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Recent years have seen a revolution in our understanding of how cells of the immune

system are modulated and regulated not only via complex interactions with other immune

cells, but also through a range of potent inputs derived from diverse and varied biological

systems. Within complex tissue environments, such as the gastrointestinal tract and

lung, these systems act to orchestrate and temporally align immune responses, regulate

cellular function, and ensure tissue homeostasis and protective immunity. Group 3

Innate Lymphoid Cells (ILC3s) are key sentinels of barrier tissue homeostasis and critical

regulators of host-commensal mutualism—and respond rapidly to damage, inflammation

and infection to restore tissue health. Recent findings place ILC3s as strategic integrators

of environmental signals. As a consequence, ILC3s are ideally positioned to detect

perturbations in cues derived from the environment—such as the diet andmicrobiota—as

well as signals produced by the host nervous, endocrine and circadian systems. Together

these cues act in concert to induce ILC3 effector function, and form critical sensory

circuits that continually function to reinforce tissue homeostasis. In this review we

will take a holistic, organismal view of ILC3 biology and explore the tissue sensory

circuits that regulate ILC3 function and align ILC3 responses with changes within the

intestinal environment.

Keywords: innate lymphoid cells, ILC, mucosal immunology, neuroimmune, circadian, immune circuits

GROUP 3 INNATE LYMPHOID CELLS—SENTINELS OF THE
GASTROINTESTINAL TRACT

Innate lymphoid Cells (ILCs) are a family of innate immune effectors that localize mainly to
mucosal surfaces and which play critical roles in regulating tissue immunity and homeostasis.
The ILC family can be divided into three main subsets—group 1 ILC (ILC1), ILC2, and ILC3
based on their expression of master transcription factors and associated effector cytokine profiles
[Reviewed extensively elsewhere (1–8)]. In this review we will focus on group 3 ILC (ILC3), a
group of ILC that act constitutively tomaintain intestinal health through regulation of the intestinal
barrier and commensal microbiota, and through protective immune responses against extracellular
microbial pathogens.

ILC3s are characterized by the expression of the retinoid-related orphan receptor γt (RORγt)
(1, 5, 6) and they can be further sub-divided into at least two sub-groups in adults (9).
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These subsets are developmentally, transcriptionally and
functionally heterogeneous and include lymphoid tissue inducer
cells (LTi)-like ILC3s; characterized by surface expression of
CCR6, c-kit (CD117), Neuropilin-1, and variable expression
of CD4, in addition to natural cytotoxicity receptor expressing
(NCR)+ ILC3s—which lack LTi-associated markers but express
a range of NCR (e.g., NKp46 in mice) while further co-expressing
the transcription factor T-bet (10, 11). The characteristics and
differences between ILC3 subsets have been discussed in detail
elsewhere (9) and as such, for the sake of clarity, we will largely
refer to ILC3 cumulatively in this review without distinguishing
the specific subset.

As discussed in detail below, ILC3s are at the center of
multiple tissue regulatory circuits in which a variety of inputs
(in the form of environmental and host-derived cues) are sensed
and interpreted by ILC3 and give rise to functional outputs that
culminate in the downstream modulation of tissue physiology
to maintain health and homeostasis. While the inputs of these
sensory circuits vary, and will be discussed in detail below,
a major common ILC3-associated output is the secretion of
effector cytokines including IL-22, IL-17A, IL-17F, and GM-
CSF and lymphotoxin (LT) (1, 4, 7, 8) (Figure 1). These soluble
mediators in turn act upon both neighboring tissue-resident
immune cells and non-hematopoietic cells—such as epithelia
and stroma. In this review, we will comprehensively discuss the
major tissue circuits through which ILC3 function is regulated,
and through which ILC3 propagate these signals to regulate
and orchestrate the wider immune response and to promote
optimal tissue function, mediate protective immune responses
and maintain health.

ILC3 CIRCUITS IN THE REGULATION OF
INTESTINAL HOMEOSTASIS

Host-Microbiota Sensory Circuits
Mammals have evolved multiple complimentary immunological
mechanisms to promote the anatomical containment of
commensal bacteria. These mechanisms enforce tolerance,
suppress inflammation and maximize mutualism with the
microbiota, and ILC3s have key roles in this process (12–
15). ILC3s are enriched within gastrointestinal (GI) tract
where they are ideally positioned to promote barrier repair
and to prevent bacterial translocation (15). ILC3 produce a
range of soluble mediators that enable them to continually
reinforce the barrier and maintain the containment and physical
segregation of commensal microorganisms. Chief amongst these
mediators is the cytokine interleukin (IL)-22, which binds to the
heterodimeric receptor IL22RA1-IL10RB (IL-22R) expressed by
cells of the non-haematopoietic lineage, most notably intestinal
epithelial cells (Figure 1: outputs). IL-22 signaling induces the
production of antibacterial peptides such as RegIIIβ and RegIIIγ
and S100 family members, which in turn regulate the commensal
microbiota and limit access to the epithelial and mucosal
niche (16, 17). IL-22 also promotes the physical exclusion of
commensal bacteria through induction of mucins and goblet cell
hyperplasia, and by regulating the expression of tight-junction

components (15, 17, 18). Moreover, ILC3s induce fucosylation
of intestinal epithelial cells through an IL-22 and LTα driven
process, which in turn favors colonization by mutualistic
bacterial species at the expense of potential pathogens (Figure 1:
outputs) (19–21). In addition, IL-22 produced by ILC3s acts
to regulate epithelial turnover and intestinal crypt stem cell
maintenance, and has been ascribed both pro- and anti-
tumorogenic functions, most recently being shown to promote
DNA damage response (DDR) mechanisms in order to prevent
tumor formation (22–25). IL-22 also modulates nutrient uptake
via the intestinal epithelia, in particular lipid uptake (26). In line
with this central role for ILC3 and IL-22 in maintaining intestinal
barrier function and tissue homeostasis, loss of IL-22 production
by ILC3s in mice results in dysbiosis, barrier disruption and an
increased susceptibility to experimental induced colitis (27, 28).
Moreover, depletion of intestinal ILC3 leads to peripheral
dissemination of intestinal bacteria and systemic inflammation
that can be rescued by providing exogenous IL-22 (15). Thus,
a central function, and key output, of ILC3-mediated effector
responses is the orchestration of host-microbiota interactions
(Figure 1: outputs).

