increase the absolute enthalpy change upon binding 

as well as contributions that will increase the entropy change [1]. Another challenge is to investigate 

how conformational changes in the tridimensional structure of a protein, DNA or RNA can modify the 

interaction between this molecule and its binding partner [2]. This last point is directly related to the 

problem of cooperativity [3] which also emerges in supramolecular chemistry. This is not surprising 

because both biological molecules and synthetic supramolecules interact via the same interplay of 

“non-covalent” interactions [4]. Finally, the most important challenge is to relate structure (the high 

resolution X-ray or NMR structure of more and more proteins and nucleotides are available) to the 

“binding affinity” of these molecules with their binding partners. This means that the “binding 

affinities” have to be accurately measured for as many as possible systems to get a clear picture of 

structure-energy relationships, which is particularly important for the design of new drugs or the 

design of gene vectors. 

In this review, on purpose, we wish to not use the general terms of “host” and “guest” because these 

definitions point immediately to a key and lock interaction mechanism and hence to “specificity” (we 

will recall the definition of this concept later). In the next lines we will discuss a definition of 

“specific” and “non-specific” interactions, with the aim of reviewing the major contributions of 

microcalorimetry (in particular isothermal titration microcalorimetry, ITC) in the investigation of the 

thermodynamics of “non-specific” interactions.  

Let us recall that when a transformation takes place in conditions of constant temperature and 

pressure, the chemical potential of use is the free energy. Its change between the initial and the final 

state is given by:  

 STHG .0        (1) 

where H and S are the change in the enthalpy and entropy of the system under standard 

conditions (symbolised by the superscript °). The standard conditions refer just to the fact that the 

experiment is performed at a “standard” pressure of 1 bar and that the activity of each constituent is 

equal to 1. The same equation (1) is valid in non standard conditions. Equation (1) shows that a given 

“binding affinity” and hence a given value of G  can be obtained with different contributions of 

enthalpy and entropy changes. The affinity is indeed the change in free energy with its sign changed. 

Hence a high affinity means an important decrease in the free energy upon binding. Anyway, the 

condition for a spontaneous evolution of a system is that: 00 G . It has to be noted that most of the 

metabolic transformations proceed in conditions of non spontaneity ( 01  G ) because they are 

coupled with at least one transformation which occurs spontaneously [5] ( 00
2 G ) with the  

constraint that: 
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021   GG          (2) 

The free energy change upon binding is experimentally accessible (provided the interaction is an 

equilibrium process!) via the measurement of the macroscopic equilibrium constant K, according to 

the well known relationship: 

KTRG ln..        (3) 

where R is the gas constant (8.314 J.mol-1.K-1) and T the absolute temperature in Kelvin. 

This means that every experimental method able to determine the binding constant of the 

investigated transformation will give access to the free energy change associated with this 

transformation. Basically if the transformation follows the chemical equation: 

CBA          (4) 

the global free energy change will be given by the difference in the chemical potential (the molar 

Gibbs free energy) between the product (C ) and the reactants (A and B): 

BAC µG          (5) 

When the energy changes are only of chemical nature, i.e., in the absence of applied external fields, 

using the relationship between the chemical potential and the activity, equation (5) becomes: 









 

BA

C
BAC aa

a
TRG

.
ln..     (6) 

The difference in the standard chemical potential (defined at 1 bar and at an activity of 1), may be 

written as: 
  BACG         (7) 

which finally gives: 









 

BA

C

aa

a
TRGG

.
ln..       (8) 

The equilibrium conditions correspond to 0G , which gives equation (3). The equilibrium 

constant K of equilibrium (4) being then defined as:  

BA

C

aa

a
K

.
          (9) 

We spent some time to derive such a trivial equation as (9) to show that the equilibrium constant is 

defined from the activities of the species taking part to the equilibrium and not from the 

concentrations. For solutes of low molecular mass, this is not of major concern because the activity 

becomes equal to the concentration at infinite dilution (hence practically for small concentrations, 

typically in the millimolar range). But this does not necessarily hold true any more in the case of 

macromolecules, like proteins or DNA, because the volume fraction of these macromolecules can be 

high even at low molar concentration. 

The distinction between “specific” and “non-specific” interactions explains the somewhat 

provocative title of this article. As we will see, it is difficult to put a clear frontier between what is 
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called “specific” and “non-specific”, even if the term “specific” would refer to an interaction that is 

unique to a couple of binding partners, i.e. to the selectivity of the binding process. In most cases, as 

we will see, the situation is not as simple. The distinction between these two words is as difficult as the 

distinction between “interactions of physical” and “interactions of chemical nature”. Similarly, in 

surface science it is difficult to distinguish between specific and non-specific adsorption [6]. Indeed 

when one considers the interactions between amino acids and surfaces, the adsorption can have a 

specific counterpart even when the adsorption is performed in the gas phase [7]. The contribution of 

specific interactions has been demonstrated for the adsorption of glycine on titania [8]. There are many 

examples in which the specific adsorption of surface potential determining ions modify the surface 

potential of surfaces, the most well known example being that of silver iodide in presence of surface 

potential determining ions like I- [9]. The accumulation of counterions (i.e. of opposite sign to that of 

the permanent charges at the interfaces) in the electrical diffuse double layer may then be considered 

as “non-specific”. The condensation of counterions around strongly charged polyelectrolytes may at 

first glance be considered as non-specific because it originates from the strong electrostatic potential of 

the polyelectrolyte [10]. By condensation we mean that the counter ions are bound within a few tenths 

of a nanometer from the polyelectrolyte backbone. The occurrence of ion condensation on 

polyelectrolytes or on surfaces is the result of a competition between attractive electrostatic forces and 

the disrupting effect of thermal motion. The strong potential on certain polyelectrolytes originates 

from the chemical nature of the polyelectrolyte and can hence be considered as a “specific” effect that 

is due to the nature and the density of the charged groups carried by the polyelectrolyte.  

In addition, the nature of the electrolyte can afford some specificity [11], the so called Hofmeister 

effect. These effects cannot be described simply by considering the electrolyte solution as a continuous 

medium of dielectric constant  where the screening of the electrostatic forces is just described by a 

macroscopic adjustable parameter, the ionic strength of the solution.  

When considering interactions in supramoleular chemistry (implying cyclodextrins, or a plethora of 

synthetic hosts) as well as in biology (antigen-antibody complexes, protein-ligand binding and enzyme 

substrates complexes), which are all considered as highly “specific” interactions, it has been found out 

that the free energy change associated with the binding process is proportional to the solvent 

accessible surface area that is buried upon binding, Figure 1. These investigations have been 

performed by means of molecular docking [12] and analysis of crystal structures [13]. 