Intestinal homeostasis and host-commensal interactions are
also modulated by the type 3 cytokines IL-17A and IL-17F, both
of which are also produced by ILC3 (1, 4, 7, 8). Similar to IL-22,
IL-17A/F promote tissue integrity by enhancing the synthesis of
tight junctions and antimicrobial peptides, including β-defensins,
REG proteins, S100 proteins, lipocalins and lactoferrins (29).
Additionally IL-17A/F act in part to attract myeloid cells to the
tissue site, through the induction of chemokines and growth
factor expression by epithelial cells (30, 31). While ILC3 have
been reported to be a potent source of IL-17A/F in early life,
expression of these cytokines appears to be somewhat limited
at steady state in adult tissues (28, 32). In contrast, during
infection and inflammation ILC3 produce IL-17 in response to
myeloid-derived cues including IL-23 and IL-1β (33, 34), and
ILC3-derived IL-17 has been attributed critical roles in immunity
to fungal and bacterial pathogens (34–37). In particular, IL-
17 production by ILC3s has been implicated in immunity
against fungal pathogens, specifically in response to Candida
albicans (34). Interestingly, HIV patients commonly manifest
oropharyngeal candidiasis, and loss of IL-17 production by ILC3s
was observed in tonsils and buccal mucosa during SIV infection
in macaques (38, 39).

While homeostatic IL-17 production has been attributed
protective functions in intestinal health and host-commensal
microbe interactions, elevated IL-17A/F production has also been
associated with the pathogenesis of inflammatory bowel disease
(IBD). Indeed, ILC3-derived IL-17A and IL-17F are increased
during intestinal inflammation in bothmice and humans (40, 41).
Together, IL-17A/F production by intestinal ILC3—in addition
to Th17 and γδ T cell populations—has highly contextual roles in
intestinal health, immunity and inflammation.

Conversely, the microbiota itself is also increasingly
appreciated to act reciprocally to modulate ILC3 function
(Figure 1: inputs). Indeed, early studies suggested microbial
colonization of the neonatal intestine regulates the
composition and size of the ILC3 pool within the intestinal
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FIGURE 1 | ILC3 engage in complex sensory circuits in order to integrate microbial and dietary cues and enforce mucosal homeostasis. Inputs (orange arrows):

ILC3s act as innate immune sentinels of the gastrointestinal tract, and respond rapidly to changes in the tissue environment. Environmental signals, comprising

microbial and dietary cues, are sensed either via myeloid cell intermediaries [e.g., dendritic cells (DC), macrophages, also known as mononuclear phagocytes (MNP)],

which release cytokine cues (IL-1β, IL-23, TL1A) to modulate ILC3 function, or through direct sensing of metabolites and dietary ligands. Microbial metabolites, such

as short chain fatty acids (SCFA), signal directly to modulate ILC3 function though the receptor GPR43. Additionally, ILC3 integrate dietary cues in the form of the

vitamin A metabolite retinoic acid (RA) and AhR ligands, which together promote ILC3 development and effector cytokine responses. In contrast, vitamin D acts as a

negative regulator of ILC3 activation by suppressing the ability of ILC3 to sense myeloid cues—such as IL-23. Within the complex tissue microenvironment ILC3 are

likely exposed to multiple signals in parallel, which must be appropriately integrated to maintain intestinal homeostasis. Outputs (dark blue arrows): Signals translated

by ILC3 are propagated in the form of ILC3-derived outputs—most notably cytokine signals, which are received by other immune and non-immune cells within the

local environment. In particular, ILC3-derived IL-22 acts on epithelial cells to enforce intestinal barrier integrity and induce the production of antimicrobial peptides

(AMPs) such as RegIIIβ, RegIIIγ, and S100 family proteins, secretion of mucins by goblet cells, modulation of tight junctions and epithelial cell fucosylation.

IL-22-dependent pathways further regulate the growth of specific commensal bacteria species that are intimately associated with the host, such as segmented

filamentous bacteria (SFB). Together, the balance of signals perceived by ILC3 determine the strength of the effector response, regulate the balance of the commensal

microbiota and ensure their spatial segregation from the underlying intestinal tissue. In the context of disease, dysregulation of these signals may dramatically alter

ILC3 responses and result in a loss of barrier function and translocation of the bacteria from the lumen, thus precipating or exacerbating inflammatory disease.

tract. Pups born to germ free mothers were reported to
have reduced frequencies of ILC3s—indicating a role of
microbial signals in promoting tissue seeding by ILC3
subsets (28). However, in contrast to these findings IL-22
producing ILC3 numbers were found to be suppressed in a
microbiota dependent manner through epithelial expression
of IL-25 (32). Despite these discrepancies, the dialogue
between the microbiota and ILC3s within the intestine has
emerged as a critical circuit of intestinal immunity and
tissue homeostasis.

Recent studies have begun to shed light on the microbial-
derived metabolites that mediate this immune regulatory on
ILC3. For example, ILC3s have the capacity to sense and respond
to short chain fatty acids (SCFA)—including butyrate, acetate
and propionate—critical regulators of immune responses which
are metabolized from dietary fiber by commensal microbes
(Figure 1: inputs) (42, 43). Levels of butyrate differ along the
intestinal tract, in line with differing densities of commensal
microbes, and were previously correlated with reduced ILC3 cell
number and cytokine production in distal regions of the small
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intestine (44). SCFA can signal via multiple G-coupled protein
receptors, as well as via histone deacetylase enzymes (HDAC)
(43), and despite these advances the mechanisms through which
SCFA regulate ILC3 are still being delineated. The SCFA receptor
GPR109a was implicated in the microbiota-associated regulation
of ILC3 cytokine production via the modulation of dendritic cell
(DC)-derived IL-23 in the colon, although these studies largely
utilized a GPR109a agonist—leaving the precise contribution
of endogenous SCFA unclear (45). Interestingly, a recent study
highlighted ILC3-intrinsic expression of the SCFA receptor
Gpr43 (Ffar2) in the modulation of intestinal ILC3 responses
(Figure 1: inputs) (46). Triggering of GPR43 with the SCFAs
propionate and acetate (but not butyrate) selectively promoted
colonic ILC3 proliferation and expansion and production of IL-
22, subsequently protecting mice from chemically induced colitis
and from enteric bacterial infection (46).

Dietary Circuits
Cues derived from mutualistic microbiota establish a critical
dialogue between the host and it’s environment and regulate
the intestinal immune system—including ILC3. In addition to
the microbiota, the intestine is also continually exposed to
metabolites and phytochemicals derived from the diet (Figure 1:
inputs). As highlighted above, the availability and liberation
of many dietary metabolites is also determined in part by
mutualistic, commensal microbes within the intestine—while
conversely the diet itself can modulate microbial composition
and thus, determine the nature of host-commensal interactions.
For example, the feeding of high fat diet (HFD) to pregnant
mice was found to modify the expansion of ILC3 in the
intestines of progeny through the modification of the mothers
microbiota (47).

Similarly, Aryl hydrocarbon receptor (AhR) ligands are
normally liberated from cruciferous vegetables in the diet—
such as broccoli and cabbage, but they can also be microbially
derived (48). AhR is a dietary-sensing nuclear receptor that is
expressed by ILC3s and has critical roles in the development,
transcription and function of these cells (Figure 1: inputs).
Indeed, ILC3 are highly AhR dependent, and present severe
functional impairments in the absence of cell-intrinsic AhR
expression (14, 49–51). As a result of ILC3 defects, AhR-deficient
mice fail to form tissue-associated lymphoid structures, such
as cryptopatches (CP) and are unable to control infections
with the extracellular pathogen Citrobacter rodentium (49, 52).
Intriguingly, the development and seeding of intestinal ILC3 in
neonates was demonstrated to be dependent upon the mothers
microbiota and the transfer of antibody-bound AhR ligands
through the mothers milk (48), suggesting maternal transfer
of dietary ligands to neonates may play critical roles in the
development of the immune system, microbial colonization and
protection from infections in early life.

Indeed, maternal transfer of dietary ligands is increasingly
appreciated to be a determinant of neonatal immunity and ILC3
development. In utero exposure to the Vitamin A metabolite
retinoic acid (RA) impacts directly on secondary lymphoid
organ development with long-term immunological consequences

(53). Mice genetically modified to have hematopoietic cell-
intrinsic deficiency in RA lacked PP or exhibited impairment
in LN formation and maturation as a result of defective ILC3
differentiation (Figure 1: inputs). Moreover, it was shown that
RA directly regulates the master transcription factor of ILC3,
RORγt, and in the absence of maternal retinoids ILC3 failed
to develop correctly (53). In addition to maternally derived RA
signals, deprivation of vitamin A in adulthood also results in the
collapse of the intestinal ILC3 populations and, as a consequence,
results in susceptibility to Citrobacter rodentium infection (54,
55). In addition to direct effects of RA on ILC3 development,
RA produced by DCs was also found to regulate the homing
properties of ILC3s by imprinting expression of the intestinal
homing markers CCR9 and α4β7 (56).

The importance of dietary vitamins in ILC3 effector circuits
is further supported by evidence that vitamin D also plays
a role in intestinal ILC3 homeostasis (Figure 1: inputs). ILC3
numbers in the small intestine of mice deficient for the vitamin
D receptor (VDR—KO mice) were shown to be increased,
as was IL-22 expression, resulting in enhanced resistance to
infection with Citrobacter rodentium (57). Consistently, human
ILC3s stimulated with IL-23 and IL-1β upregulate the VDR,
and VDR signaling subsequently acts to downregulate the IL-
23 signaling pathway—suggesting vitamin D acts as a negative
regulator and suppressive feedback loop to control ILC3
activation (Figure 1: inputs) (58). Vitamin D availability has
also been implicated in the pathogenesis of IBD, as patients
are reported to have lower plasma levels of vitamin D than
healthy subjects, and exhibit an upregulation of the IL-23
signaling pathway which could potentially explain exacerbated
ILC3 responses that are associated with intestinal inflammation
in IBD (58). In contrast to these studies, mice lacking
Cyp27B1—an enzyme required for the conversion of vitamin
D to it’s chemically active form—exhibit reduced colonic ILC3
numbers and IL-22 production suggesting a more nuanced
role for vitamin D in the regulation of ILC3 function (59).
Together these findings highlight the importance of dietary
cues in regulating ILC3 function and intestinal homeostasis.
An increased understanding of the complex dialogue between
diet, microbiota and host is likely to reveal novel immune
regulatory circuits and clarify how environmental cues act as
risk factors, and contribute to the onset of metabolic and
inflammatory disorders.

ILC3 IMMUNE CROSSTALK IN THE
ORCHESTRATION OF INTESTINAL
HEALTH

Translating Microbial Cues: Myeloid—ILC3
Circuits
While ILC3 are potently regulated by the microbiota and
diet within the intestinal environment, it remains unclear the
extent to which they are able to directly sense these cues,
beyond the pathways detailed above. Indeed, the majority of
evidence suggests third party sensory cells of the myeloid
lineage are required to directly sense, translate and communicate
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environmental information to ILC3. Classically, tissue-resident
mononuclear phagocytes (MNPs) act as key intermediaries and
signal to ILC3 via the release of cytokine mediators during both
homeostatic and protective immune responses (60, 61). Indeed,
intestinal myeloid populations are well-equipped to directly sense
microbial metabolites, pathogen associated molecular patterns
(PAMPs) and danger signals and to transfer this information to
ILC3 (Figure 1: inputs). In particular, CX3CR1+ intestinal MNPs
cluster with ILC3 in distinct, organized lymphoid structures,
such as CPs (62, 63). Microbiota sensing by CX3CR1+ MNPs
was shown to result in local production of IL-1β and IL-23,
which are key activating cytokines of ILC3 and which potently
induce IL-22 secretion (Figure 1: inputs) (63). Depletion of
CX3CR1+ MNPs resulted in impaired IL-22 production by ILC3
and failure to controlCitrobacter rodentium infection (62, 64, 65).
In addition to the provision of the activating signals IL-23 and IL-
1β, CX3CR1+ MNP-derived TL1A further acts to augment IL-22
production from ILC3 (Figure 1: inputs) (62).