Despite the great diversity of binding partners, the correlation between lnK (and hence the change 

in free energy) and the area buried from the solvent upon binding is pretty good (r2=0.86). Does that 

mean that the most important part of the interaction is related to the area that can be buried upon 

binding, and hence to the size of the “binding sites”? Or does it mean that the probabilty to have a 

contribution to the free energy decrease, be it “specific” or “non-specific” is proportional to the area of 

the part of the molecule that is implied in the molecular recognition process? 

All the above examples show that the distinction between “specific” and “non-specific” effects are 

never clear cut. One can define an upper limit in the binding energy to distinguish “specific” from 

“non-specific”: this would imply that specificity is equivalent to “high affinity”. For free energy 

changes greater than a critical value one can define the interaction to have a “specific character” 

whereas for changes in free energy lower than this threshold, one assumes the interaction to be  

“non- specific”. It is exactly on this basis that one traditionally separates chemisorption from physical 
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adsorption and more generally “covalent bonds” from secondary interactions. Here again this clear 

separation may be arbitrary, because there are covalent bonds (established through the fact that the 

bond can be described by a molecular orbital constructed from atomic orbitals belonging to atoms of 

the molecule) implying a binding energy (the energy variation between isolated and bond atoms in the 

gas phase) that is very close to the above mentioned threshold. For instance the binding energy of Li2 

amounts only to 60 kJ.mol-1 [14]. However, this compound is not an aggregate of two Li atoms: The 

motions of both Li atoms are strongly correlated inside the molecule.  

Figure 1. Relationship between the logarithm of the binding constant and the reduction in 

surface area accessible to the solvent upon binding between two partner molecules. This 

plot is based on the data in Table 7 of Houk et al. [12]. 

 
1: interactions between -cyclodextrins and organic guests. 
2: interactions between catalytic antibodies and organic substrates. 
3: interactions between albumins and organic guests. 
4: interactions between catalytic antibodies and inhibitors. 
5: interactions between enzymes and inhibitors. 
6: interactions between antibodies and proteins. 
The straight line is a linear regression to the data (r2=0.86) whereas the dashed line 
corresponds to the limit of the 95 % confidence interval. 

 

When considering adsorption phenomena, it is clear that the contribution of many weak interactions 

(each one being of the order of kT, ie the average energy due to random collisions with solvent 

molecules) can lead to an irreversible adsorption, i.e. to high affinity, as in the case of chemisorption. 

Such assumptions, which become validated by experimental observations [15] and simulations [16] 

allow one to explain the irreversible character of protein or polymer adsorption at solid–liquid 

interfaces. This example clearly shows that high affinity can be reached without “specificity”. The 

previous example of Li2 shows that “specificity” can be reached even in the absence of high affinity. 

Clearly, the criterion of affinity is not satisfactory to separate “specific” from “non-specific” 
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interactions neither is the concept of a given stoichiometry. Many so called “non-specific” binding 

processes have nevertheless a defined stoichiometry. Indeed adsorption phenomena or ion binding 

events at surfaces often reach a saturation, but in the common sense most of them are “non-specific” 

(proteins stick everywhere, counterions can interact with every surface of opposite sign). At saturation 

of an adsorption process, there is clearly a maximal amount of bound molecules or ions (the sorbent) 

for a given number of surface sites (indeed it is often very difficult to have access to the density of 

surface sites particularly if the sorbate is heterogeneous, the situation becomes ideal only in the case of 

very clean monocristalline terraces) and hence a given stoichiometry. The fact that in some adsorption 

experiments one not reaches the saturation value does not mean that there is no stoichiometry, it can 

simply mean that the sorbate is not provided in sufficient amount to cover all the adsorption sites. It 

has to be noted also that the notion of a 1 to 1 interaction between a sorbate and a site on the surface is 

a relative notion which depends on the size and the shape of the sorbate. This consideration is at the 

origin of improvements of the original Langmuir adsorption isotherm in which the surface exclusion 

function is simply considered to be proportional to the number of adsorbed molecules and hence 

neglects interactions between triplets and other kinds of multiplets (in a 2D crystal each adsorbed 

molecule can have up to 6 closest neighbours) [17]. 

If neither the criterion of a maximal change in free energy, nor the absence of a saturation in 

binding can be used to distinguish between “specific” and “non-specific” binding, what can be a 

reasonable criterion? Let us come back to E. Fisher’s “key and lock” analogy which is the foundation 

of the idea of specificity. In a “chemical lock” it is neither the geometry alone nor the presence of 

some given chemical functions which allows this lock to recognize some molecules with some 

preference with respect to other ones, it is indeed a combination of both. The “good” chemical groups 

have to be present in a given well defined but nevertheless flexible topology. Hence one can say that 

“specificity” corresponds to a pattern of molecular recognition (Figure 2). 

There is an other important point: Most often the affinity of “non-specific” processes is mainly due 

to an increase in entropy, whatever its origin [1]. Hence many processes implying hydrophobic 

interactions are mainly “non-specific” in nature. Let us recall that the hydrophobic interaction between 

two aliphatic chains is not due to some preferential interactions between these chains nor to a repulsion 

between each of them and water, it is due mainly to an entropy increase of the water molecules upon 

desolvation of the chains. This desolvation of course costs some enthalpy. 

The difference in the chemical potential of an aliphatic chain with n carbon atoms between an 

apolar solvent and water is proportional to n at least for chains having less than 22 carbon atoms [18]:  

nwaterApolar .00         (10) 

where  and  are two positive constants.  takes into account for the unfavorable effect the head 

group of amphiphiles has on its solubility in apolar solvents. 

The fact that the reduction in free energy upon transfer from water to an apolar solvent is simply 

proportional to the chain length is clearly a “non specific” effect: the longer the aliphatic chain the less 

it is soluble in water. 
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Figure 2. Schematic representation of the difference in geometric disposition between 

three chemical groups able to interact with complementary receptor sites on a binding 

partner molecule allowing for only “non-specific” interactions (A) and “specific” 

interactions (B). Nevertheless “non-specific” interactions can also contribute to increase 

the binding affinity in the case of B because of desolvation of both molecules upon their 

contact. In the case of a given biomolecule one can go from situation B to A by a single 

conformational change. 