NEUROIMMUNE CIRCUITS

While microbial sensing by intestinal MNP and conserved
crosstalk with ILC3 appear to be a major sensory circuit
of intestinal immunity, emerging evidence suggests diverse
sensory mechanisms across multiple biological systems provide
additional inputs to regulate ILC3 function. In particular, the
central and enteric nervous systems are rapidly being appreciated
as critical sensory and immunoregulatory systems.

It has been suggested that the immune and nervous systems
are evolutionary linked, since they share functional similarities
(66, 67). Both nervous and immune systems rely on similar
processes to for cellular communication; such as cell-cell contact
and synapse formation, release of soluble mediators and sensing
of circulating metabolites. Recent evidence suggests immune
and neuronal cells are positioned in close proximity, and form
conserved interactions that have been termed “neuro-immune
cell units” (NICUs) (67). NICUS can form through interactions
with both the central and peripheral nervous system and are
increasingly being described in peripheral tissues such as the
gastrointestinal tract and lung.

Neuroimmune interactions are evident very early in life—
and during the embryonic period the development of the
enteric nervous system (ENS) and SLO organogenesis share
many parallels. Notably, the neurotrophic factor receptor RET is
essential for the development of Peyer’s patches (PP) and also the
ENS (68, 69). Moreover, RET expression by CD11c+ cells present
in the anlagen initiates a cascade of immune cell recruitment, in
particular of fetal ILC3s, through sensing of neurotrophic factors
that drive the formation of primordial lymphoid clusters (68,
69). Moreover, increasing evidence suggests ILC3 can directly
sense these neuronal derived inputs and respond during both
development as well as in the adult intestine (Figure 2: inputs).
As mentioned previously, fetal and adult ILC3 development
and function relies on RA signaling (53). Intriguingly, neurons
have been suggested to be a physiological source of RA (70),

surprisingly suggesting RAmay be derived not only from the diet
but also from the host nervous system.

The ENS is increasingly appreciated to regulate tissue-
resident immune functions (71), include those of ILC3. One
pioneer study demonstrated that a glial-ILC3-epithelial axis is
required to regulate enteric defense against bacterial infection
(72). Like myeloid cells, intestinal glial cells also have the
capacity to sense microbial cues and alarmins in a Myd88-
dependent manner; thus, implicating the enteric nervous system
as a key player in environmental sensing circuits. In response
to these cues glial cells secrete neurotrophic factors, which
directly act on adult ILC3 cytokine production via cell-intrinsic
RET expression (Figure 2: inputs). Ablation of Ret in ILC3s
led to a reduction in IL-22, consequently impairing epithelial
function and host defense to enteric bacterial infection (72).
In addition to ENS cues, CNS–derived signals propagated by
the vagus nerve—via release of acetylcholine—have also been
implicated in the regulation of ILC3 responses to bacterial
infections in the peritoneal cavity (73). Vagal disruption was
shown to lead to dysregulated ILC3 cell numbers in the peritoneal
lavage (73). Mechanistically, acetylcholine acted to promote
the release of pro-resolving lipid mediators—generated via
ILC3-intrinsic expression of the PCTR biosynthetic pathway—
which subsequently promoted protective immunity during E.
coli-driven sepsis (73). Together, these studies illustrate the
importance of neuronal inputs in regulating ILC3 outputs during
infection (Figure 2).

Recent studies suggest that the number of neuropeptides
with immunoregulatory activity may be broader than previously
appreciated. Vasoactive intestinal peptide (VIP) release by
enteric neurons was also shown to regulate ILC3-derived IL-22
production through signaling via VIPR2, triggered in part by
feeding and dietary cues (Figure 2: inputs) (74, 75) (discussed
in detail below). However, despite the strategic location of
ILC3s within the CPs, which are enveloped by glial cell nervous
fiber bundles and neuronal projections, the full extent of
neuroimmune interactions that regulate ILC3 function are still
to be determined. Indeed, recent years have seen an explosion in
our understanding of neuroimmune signals that regulate other
immune cells, including other members of the ILC family—
most notably ILC2s (76–82). These studies have opened up new
avenues of research and expanded our understanding of crosstalk
between diverse biological systems, thus provoking the need for
further studies to fully elucidate neuroimmune sensory circuits
in the regulation of ILC3 responses, intestinal immunity and
host-microbiota interactions.

ANTICIPATORY ILC3 RESPONSES AND
CIRCADIAN CIRCUITS

In addition to local environmental cues, mammals are also
constantly exposed to a range of external stimuli and pressures
such as fluctuations in temperature, oxygen levels and the daily
light cycle. As a result many organisms have evolved circadian
rhythms to align core biological processes with time of day,
which are imprinted by an internal biological clock. Specifically,
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FIGURE 2 | ILC3 neuroimmune and circadian circuits. Emerging findings implicate inputs from the nervous system in the regulation of ILC3 circuits within the

gastrointestinal tract. Both the central (CNS) and enteric (ENS) nervous systems have the capacity to sense perturbations within the intestinal environment and relay

this information via the release of neuropeptides to influence the ILC3 response. Strikingly, enteric glial cells are able to directly sense microbial patterns and alarmins

released within the tissue, and respond by producing glial-derived neurotrophic factors (GDNF family of ligands; GFL) that directly activate the production of IL-22 by

ILC3 through the tyrosine kinase RET. Indeed, recent evidence suggests a broader spectrum of neuropeptides may act to regulate ILC3 function including

vasointestinal peptide (VIP) produced by enteric neurons in response to feeding cues. Signals transmitted by the nervous system also play critical roles in aligning ILC3

effector function with periods of activity and high risks of environmental exposure and pathogen encounter over the course of a 24 h day. In this regard, circadian

rhythms entrained by light—and sensed via the suprachiasmatic nucleus (SCN) of the brain—trigger a cascade of molecular transcriptional-translational feedback

loops of clock genes, which orchestrate rhythms in the ILC3 response. While the “central clock” within the CNS appears to be a central entrainer of ILC3 oscillatory

function in the gut, the mechanisms through which the CNS transmits this information to regulate ILC3 function peripherally remain unknown. Nonetheless, inputs

from the CNS have previously been shown to be relayed to ILC3 via the vagus nerve. Together cues from both the CNS and ENS have the potential to entrain

intestinal ILC3 function, while circadian rhythms in ILC3 may be imprinted through a combination of central clock-mediated light entrainment, feeding-associated

neuronal feedback and environmental cues from the microbiota.

circadian rhythms are driven by cell-autonomous transcriptional
feedback loops (“clocks”), which enable organisms to anticipate
and adapt to temporal changes in their environment (e.g.,
changing seasons, jet lag, shift work) and regulate metabolically
demanding biological processes including body temperature,
locomotor activity, endocrine responses, and feeding behavior—
while on the cellular level circadian clocks regulate cellular
metabolism and cell cycle (83, 84). In line with this, it is
increasingly appreciated that circadian rhythms also regulate
immune cell responses (85), and immune cells exhibit circadian
oscillations in leukocyte trafficking, priming, effector function
and host-pathogen interactions (85).

In mammals, circadian rhythms are controlled by the
central circadian pacemaker or master clock—located in the
suprachiasmatic nucleus (SCN) of the brain (86). The SCN acts
to interpret and propagate light cues received via the optical
nerve and subsequently, cell autonomous circadian rhythms
are imprinted by systemic signals that act to align oscillations
in a tripartite system of transcriptional-translational feedback-
loops (85, 87, 88). The induction of the loop starts with the
transcriptional activators CLOCK and BMAL1 promoting the
expression of the repressors Period (Per) and Cryptochrome
(Cry), which in time translocate back into the nucleus and
inhibit their own expression (85, 87, 88). The second loop is
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composed by nuclear receptors RAR-related orphan receptors
(RORs) (α, β , γ ) and REV-ERBs (α, β), which exert opposing
effects on the clock through transcription factor binding to
the promoter of Arntl (encoding BMAL1) (85, 87, 88). Finally,
the third loop consists of transcriptional activator albumin D-
box binding protein (DBP) and the repressor nuclear factor
for interleukin 3 (NFIL3), which act synergistically to regulate
the expression of D-box genes including that of Per (85,
87, 88). Upon establishment of the transcriptional loops,
the SCN keeps peripheral clocks in synchrony via neuronal
sympathetic/parasympathetic transmission and through the
hypothalamus pituitary adrenal (HPA) axis, including the
release of catecholamines (epinephrine and norepinephrine) and
glucocorticoids (84). Remarkably, similar circadian molecular
mechanisms are found in the periphery. However, while the
SCN network allows for the generation of sustained oscillations
and time-of-day alignments, perturbations from environmental
inputs such as temperature changes, the microbiota and
feeding cues can also impact on peripheral, cell-intrinsic
clocks (84).

Many constitutive innate immune processes, including the
maintenance of intestinal barrier function via steady state IL-
22 release from ILC3, come with significant metabolic costs
for the host. Thus, circadian rhythms are thought to have
evolved to align these processes with anticipated challenges
and times of highest risk—most notably during waking activity
and feeding where exposure to microbes, dietary antigens and
potential pathogens is highest. Intriguingly, several components
of the transcriptional circadian clock machinery including NFIL3
and RORγ/α are also key transcriptional regulators of ILC3
development and function, suggesting the possibility that these
cells may also be regulated in a circadian manner (89–92).
Moreover, ILC3 and IL-22 are critical regulators of the intestinal
microbiota, with oscillations also reported amongst levels of
commensal microbes in the intestinal tract (93, 94).

In line with this, several recent studies have demonstrated
circadian control and oscillatory ILC3 responses, which are
regulated by the master clock gene Arntl (Bmal1) in a cell-
autonomous fashion (95, 96). Deletion of Arntl in ILC3s resulted
in an altered epigenetic landscape, dysregulated cell numbers
and IL-22 expression, and subsequently contributed to alterations
in steady-state oscillations in the microbiome itself (95–97).
Moreover, disrupted ILC3 responses resulted in altered epithelial
responses and disrupted lipid uptake within the intestine (74, 95,
96). Of note, while deletion of Arntl led to a broad impairment
of total ILC3 numbers (95), deletion of the related clock gene
Nr1d1 (also known as Rev-erbα) resulted in altered ILC3 subset
development—with mice exhibiting a marked reduction NCR+

ILC3s, while LTi-like ILC3were unperturbed (97).Moreover, lack
of Nr1d1 increased expression of Il17 in ILC3s, a mechanism
previously reported in in Th17 cells (97, 98). Interestingly,
ILC3s isolated from the inflamed intestine of patients with IBD
presented with alterations in expression of several circadian-
related genes, including Nr1d1, suggesting circadian clock
disruptions—such as those seen in shift workers—may act to
disrupt normal immune function and have relevance in the
onset and/or pathogenesis of chronic inflammatory diseases

(96). Of note however, the role of Nr1d1 as a transcriptional
regulator of both Nfil3 and Rorc suggests clock-associated genes
may have additional roles that are independent of circadian
regulation (97).