 

 
 

With this in mind it is now clear that on the surface of: 

(i) a lipid vesicle (with a known chemical composition) even in the presence of phase 

boundaries (the so called “rafts”),  

(ii) on the surface of a mineral oxide,  

(iii) along a polyelectrolyte chain,  

(iv) along a single stranded oligonucleotide,  

there are clearly no such defined recognition patterns. On the other hand, prosthetic groups of proteins 

like the well know protoporphyrin IX of hemoglobin are “specific” recognition motifs. The amino 

acids inside the channel of a membrane protein play also the role of a specific recognition motif. 

The energetics of this kind of “specific” interactions has been reviewed in excellent fashion by 

many authors [19-21]. In this article we aim to review how microcalorimetry helps to determine the 

energetics of binding process implying non specific interactions. Such interactions are “ill defined” in 

the sense that there is not well defined localization and topology of the interacting chemical groups. In 

each investigated case, we will try to provide some relevant examples from the older as well as from 

very recent literature, but without the aim to be exhaustive. We will focus on interactions in which 

biomolecules are exposed to interfaces. Indeed in this situation, very common in biotechnology, 

B 

A  
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biomolecules having specific binding groups are exposed to chemical groups that do not display a 

configuration allowing for specific interactions to take place. 

In general, there are plenty of experimental methods able to determine the binding constant between 

two interacting molecules:  

(i) NMR,  

(ii) other spectroscopic methods like fluorescence spectroscopy,  

(iii) sedimentation velocity and equilibrium,  

(iv) equilibrium dialysis [22] (which can be used only when the two binding partners have 

very different hydrodynamic radii and when one of them is able to diffuse across the 

pores of the dialysis membrane),  

(v) chromatography,  

(vi) capillary electrophoresis  

(vii) even electrospray mass spectrometry, ESI [23] (ESI measures the mass increase of the 

guest molecule upon binding in the dry state, which means that all the contribution of 

hydrophobic interactions are not taken into account)  

(viii) and of course, titration calorimetry [24]. 

Surface plasmon resonance can be used when one of the binding partners can be immobilized at a 

solid liquid-interface in contact with a noble metal. The collective modes of motions of the electrons 

(the surface plasmons) can be exploited to investigate the increase in refractive index which is the 

consequence of the binding process during which an accumulation of binding molecules occur at the 

interface [25]. 

In the next paragraph we will emphasize why calorimetry is really necessary to unravel the 

enthalpic and entropic contributions of binding processes. Finally, in the last and most important 

chapter we will highlight how ITC can help to investigate “non-specific” interactions (in the sense 

defined before) in the fields where molecules relevant to biology are exposed to an interface. Namely 

we will describe the use of ITC (and sometimes of differential scanning calorimetry, DSC) in the 

following subfields: 

(i) self assembly of amphiphiles,  

(ii) interactions between peptides-drugs with lipid membranes,  

(iii) proteins with surfaces,  

(iv) peptides with DNA as well as proteins or DNA with polyelectrolytes.  

In all these cases the global enthalpy and entropy change which contribute to G  [equation (1)] 

are the result of many subcontributions. The most challenging point, as already mentioned is to unravel 

each of these contributions. We will conclude by emphasizing the need to investigate very simple 

model systems to go further in this direction. 
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2. Some Other Fundamental Relationships and the Need to Measure the Enthalpy Change 

Independently from the Binding Constant 
 

Assuming that the standard enthalpy and entropy changes are temperature independent, one easily 

derives the van’t Hoff relationship from equations (1) and (3):  

2

ln

RT

H

T

K 





      (11) 

which shows, that the equilibrium constant increases upon a temperature increase for an endothermic 

process ( 0H ). 

Upon the derivation of (11), the assumption of constant standard enthalpy and constant standard 

entropy is of paramount importance and has often been neglected in the literature [26]. It is 

nevertheless well known that most of the “non-specific” (as well as the “specific”) interactions are 

occurring with H  and S  being temperature dependent. This is also true for specific interactions 

as exemplified by the complexation of Ba2+ by 18-crown-6 ether (water being the solvent) [27].  

When H is temperature dependant, the investigated transformation implies a change in the heat 

capacity of the whole system: 

P
P T

H
C 











       (12) 

where the subscript P means that the transformation is investigated at constant pressure. 

From equation (12) it is clear that after having measured the temperature dependence of Cp, one can 

also get the standard enthalpy change associated with the investigated process by means  

of integration: 

   
f

i

T

T

P dTTCH .       (13) 

where Ti and Tf are the initial and final temperatures respectively. 

Hence, DSC allows to measure the enthalpy of protein denaturation which provides an unestimable 

information about its conformational stability [28,29]. Indeed, upon denaturation, hydrophobic 

residues hidden from the solvent in the folded state become exposed to the solvent with an increase of 

the heat capacity [30].  

Relying on the validity of the van’Hoff relationship, it appears that measuring the equilibrium 

constant of a given equilibrium at different temperatures will allow to calculate H . Before the 

availability of highly sensitive microcalorimeters, many investigators used the temperature 

dependency of the equilibrium constants to deduce the enthalpy change associated with the binding 

process. The use of equations (1) and (3) then allow to calculate the corresponding entropy change 
S . Very sensitive and fast responsive microcalorimeters now allow to alleviate this bias [26].  

The knowledge of both H  and S  is of paramount importance to unravel the different 

contributions of any interaction process taking part in presence of a solvent (water). The desolvation of 

hydrophobic surfaces, the hearth of the hydrophobic effect [18,31,32], is a process that increases the 

number of accessible states of the water molecules and hence an increase in the whole entropy of the 

system. When one or both of the binding partners lose some of their degrees of motional freedom 
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(vibrational and/or rotational), the entropy of the system will decrease. Hence the global knowledge of 

the value of the entropy (enthalpy) change does by itself not give the value of its individual 

contributions [33]. Techniques complementary to calorimetry are thus necessary to decompose the 

enthalpy and entropy changes into their constitutive parts. This is indeed very challenging as we will 

see in the particular case of “non specific” interactions. For instance, NMR relaxation experiments 

allow to compare the mobility of a protein binding site before and after the binding event [34]. 

In addition to the purely thermodynamic relationships (1-13), there are some other non purely 

thermodynamic relationships that can be investigated empirically when the enthalpy and entropy 

changes upon binding are known. Among them, the enthalpy-entropy compensation phenomena [26] 

which occur not only in the case of “specific” interactions [12,21] but also in the case of protein 

adsorption at solid liquid interfaces or in the case of solute binding at fluid interfaces as we will see in 

the last part of this review. 

The enthalpy-entropy compensation seems to be intrinsically associated with the fact that H  and 

S are related to the heat capacity at constant pressure [35]. 