Circadian rhythms may be imprinted by a range of systemic
and environmental cues. Within the intestinal tract feeding cues
were shown to contribute to the entrainment of oscillatory
function in ILC3 (Figure 2: inputs). Time-specific feeding altered
daily circadian rhythms in clock related genes (95) and IL-22
expression oscillated across the day between active and resting
phases (74, 75). Interestingly, signals from the ENS appear to be
critical in sensing feeding cues to entrain circadian rhythms in
ILC3 (Figure 2) (74, 75). Feeding was found to induce VIP release
from enteric neurons, consequently triggering VIPR2 signaling in
ILC3s and enhancing IL-22 production and the barrier function
of the epithelium. In contrast during fasting this neuropeptide
cue waned, resulting in decreased IL-22 production by ILC3s
and thus, imprinting diurnal rhythms onto intestinal ILC3s (74).
In contrast, another study (pre-print currently under review)
reported that VIP release from enteric neurons upon feeding
rather decreases production of IL-22 by ILC3s, allowing for the
outgrowth of the epithelial-associated commensal microbe SFB
(75). Despite these discrepancies, both studies clearly implicate
the sensing of feeding cues by the enteric nervous system as
a key entrainer of circadian rhythmicity in ILC3. One possible
explanation for the apparent differences in these findings is that
complex interplay with the host microbiota may further augment
ENS cues or act directly on ILC3 to provide complimentary
or competing inputs, which then combine with cues from the
central clock to tune anticipatory rhythms. In line with this,
the microbiota was also shown to have an impact on circadian
gene expression in ILC3s—adding another layer of complexity
in the crosstalk between ILC3s and the commensal microbiota
(95, 96).

While these studies all implicate peripheral cues in the
entrainment of anticipatory ILC3 responses, light signals derived
from the central clock (in the brain) are also known to be
central in aligning many biological processes and in imprinting
circadian rhythms. Indeed, signals from the central clock were
shown to be a key regulator of ILC3 rhythmicity (Figure 2:
inputs) (95). Utilizing mice in which the central clock was
surgically ablated, or mice genetically deficient for Arntl only
in the SCN, ILC3s developed disrupted cytokine oscillations
and an altered phenotype—including the downregulation of
intestinal homing markers which could partially explain time
of day differences in ILC3 numbers within the gastrointestinal
tract (95). The mechanisms through which the central clock in
the SCN mechanistically aligns biological processes with light
cues vary, but can include the release of hormonal cues—most
notably glucocorticoids (84). While it remains to be determined
whether this mechanism acts on ILC3 in the context of the
central circadian clock, glucocorticoids have been shown to
suppress ILC3s IL-22 production in vitro (99). Together these
findings suggest that long-range and local circadian cues may
directly regulate ILC3 numbers and function during homeostasis
or following infection, mediating ILC3 interactions with the
microbiota and regulation of intestinal barrier function.
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LYMPHOID ORGANOGENESIS:
ILC3-STROMAL CIRCUITS

Unlike cells of the adaptive immune system, ILC3 are one of the
first immune cells to colonize the intestine during the embryonic
period and are critical for the formation of SLOs (100). In this
regard one of the most fundamental circuits through which ILC3
contribute to barrier immunity is through the orchestration of
organized interactions between the innate and adaptive immune
system. In contrast to the sensory circuits described above, where
inputs derived from third party cells stimulate outputs in ILC3,
during both embryogenesis and adult life ILC3 provide the
input and stimulatory cues to stromal cells to initiate a cascade
of events that lead to the formation of secondary and tertiary
lymphoid tissues.

The formation of LN and PP is initiated via specialized
stromal cells, known as lymphoid tissue organizer cells (LTo)
that start to express chemokines such as CXCL13, CCL19,
CCL21, as well as the adhesion molecules VCAM-1, ICAM-1,
and MadCAM-1 (101, 102). The expression of these factors
creates a gradient to recruit bona fide fetal lymphoid tissue
inducer cells (LTis; fetal members of the ILC family, referred
to here as fetal ILC3), which cluster with the LTo forming
the primitive anlagen of the SLO (103). Fetal ILC3s at this
stage express CXCR5, CCR7, and α4β7; homing markers that
are important for fetal ILC3 recruitment and which were
shown to mediate migration toward LTo-derived chemokines
and adhesion molecules, respectively. In fact, full maturation
of LTo and development of lymphoid tissue is dependent on
recruitment of fetal ILC3s and provision of lymphotoxin (LT)
(103, 104). Conversely, LTo also provide critical survival signals
for fetal LTi/ILC3 with IL-7 expression shown to be necessary
for ILC3 maintenance, while IL-7R blockade in adults also
resulted in a rapid loss of normal migration of B and T cells
to the LN (105). This stromal IL-7 circuit is likely also active
at other sites such as in the fetal liver and bone marrow, where
stroma derived IL-7 signaling could trigger the expression of
NFIL3 (91). In addition, the same stromal-ILC3 circuit acts
to restore normal lymph node architecture following infection-
induced disruption of lymphoid microanatomy (106). Therefore,
the crosstalk between ILC3s and lymph node-associated stroma
is reactivated in in adulthood and crucial to enable adaptive
immune responses during secondary infections (106). Thus, a
key sensory circuit and stimulatory loop formed between ILC3
and stromal cells is critical for the formation of lymphoid tissues,
and to facilitate the action of the broader innate and adaptive
immune system.

Postnatally, a large number of organized lymphoid structures
designated as tertiary lymphoid structures start to form under the
influence of environmental stimuli. These immune cell clusters
include cryptopatches (CP), which are confined to bottom of
the crypts within the intestinal lamina propria. CP formation is
driven through similar molecular mechanisms to SLO, including
via interactions between ILC3-associated LTα1β2 with the LTβR
expressed by stromal cells and IL-7 signaling (107, 108). CPs
can further give rise to isolated lymphoid follicles (ILFs) in a
CCR6 and LTα1β2-dependent manner (109, 110), resulting in

up-regulation of secretory antibody (Immunoglobulin A; IgA)
synthesis in response to changes in the composition ofmicrobiota
(111, 112).

A unique feature of ILF development in comparison to
LN, PP, and CPs is the requirement for microbial exposure.
Intestinal bacteria are sensed by myeloid cells which increase
the interactions between ILC3s and LTos, also via a LTα1β2
dependent axis, leading to increased expression of adhesion
molecules by the stroma and recruitment of B cells to these
structures (113, 114). ILFs are largely absent in a microbiota
free environment, and are restored upon recolonization
with commensal microbes (115). Similarly inflammation and
intestinal barrier disruption results in increased numbers
of ILFs in the colon, and intriguingly mice deficient in the
transcription factor RORγt develop more ILFs than their wild
type counterparts in the context of intestinal inflammation,
suggesting a potential regulatory role for type 3 immune
responses, such as ILC3, in this setting (116).