The enthalpy-entropy compensation expresses according to: 

 HST ..        (14) 

Its validity has been often discussed on the basis of the lack in accuracy in the determination of 

H and S . However it is clear that if equation (14) holds true, it should have consequences on the 

thermodynamic Gibbs-Helmholtz relationship (1) which has then to be written as: 

    HG .1      (15) 

Hence if one finds experimentally that ST . is a linear function of the standard enthalpy change 

with a slope , one has to check that the free energy change is a linear function of H with the 

expected slope 1-. If this consistency test is not satisfied, there is no enthalpy-entropy compensation.  

We will not summarize the working principle of modern isothermal titration calorimeters, because 

this has been extensively done elsewhere [24]. Let us just recall that there are many experimental 

designs of calorimeters: the hydration calorimeter [36], flow adsorption calorimeters [37,38] which are 

dedicated to investigate adsorption (often “non specific” phenomena). 

The investigation of biophysical and biochemical processes requires the use of highly sensitive 

calorimeters able to measure heat fluxes of the order of some tens of ncal·s-1 with an amount of 

biomolecules that should be (significantly) less than 1 mg. Indeed, if the standard enthalpy change is 

of 10 kcal·mol-1 (ie 42 kJ·mol-1) which is rather typical for biochemical processes, and if the protein 

concentration is 1 mg/mL (hence about 10-5 M (assuming a molecular mass of 105 g·mol-1) the total 

heat exchanged is of the order 10-4 cal. If the reaction (or titration) is lasting over 1 h, this means that 

the average heat flux the microcalorimeter should be able to measure is of the order of 30 ncal·s-1. 

Such sensitivities were not reached for a long time and the major technical evolution was realised only 

in 1989 [39].  

It is not worth herein to describe how to operate such an ITC device nor to describe how to fit a 

binding model to the experimental data. The interested reader can read the review by O’Brien, 

Ladbury and Chowdhry [24]. 
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It has to be noted that the last generation ITC devices have now sufficiently fast response to allow 

the investigation of thermal events occurring during enzymatic catalysis [40-42]. This opens the route 

for real time studies of a plethora of fascinating biochemical events in real time.  

Even if we will occasionally speak about experiments done with differential scanning calorimetry 

(DSC) and pressure perturbation calorimetry (PPC) we will not describe their working principle. The 

interested reader can refer to reference [43-45] and [46] for DSC and PPC respectively. 

 

3. Some Selected Examples of the Use of ITC to Investigate the Thermodynamics and Kinetics of 

Biophysical “Unspecific” Processes 

 

According to the previously proposed definition of “non-specific” interactions we will now review 

the application of ITC (and occasionally of DSC and PPC) to the investigation of the energetics of 

“non-specific” processes in biophysical chemistry. We will describe phenomena of increasing 

complexity, where the increasing complexity corresponds to the implication of a greater number of 

subprocesses. All the investigated process occur at interfaces. We will review the use of 

microcalorimetry in: 

(i)  the interactions between amphiplilic molecules 

(ii) the interactions between small ions with polyelectrolytes as well as between 

polyelectrolytes 

(iii)  the interactions between drugs, peptides and viruses with lipid assemblies 

(iv)  the interactions between proteins and solid surfaces. 

(v)  the investigation of the global thermal effect of metabolic processes. 

All these “non-specific” interactions are of prime importance to biology: let us briefly comment 

their relevance. The self assembly of lipids allows production of the compartmentalisation which is 

necessary for the appearance of life [7]. The interaction between charged molecules and single 

stranded or double stranded DNA is extremely important for the regulation of gene expression since 

these interactions lead to compaction of DNA [47-50] The same electrostatic interactions are used for 

the preparation of “complexes” between DNA and cationic species (we put quotes around the word 

complexes to emphasise that they are not of the same nature as the usual complexes in inorganic 

chemistry: they do not have a defined stoichiometry). The interaction between a polycation and DNA 

has to be strong enough to allow efficient DNA overcharging, a sine qua non condition for inducing 

endocytosis of the “complexes” but not to strong in order for the DNA to be liberated from its gene 

vector in the cytoplasm or in the lyzosome [51]. This means that a deep thermodynamic understanding 

of polycation-DNA interactions is critical for a rational design of efficient gene vectors. 

The interaction between drugs or peptides with biological membranes is at the heart of the transport 

of amphiphilic drugs across the lipid barrier and the interaction of venoms and viruses with cells [52]. 

Last but not the least protein adsorption is of tremendous importance in biomaterial science [53] and it 

most often induces conformational changes of the adsorbed proteins [54]. The investigation of such 

conformational changes on model surfaces may help to understand the fundamental mechanisms 

leading to the conformational transition of soluble prions (PrPC) to the pathological  sheet rich  

PrPSC [55,56]. 
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We will not consider the thermodynamics of protein folding-unfolding, because it is a field by itself 

and because it is a highly “specific” process with uses some specific nucleation sites, the so called 

“molten globule” [57] as well some catalysts (chaperones) [58]. 

 

3.1. Investigation of the Interaction between Amphiphiles and between Amphiphiles and Polymers 

 

Upon increasing the concentration of amphiphiles (carrying a polar headgroup and at least one 

hydrophobic tail) in water, after the solution-air interface is saturated with a monolayer, the 

amphiphiles are forced to be dissolved in water. But the hydrophobic moieties have to be shielded 

from water to minimise the free energy of the system. Hence the amphiphiles self assemble and there 

is a critical concentration, called the critical micelle concentration (cmc) after which all the added 

amphiphile is incorporated in the self assembled structures. In the case where the packing ratio, 

defined as the ratio between the volume of the hydrophobic part and its length multiplied by the area 

of the hydrophilic head [31], is lower than 1/2, hence when the amphiphile is cone shaped, the self 

assembled structure is a micelle. When the packing ratio is between 1/2 and 1, which typically occurs 

for double chained amphiphiles (and hence phospholipids and sphyngolipids), the amphiphiles 

associate in the form of bilayers. When the packing ratio is greater than one, the stable aggregates are 

inverted micelles. 

At a first order approximation, the value of the cmc allows to calculate the change in standard free 

energy upon micellisation, according to equation (17):  

 cmcTRG ionmicellisat ln..0        (16) 

There are a plethora of experimental techniques allowing to measure the cmc, as for instance light 

scattering, fluorescence spectroscopy, conductometry (applicable only in the case of ionizable head 

groups) and the use of selective electrodes [59]. 

Isothermal calorimetry has been used to estimate the enthalpy of micellisation [60,61]. To that aim 

the amphiphile is solubilized at a concentration above its cmc and it is diluted in the cell of the 

microcalorimeter. It appears that the enthalpies of micellisation are often positive, the process of 

micelle formation is endothermic. This endothermicity is the balance between several contributions: 
The association between the hydrocarbon tails ( 0 assH ), their dehydration, ( 0 ndesolvatioH ), and 

the repulsion between the hydrophilic headgroups, ( 0 headH ), which is of particular importance in 

the case of charged amphiphiles. Since the sum of these contributions is endothermic, the repulsion 

between the headgroups and the desolvation of the hydrophobic tails outweighs the exothermic 

contribution due to the favourable chain-chain attraction. This is characteristic of the  

hydrophobic effect. 

Nevertheless the micelle formation is a spontaneous process, implying that the entropy change is 

positive. Again this is expected for a process ruled by hydrophobic interactions [62]. The knowledge 

of the cmc and hence of free energy of micelle formation, equation (16), and the measurement of the 
enthalpy of micellization, allow to calculate 0. ionmicellisatST  . Figure 3 displays the data taken from the 

cmc measurement of Newberry [59] and the calorimetry data from Birdi [60] in the case of the most 

used amphiphile, sodium dodecyl sulfate (SDS). 
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Figure 3. Thermodynamic data describing the micellisation of sodium dodecyl sulfate as a 

function of the NaCl concentration and at 298 K. Data taken from Refs. [59] and [60]. 
(): 0

ionmicellisatH , (): 0. ionmicellisatST  , (): 0
ionmicellisatG  The dashed line corresponds to a 

process implying no change in energy. 

 
 

It appears from Figure 3 that the absolute value of 0. ionmicellisatST  provides the major contribution to 

the free energy change. The finding that the micellization process is endothermic is not general, 

nevertheless the increase in entropy upon micellization is a general observation. There are other 

studies in the literature dealing with the use of isothermal microcalorimetry to investigate the 

formation of micelles [61-65]. ITC has been used not only to measure the enthalpy associated with the 

demicellization process, but also the value of the cmc itself [64]. The change in the nature of the 

counterion of alkylpyridinium surfactants has profound effects on the value of the cmc and the change 
in temperature has effects on the sign of 0

ionmicellisatH  (Figure 4) [65]. In addition there is an  

enthalpy-entropy compensation effect [equation (14)] with a slope  almost equal to 1 whatever the 

counterion of the alkylpyridinum surfactant . This implies that the free energy change should be a 

constant (according to equation (15)), which coincides with the experimental finding [65]. 

ITC has also been employed to investigate the association of amphiphilic polyelectrolytes (like 

poly-(2-acrylamido)-2-methylpropanesulfonic acid) [66] as well as the interactions of 

poly(amidoamine) dendrimers with surfactants (the negatively charged SDS as well as 

cetyltrimethylammonium bromide, CTAB) [67]. This later study is of particular interest because it 

combines different experimental techniques like ITC, SDS selective electrodes and small angle 

neutron scattering to investigate the structure of surfactant- dendrimer aggregates. 
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The thermodynamics of polymer-surfactant vesicles has also been considered from the point of 

view of phase diagrams. This aspect has been reviewed recently [68]. 

 

Figure 4. Enthalpy-entropy compensation plots for the micellization of alkylpyridinium 

surfactants as a function of the used counteranion: (): I-, the slope of the linear regression 

is =0.98, (): Br-, =0.93, (): Cl-, =0.93. The ITC experiments were performed 

between 303 and 333 K. Data taken from Ref. [65]. 

 
 

In the case of double layer forming amphiphiles the energetics of self-association is more 

complicated to investigate owing to the their very low cmc value (typically of the order of  

10-8 – 10-9 M). There are however many DSC investigations aimed to investigate the phase transition 

from the ordered liquid cristalline to the gel phase transition [69-70]. The hydration thermodynamics 

of saturated phospholipids (with aliphatic chains carrying 12, 14 or 16 carbon atoms) has been 

investigation by means of ITC [36]. It has been measured that the association of the 3 first hydration 

molecules to dehydrated lipids carrying phosphorylcholine head groups is exothermic  

(typically –16  2 kJ·mol-1) whereas the association of further water molecules is endothermic. This 

endothermicity has been attributed to the water induced melting of the phospholipid from the liquid 

crystalline to the gel phase. 

PPC has been used to investigate the changes in the specific volume of 1,2-dimyristoyl-sn-glycero-

3-phosphocholine (DMPC) during its pre-transition and during its main phase transition [71]. The 

influence of surfactants in the formation of domains in lipid bilayers has also been studied with  

PPC [72]. 

ITC has also been used to investigate the effect of osmotic stresses on the area changes of lipid 

membranes. When water is uptaken by vesicles in contact with an hyper-osmotic solution the vesicles 

undergo a lateral stretching accompanied by an uptake of thermal energy [73]. 
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3.2. Investigation of the Interactions between Small Ions and Polyelectrolytes as well as between 

Polyelectrolytes 

 

The interaction between charged colloids in aqueous solution is particularly important in biology 

and its investigation is challenging because of its complexity. The interactions are not purely 

electrostatic and one has not to forget that each charged colloid or macromolecule is surrounded by a 

diffuse electrical double layer as well as some strongly bound counterions. Desolvation is also very 

important, as for amphiphiles. The condensation of counterions to charged macromolecules, which we 

already mentioned, occurs when its linear charge density exceeds a critical value [10,74]. Such a 

condensation phenomenon has been observed experimentally for a lot of synthetic polyelectrolytes as 

well as for DNA. Upon the interaction of two oppositely charged polyelectrolytes, at low salt 

concentration of the solution (i.e. at low ionic strength) one frequently observes an increase in the 

conductivity of the solution [75,76] which is due to counterion release. Indeed upon formation of 

“complexes” between two oppositely charges polyelectrolytes, some of these counterions have to be 

removed from the contact region between the interacting species. The counterion condensation can be 

so strong that it can lead to charge inversion of the polyelectrolyte [77,78]. There has been 

considerable effort to investigate the mechanisms of polyelectrolyte-polyelectrolyte interactions [79] 

in terms of the influence of polymerisation degree, pH in the case of weak polyelectrolytes (among 

which belong proteins) [80], charge density [81-84], and the presence of low molecular weight 

electrolytes aimed to screen the electrostatic forces [85]. The structure of such complexes [86-90] as 

well as their dynamics [82,91-95] has also been intensively investigated. Proton pulsed field gradient 

NMR has been used to demonstrate that the complexes between poly(diallyldimethylamonium 

chloride) and bovine serum albumin (BSA) can disintegrate and that dense domains may reform 

depending on the interaction strength between both partners [91]. Depending on the nature of the 

polycation used to build complexes with DNA, these complexes can be redisolved by means of an 

increase in ionic strength [93]. The dissolution efficiency at a given ionic strength depends on the 

nature of the salt, the most efficient being those containing a cation that strongly interacts with DNA, 

Ca2+ for instance [94]. Even more important is the observation that the DNA may be displaced from 

the DNA-polycation complexes by means of a polyanion that as a stronger affinity with that polycation 

than DNA itself [95]. 