Interactions between ILC3 and stroma also provide important
cues to localize ILC3 to defined tissue microenvironments, and
to facilitate interactions with adaptive immunity (discussed in
detail below). Within the intestine-draining mesenteric lymph
node multiple distinct stromal populations have been identified
with differential capacities to attract immune populations and
orchestrate immune cell crosstalk (117). One such population
expresses the enzyme Ch25h, which acts to generate the
cholesterol metabolite 7,α25-OH—a key migratory ligand for
multiple immune cells including ILC3 (117–120). This stromal
cue is sensed by ILC3 via the receptor EBI2 (Gpr183),
and facilitates localization of not only ILC3 but also T
follicular helper cells, DCs and B cells to the follicular
border of lymph nodes (118, 120–125). Similarly, within the
intestinal tissue stromal generation and breakdown of cholesterol
ligand cues create a migratory gradient required to recruit
ILC3 to CP in a Gpr183-dependent manner (119). Together
these studies indicate that a stromal ILC3 circuit is a key
regulator not only of lymphoid organogenesis but also of
ILC3 localization and function, which together facilitate the
interactions between ILC3 and adaptive immune cells and foster
modulatory crosstalk.

CIRCUITS OF IMMUNE ORCHESTRATION:
CROSSTALK BETWEEN ILC3 AND
ADAPTIVE IMMUNITY

ILC3s are also emerging as key orchestrators and regulators
of adaptive immune responses [Reviewed in detail in (126)].
This regulation is mediated by ILC3 either through indirect
modulation of bystander cells that subsequently modulate
the adaptive immune response or directly via both soluble
mediators and cell contact-dependent interactions with
adaptive lymphocytes.

As discussed above, ILC3s contribute to the formation of
lymphoid structures andwere found to be strategically positioned
in clusters within lymph nodes where they have potential to
interact with both T and B cells both directly and indirectly

Frontiers in Immunology | www.frontiersin.org 8 February 2020 | Volume 11 | Article 116

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Domingues and Hepworth Intestinal ILC3 Circuits in Health and Disease

(127). Many of the same mechanisms employed by ILC3 to
induce lymphoid organogenesis during early life are similarly
employed in adult tissues to regulate the adaptive immune
system. For example, ILC3s can support the production of
IgA by B cells in the PP, in part through both soluble LTα3
and surface bound LTα1β2 interactions with DCs (128, 129).
Similarly, in the spleen, production of LTα1β2, GM-CSF, and
BAFF/APRIL production by ILC3s also acts to support B cell
responses (Figure 3: outputs) (130).

In line with these findings, ILC3s have the capacity to crosstalk
both directly and indirectly with the adaptive immune system
through the production of multiple soluble factors. Following
exposure to the commensal microbiota IL-22 produced by ILC3s
acts to support homeostatic tissue Th17 responses through the
induction of serum amyloid protein A (SAA) from epithelial
cells (Figure 3: outputs) (131). Interestingly, ILC3 derived IL-22
can also prevent the activation of T cells in an AhR-dependent
manner to limit immune activation or tissue damage (132).
Conversely, T cells may also regulate the magnitude of ILC3-
derived IL-22 production (26, 133), suggesting complex crosstalk
between T cells and ILC3 in determining the level of IL-22
produced in the tissue.

As highlighted previously, sensing of the microbiota by
myeloid cells is a critical regulator of ILC3 responses, and has
consequences for adaptive immunity. IL-1β induction of GM-
CSF production by ILC3s feeds back on tissue-resident MNP
to trigger IL-10 and RA production by intestinal macrophages
and DCs—resulting in the induction and maintenance of tissue
regulatory T cells (Treg) and reinforcing immune tolerance
(Figure 3: inputs/outputs) (134). Similarly, IL-1β produced by
intestinal MNP further induces ILC3 to produce IL-2, a critical
growth signal that helps to support peripherally induced Tregs
in the small intestine and to maintain intestinal tolerance
(Figure 3: inputs/outputs) (135). Conversely Treg interactions
with MNP may limit IL-23 production to prevent ILC3-driven
inflammation via a LAG3-dependent mechanism (Figure 3:
outputs) (136), implicating a bidirectional axis involving ILC3,
MNP, and Treg in determining the immune tone of the
intestinal tract.

ILC3s are increasingly appreciated to also act as a direct
orchestrator of tissue immune responses through their ability
to act as antigen-presenting cells. ILC3 are also endowed with
a broad array of accessory co-activating and co–inhibitory
molecules that enable further modulation and tuning of adaptive
immune cell function. Thus, when coupled with their strategic
localization within lymphoid structures, ILC3 have the potential
to potently regulate adaptive immune responses. At steady state,
ILC3s in the mLNs and large intestine constitutively express
MHC class II (MHCII) molecules at levels comparable with
other professional antigen-presenting cells and can acquire,
process and present antigens (Figure 3: inputs/outputs) (137).
However, under homeostatic circumstances these interactions
do not induce T cell proliferation, due in part to the absence
of classical co-stimulatory molecules such as CD40, CD80, and
CD86 on the cell surface (137). In contrast MHCII+ ILC3s were
found to suppress effector CD4+ T cell responses toward the
microbiota in the intestine (137–139). In line with a suppressive

function for ILC3-associated antigen presentation, deletion of
ILC3-intrinsic MHCII also disrupts crosstalk between ILC3 and
adaptive immune cells at the interfollicular border of the mLN
resulting in a spontaneous T follicular helper response that
subsequently drives increased IgA responses against mucosal-
dwelling commensals, and results in an altered intestinal
metabolome (Figure 3: outputs) (120). While these findings
suggest a suppressive and regulatory role for antigen-presenting
ILC3 in the context of health, additional reports suggest that
in contrast during immunization or infection tissue-specific
inflammatory cues act to alter the nature—and consequences—
of ILC3 antigen presentation. Indeed, activation of ILC3 by
IL-1β resulted in antigen-presentation dependent promotion
of T cell responses as a result of upregulated expression of
classical co-stimulatory molecules (CD80/CD86) on ILC3 (140).
In addition to antigen-presentation to CD4+ T cell subsets,
ILC3 also express CD1d—conferring the ability to present lipid
antigens to invariant (i) NKT cell populations, and promote their
functionality (141).