It appears that the most important phenomenological parameter determining the morphology, the 

charge state and hence the solubility of the complexes as well as their dynamics, is the mixing ratio, r, 

i.e. the ratio between the number of moles of cationic groups and the number of moles of anionic 

groups. In most (but not) all cases, phase separation between a complex rich and a complex poor phase 

occurs when r is close to 1. 

From a theoretical point of view some progress has been made in unravelling the fundamental 

mechanism of inter-polyelectrolyte complex formation [96-99]. The observation of selectivity effects 

in the polyanion binding to a given polycation highlights the need to investigate the thermodynamics 

of the complexation process. The number of investigations aimed to determine the binding constant of 

the polyelectrolyte-ion or polyelectrolyte-polyelectrolyte complexes are pretty scarce [95,100-104]. 

Among the most efficient methods to directly measure binding constant are fluorescence quenching 

methods: Lohman’s group investigated the interactions between positively charged lysine 
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oligopeptides modified with a tryptophan residue and various oligonucleotides. The binding event 

causes a total quenching of the tryptophan fluorescence emission [102]. In the case of complexes 

implying DNA it is possible to use the fluorescence emission properties of ethidium bromide (EtBr): 

In the DNA intercalated state it is strongly fluorescent but upon complexation with a polycation, EtBr 

is removed from DNA and its fluorescence quantum yield is dramatically reduced [93,95]. 

The binding isotherms obtained give the amount of bound molecules to their binding partner as a 

function of the concentration of unbound molecules. These isotherms have to be fitted to a binding 

model [2,105-107] which yields the equilibrium constant or a set of microscopic equilibrium constants 

in the case of cooperative interactions. Before the use of microcalorimetry, van’t Hoff analysis of the 

temperature dependence of the equilibrium constant(s) was used to estimate the enthalpy change  

upon binding.  

As in the case of interactions between amphiphiles, there are many sub-processes contributing to 

the enthalpy and entropy changes: hydration changes, changes in the conformation of the 

polyelectrolytes and of course electrostatic effects. Owing to the presence of counterions around the 

polyelectrolytes, these electrostatic interactions are always the result of a competition between the 

counterions bound to each partner before their interaction and the electrostatic bonds formed in the 

final state. Indeed, this competition is used in the fluorescence quenching assays using EtBr [93,95]. 

The importance of counterion release to the free energy change upon polyelectrolyte-polyelectrolyte 

binding can be estimated by studying the influence of ionic strength: its increase produces a decrease 

in affinity not only because the electrostatic interactions between the polyelectrolytes are screened but 

also because of entropic effects [108]. 

The dependence of the binding constant with respect to the concentration of the supporting 

electrolyte is given by: 

  .log
z

C

K

eelectrolyt





      [17] 

where z is the valence of the interacting polyelectrolyte with an oppositely charged binding partner, the 

“receptor” (of higher valency), and  is the average number of counterions released by a charged 

group of the “receptor” polyelectrolyte. A general derivation of equation [17] can be found on pages 

871-873 of reference [2]. An example of such an analysis of the binding data between a series of 

oligolysines (modified with a single tryptophan residue to monitor fluorescence quenching) and  

single-stranded homopolynucleotides (polyU) is displayed in Figure 5 [109]. This plot shows that on 

average 7 potassium counterions are lost by every 10 phosphate group of polyU upon its binding with 

Trp-(Lys)n ( 82  n ). 

Additional examples of such counterion release phenomena can be found in the literature  

[110-112]. In most of these studies, the enthalpy and entropy changes have been calculated from a 

van’t Hoff analysis of the data [equation (11)] with some exceptions however, where the enthalpy 

changes where measured directly by means of ITC [111]. When changing the NaCl concentration, the 

enthalpy change associated with the single-stranded binding tetramer and (polyT)69 follows the 

following law [111]:  
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    NaClHobs log.       (18) 

with: 8.13.46  kcal.mol-1 and 9.08.109  kcal.mol-1. 

 

Figure 5. Variation of the logarithm of the Trp-(Lys)n ( 82  n )-polyU binding constant 

as a function of the valence of the polypeptide. The slope of the straight line yields  

=0.68, according to equation (17). Data from Table 1 of reference [109].  

 
 

These experimental data are in reasonable agreement with those obtained from a van’t Hoff analysis 

but not identical [111]. At low ionic strength, the interaction enthalpy is exothermic and decreases in 

absolute value when the ionic strength increases. The same trend has been observed for the 

interactions between bovine serum albumin (BSA) and poly(allylamine) (PAH) in conditions where 

the protein and the polycation are oppositely charged (10 mM Tris buffer, x M NaCl at pH 7.4) [113], 

Figure 6. In this case, the interaction enthalpy was endothermic, which clearly shows that the  

BSA-PAH complexation process is driven by an increase in entropy. Unfortunately, a whole titration 

curve could not be obtained by means of ITC because of phase separation phenomena occurring upon 

an increase in the BSA/PAH ratio. This seems to be a recurrent difficulty in the investigation of 

polyelectrolyte–polyelectrolyte complexation, even if some data are available [114-116]. It appears 

that the inter-polyelectrolyte complexation process is driven through an increase in entropy, as was 

already suggested very early in the literature [117]. In addition, the ITC binding curves have been 

interpreted with a very simple and unrealistic binding model: a one to one stoichiometry between 

anionic and cationic sites. This model totally neglects cooperative binding effects as well as a possible 

mismatch between the cationic and anionic sites. From this point of view it seems urgent to perform 

ITC titrations as well as measurement of the binding constant by an independent method (for instance 

fluorescence quenching) in the case of monodisperse polyelectrolytes of variable charge density. 

Charged homopolypeptides (cationic: (Lys)n, anionic (Glu)n or (Asp)n) as well as aliphatic n,n-ionenes 

[93] seem to be very promising candidates to achieve this aim.  
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For a whole set of polycation-polyanion combinations it has been found that the enthalpy change 

upon complexation turns from exothermic to endothermic upon an increase in salt concentration [118]. 

These data have been obtained from ITC in the case where the mixing ratio was small (hence assuming 

that all the injected moles of anions find a positively charged binding partner). This trend was 

correlated with a change in the growth regime of layer-by-layer polyelectrolyte multilayer films from a 

linear growth at low salt concentration to an “exponential growth” at higher salt concentration. The 

polyelectrolyte multilayer films do not growth anymore above a critical ionic strength [118].This 

observation may be correlated with the dynamics of the interpolyelectrolyte complexes as recently 

suggested by Cohen Stuart et al. [92]: the complexes seem to be in a frozen state at low salt 

concentration and highly hydrated and flexible at high salt concentration.  

The interactions between synthetic polyelectrolytes and water [119], as well as the interactions 

between DNA and ions [120-122] or between proteins and ions have been investigated by means of 

ITC [123,124]. 

 

Figure 6. Variation of the binding enthalpy between BSA and PAH as a function of the 

ionic strength, as obtained from ITC [113].  

 
The dilution heat of polystyrene sulfonate [119] as well as of other polyelectrolytes [118,123] is 

endothermic as expected from the counterion condensation theory [10]. The interaction between 

multivalent ions like cobalt hexaamine and circular pUC118 DNA displays a biphasic behavior, both 

events being endothermic. The first one is associated with the binding of   3

63NHCo  to isolated 

phosphate groups whereas the second one is associated with the cation binding induced condensation 

of DNA. The transition from the first to the second binding regime is shifted to higher 

 
phosphate

NHCo 3

63 ratios when the NaCl concentration is increased. This reflects again a competition between 

Na+ and   3

63NHCo for the phosphate groups of DNA [121]. Most interestingly, the trivalent 

spermidine cations are less efficient than   3

63NHCo to induce condensation of DNA, which is 

expected on the basis of the higher charge density of   3

63NHCo . Of additional interest is the fact that 
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the first binding event displays an enthalpy-entropy compensation phenomenon whereas this seems to 

be hardly the case for the second one (Figure 7). The same kind of biphasic titration has been found 

during the investigation of the interactions between cetyltrimethylammonium bromide and DNA [122]. 

 

Figure 7. Enthalpy-entropy compensation plot for the ITC data of Bloomfiled et al. [121] 

describing the two interaction regimes between   3

63NHCo and DNA. Enthalpy and 

entropy changes associated with: ()   3

63NHCo -pUC118 binding and: () condensation 

of pUC118. The full and dashed lines correspond to the linear regression and the limit of 

the 95 % confidence interval respectively. 

 
We will now shift to the description of the use of ITC to the investigation of drug-lipid assemblies 

interactions. We will also describe the interactions between charged molecules (among which 

polypeptides, polyelectrolytes and viruses) and lipid assemblies.  

 

3.3. Investigation of the Interactions between Drugs, Peptides and Viruses with Lipid Assemblies 

 

Less attention will be given on these kinds of interactions than on those occurring upon  

inter-polyectrolyte or small ions-polyelectrolyte interactions, because very good reviews are already 

available [124-126] in addition to a plethora of research articles [127-141]. The interactions taking 

place at the surface of lipid membranes imply not only electrostatic interactions, of the same nature as 

those described in the previous paragraph, but also some conformational changes, as well as some 

partioning events between the aqueous phase and the membrane phase, and eventually some 

membrane fusion events. NMR in addition to circular dichroïsm (CD) investigations will allow to 

estimate the contribution of conformational changes to the binding process [135-137]. In the case of 

(KIGAKI)3 polypeptides (K, I, G and A are the one letter representation of lysine, isoleucine, glycine 

and alanine respectively) having some L-enantiomers of alanine substituted by D-enantiomers and 

interacting with POPE/POPG/pegylated POPE (70/25/5 mol%) vesicles, it has been found that the 
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peptides bound to the vesicles undergo a progressive conformational transition to  sheets. CD has 

been used for this aim. The enthalpy of binding is endothermic, meaning that the binding process is 

driven by a global increase in entropy and H is directly proportional to the increase in the number 

of amino acids that become incoporated in a  sheet structure (Figure 8) [137]. 

 

Figure 8. Thermodynamic data describing the interactions between (KIGAKI)3 peptides 

(in 5 mM cacodylate buffer at pH 7.5) and small unilamellar vesicles made of 

POPE/POPG/pegylated POPE (70/25/5 mol%). Part A: relation between the enthalpy 

change (recorded from an ITC titration) and the increase in the number of amino acids 

implied in  sheet structures (obtained from CD spectroscopy). The full line corresponds to 

a linear regression to the data (r2=0.89) whereas the dashed line corresponds to the limit of 

the 95 % confidence interval. Part B: Enthalpy-entropy compensation plot corresponding 

to the same peptide/vesicle system. The full line corresponds to a linear regression to the 

data (r2=0.83) whereas the dashed line corresponds to the limit of the 95% confidence 

interval. Data taken from Ref. [137]. 
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In general, the contribution from electrostatic interactions and from hydrophobic interactions can be 

separated when the charge state of the binding molecule is known, using for instance a modified form 

of the Gouy-Chapman theory [142]. In a very interesting investigation, it has been demonstrated that 

the interaction between magainin-2-amide with membranes made from 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphocholine (POPC) (75 mol%) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phophoglycerol 

(POPG) displays a biphasic trace: at low peptide to lipid ratios, the enthalmograms obtained by ITC 

reflect the peptide binding process (-17  1 kcal·mol-1) whereas at high peptide to lipid ratios an 

endothermic process (6.2  1.6 kcal·mol-1) is due to the peptide induced pore formation. ITC has also 

been used to investigate the fusion of the Influenza virus with vesicles and a biphasic binding process 

was also monitored [145]. 

Very interestingly there are some drug-vesicle interactions that are of purely “specific  

nature” [133]. 

 

Figure 9. DSC traces of large unilamellar vesicles made from a DPPC/DPPG/CL mixture 

(80/10/10 w/w) in the absence (A) and in the presence of adsorbed PLL (B). Modified 

from reference [144]. Cp is given in kCal.mol-1.K-1. 

 

 

 

   

 

 

 

 

 

 

DSC is also very useful to estimate the conformational destabilization of proteins upon their 

interaction with membranes [138] as well as to answer the question if polyelectrolytes interact with 

charged membranes with a perturbation [143] or not of the membrane integrity [144]. The former 

phenomenon seems to occur when the polyelectrolyte carries hydrophobic side chains whereas the 

later occurs for non modified poly-L-Lysine (PLL) interacting with large unilamellar vesicles made 

from a DPPC/DPPG/CL mixture (80/10/10 w/w) [144]. In this case the DSC trace of the PLL 
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decorated vesicles is identical (Figure 9) to that of the pure dipalmytoyl 

phosphatidylcholine/dipalmytoyl phosphatidylglycerol/ cholesterol (CL) mixture, reflecting that the 

main phase transition of the lipid mixture (here at 41 °C) is not modified by the presence of the 

adsorbed PLL (charge inversion of the vesicles upon PLL adsorption has been demonstrated by means 

of zeta potential measurements). 

 

3.4. Investigation of the Interactions between Proteins and Solid Surfaces 

 

As already mentioned, the interactions between proteins and solid surfaces are extremely important 

in modern technology, for instance in fouling processes and in biomaterials science. Chromatographic 

analysis of amino acid retention on solid supports has allowed investigation of the adsorption 

behaviour of single amino acids on solid surfaces [146], but extrapolation to polypeptides and to 

proteins is difficult because of the complexity of the process. Major advances have been made in the 

understanding of this very ubiquitous phenomenon by Norde [147-149]. ITC as well as DSC played a 

major contribution in this research. It was found that proteins can be classified mostly into two 

categories with respect to their adsorption behaviour at solid/liquid interfaces: the classification 

between “hard” and “soft” proteins refers to the difference in free energy between the unfolded and 

folded conformations [147]. In general “soft” proteins are able to adsorb at any kind of sorbent even if 

it is hydrophilic and electrostatically repulsive, whereas “hard” proteins, having a high conformational 

stability, only adsorb at hydrophilic surfaces in the case of favourable electrostatic interactions. At 

hydrophobic surfaces, dehydration of that surface is usually the dominant driving force for adsorption, 

so that both “hard” and “soft” proteins adsorb, even under electrostatically adverse conditions. Clearly, 

DSC is extremely useful to distinguish between “hard” and “soft” proteins. There are many examples 

in which protein adsorption at solid/liquid interfaces is driven through an increase in entropy. 

Dehydration of the sorbent and of the protein surface (which is never purely hydrophilic, [147]) as 

well as partial protein unfolding are at the origin of this entropy increase. The combination between 

DSC and infra red spectroscopy [150] as well as between IR spectroscopy and hydrogen-deuterium 

exchange mass spectrometry [151] allows to directly correlate the thermodynamic decrease in protein 

stability at the surface to the change in its average conformation.  

Recently, much effort has been devoted to the investigation of protein adsorption on the stationary 

phases of chromatographic columns [152-156]. Even if the enthalpy changes upon adsorption have 

been directly measured in some cases, most of the investigations rely on the fit of an adsorption model 

to the adsorption isotherm. This was done to calculate the adsorption equilibrium constant. Such 

purely empirical fitting of the adsorption isotherms, using for instance the Langmuir isotherm may be 

very arbitrary in the sense that this model totally neglects the interactions between the adsorbed 

proteins (see reference [17] and references therein). 

ITC data of protein adsorption at colloid particles have also revealed enthalpy-entropy 

compensation relationships [157-158], Figure 10. It has been demonstrated by performing the ITC 

experiments in buffers having different ionisation enthalpies (phosphate, Tris and TES buffer) that 

every single protein adsorption event is accompanied by the incorporation of one proton in the 

adsorbed layer [157]. 
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Figure 10. A: Enthalpy-entropy compensation plot for the adsorption of statherin onto 

hydroxyapatite particles (having a specific surface area of 53 m2.g-1) at different 

temperatures (between 15 and 37°C) in the presence of phosphate buffer. Data from  

Table 1 of reference [157]. The slope of the linear regression curve (r2=0.995) is =1.70, 

calculated according to equation (14). B: correlation between the change in standard free 

energy upon adsorption with the enthalpy change. The slope of the linear regression curve 

(r2=0.989) is equal to –0.70 in full agreement with the  value obtained in part A and with 

equation (15), showing that there is a “true” enthalpy-entropy compensation. The dashed 

lines represent the limits of the 95 % confidence intervals. 
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With the aid of ITC it has been demonstrated recently that the interaction between salivary proteins 

and Streptococcus Mutans is a non specific process when the microorganism is depleted of its specific 

surface antigens [159]. 

 

3.5. Investigation of the Global Thermal Effect of Metabolic Processes 

 

Very interestingly, microcalorimetry has been used to investigate the heat exchanges implied in 

extremely complicated processes such as the metabolisms of living cells [161,162]. It is possible to 

distinguish the exponential growth phase of cells from the initial lag phase with a single 

microcalorimetry measurement. This offers the opportunity to compare the metabolism of different 

cell lines, and possibly the difference between health cells and cells implied in a pathological process. 

 

4. Conclusions and Perspectives 

 

In this review article we have recalled the difference between “specific” and “non-specific 

interactions” and have emphasized how difficult it is to distinguish between both interaction modes. 

Based on many data from the biophysical and biochemical literature (as well as from supramolecular 

chemistry) it appears possible that many interactions have contributions coming from “non-specific” 

interactions. These “non-specific” contributions originate mostly from electrostatic and hydrophobic 

interactions. We have then shown that ITC (as well as DSC) gives reliable enthalpy and entropy 

changes of “non-specific” binding events. We focused on interactions between amphiphiles, 

amphiphiles and polymers, polyelectrolyte-polyelectrolye, polyelectrolyte-small electrolytes, 

molecules (drugs, peptides) and lipid membranes and proteins with surfaces. It appears that the field of 

“ligand” binding at membrane/aqueous solution interfaces is the most mature of these fields in the 

sense that it is possible to unravel different contributions to the global enthalpy and entropy changes. 

The complete understanding of the interactions between polyelectrolytes is challenging in order to 

improve the efficiency of gene transfection and surface coating by the layer-by-layer deposition. It 

appears that even if ITC provides now accurate values of enthalpy changes, it will be extremely 

difficult to quantify the (positive) entropy changes upon complexation owing to the fact that phase 

separation occurs when the inter-polyelectrolyte complexes become electroneutral. Hence the 

determination of binding constants by traditional titration methods, for instance fluorescence 

spectroscopy, coupled with ITC measurement of enthalpy changes will allow to gain better 

understanding in the thermodynamics of such fascinating (but ill defined) processes. It is also 

mandatory to investigate complexation processes between extremely well characterised and 

monodisperse polyelectrolytes to unravel the contributions from counterion release and those from 

conformational changes upon inter-polyelectrolyte complexation. The combination of purely 

experimental approaches with simulations (Monte Carlo as well as molecular dynamics) will also be a 

source of progress in understanding the “non-specific” interactions between polyelectrolyes. In all the 

investigated cases, interesting enthalpy-entropy compensations were observed. Some more research is 

needed to understand their origin. 
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