Indeed, ILC3 have the capacity to modulate a broad
variety of specialized adaptive immune responses through
cell-cell interactions via additional non-classical co-stimulatory
and co-inhibitory molecules. Seminal early studies in the
field demonstrated a critical role for ILC3-associated CD30L
and OX40L in the modulation of T cell memory through
cognate interactions with CD30/OX40 (Figure 3: inputs/outputs)
(126, 142, 143). Recent studies have expanded upon these
observations to demonstrate a role for tissue-resident MNP-
derived TL1A in regulating the expression of OX40L on
ILC3, which was subsequently demonstrated to enable ILC3
to promote inflammatory effector T cell responses in the
context of colitis (144). In addition ILC3 have been reported to
express co-inhibitory and immune checkpoint molecules (e.g.,
PD1, PDL1) suggesting further immunoregulatory functions
for these cells—although further investigation is required to
determine the functional relevance of this receptor repertoire
(145, 146). As investigation into this aspect of ILC3 function
increases, the nature and breadth of interactions with both
innate and adaptive immunity are likely to expand and present
new intervention possibilities for the modulation of tissue
immune responses.

CONCLUSIONS AND FUTURE
PERSPECTIVES

The maintenance of mucosal homeostasis is mediated through
a complex interplay between the host and its environment,
between immune and non-immune cells and by the balance of
pathogenic and commensal microbes. Here we have highlighted
the contributions of sensory circuits within the intestinal tract,
which culminate in the activation and regulation of ILC3s. ILC3
display connectivity with an increasing number of physiological
systems, many of which are likely to act simultaneously
within the tissue in the context of health and disease—and
ultimately to regulate the same range of ILC3-derived outputs.
Thus, despite recent advances, one future challenge will be to
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FIGURE 3 | ILC3 circuits orchestrate adaptive immune responses. In addition to their function as tissue-resident cytokine producing cells, ILC3s have the capacity to

participate in multiple cellular circuits through direct cell–cell modulation of T cell responses, as well as the release of soluble mediators that augment adaptive immune

function and development. ILC3s can control the magnitude and quality of the CD4+ T cell response via antigen presentation in the context of MHC class II (MHCII). At

steady state ILC3s lack co-stimulatory molecule expression and appear to limit CD4+ T cell responses, however this interaction may be altered in inflammatory

scenarios via upregulation of co-stimulatory molecules such as CD40, CD80, and CD86, which favor the promotion of T cell response. Furthermore, ILC3s act to

modulate the survival of recirculating memory CD4+ T cells via interactions via OX40L and CD30L, although it is unknown whether this process also requires

MHCII-dependent antigen presentation. In addition, ILC3 regulation of T follicular helper (TFH) cell responses has consequences for the priming of germinal center B

cells and the induction of T-dependent IgA responses toward colon-dwelling commensal microbes. ILC3s can also modulate adaptive immune cells through the

production of regulatory cytokines and growth factors. In line with this, ILC3 directly support B cell responses in the spleen through provision of critical growth factors

such as BAFF/APRIL. Similarly, ILC3 also modulate the magnitude of the T cell response within the intestinal tract through the production of soluble mediators. For

example, ILC3-derived IL-22 induces epithelial serum amyloid A (SAA) protein, which subsequently promotes local Th17 responses and acts to limit colonization with

segmented filamentous bacteria (SFB) via the induction of antimicrobial peptides. In addition, ILC3 facilitate the establishment of a regulatory and tolerogenic

environment in the gut by promoting regulatory T cell (Treg) responses. ILC3 crosstalk with tissue-resident myeloid cell populations establishes a feedback circuit

whereby ILC3-derived GM-CSF promotes IL-10 and RA production by myeloid cells to promote Treg conversion. Conversely, Treg, myeloid cells and ILC3 may

feedback on each other through a variety of soluble and cell-cell interactions suggesting a dynamic and malleable communication loop to ensure tolerance and tissue

homeostasis. Finally, ILC3 subsets are a potent source of IL-2 in the small intestine that provides survival signals for Treg. Together these tissue-resident immune

circuits place ILC3 at the center of a number of pathways through which they regulate adaptive immune responses to promote tissue health and homeostatic

interactions with the microbiota.

understand how ILC3 integrate multiple concurrent signals from
varying biological systems within a given tissue niche, and to
determine how these cues are translated into cell fate decisions
to determine the magnitude or quality of an ILC3 response.
Many signaling pathways downstream of both cytokine and
neuropeptide receptors converge upon core regulators of cell
function—such as the mammalian target of rapamycin (mTOR)

(147). Moreover, the appropriate licensing and modulation of
anabolic cell metabolism pathways in order to generate new
cellular biomass, effector proteins and facilitate proliferation is
a central checkpoint of cellular function, critical to regulate
immune cell function and controlled in part through mTOR
activation (148). In line with this, a recent report demonstrated
the induction of an mTOR complex 1-dependent programme

Frontiers in Immunology | www.frontiersin.org 10 February 2020 | Volume 11 | Article 116

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Domingues and Hepworth Intestinal ILC3 Circuits in Health and Disease

of glycolytic metabolism as a central rate-limiting step in the
production of ILC3-derived cytokines and proliferation (149).
Engagement of glycolysis was also associated with the expression
of the oxygen-sensing transcription factor HIF1α, suggesting
other tissue-specific environmental factors may augment ILC3
responses via licensing of glycolysis and anabolic metabolism.

Ultimately, an increased knowledge of the network of inputs
and outputs—and importantly the mechanisms through which
these multiple sensory circuits are integrated and interpreted—
will allow for new approaches to target this mucosal immune
sentinel in the context of health and disease. Indeed, while ILC3
mediate many protective processes at homeostasis, dysregulated
ILC3 responses have been implicated in a wide range of chronic
inflammatory and metabolic diseases and have increasingly been
suggested to play roles in cancer development and progression.
Most notably, disruption of ILC3 responses is associated with the
pathogenesis of inflammatory bowel disease (IBD) (1, 27, 40, 41,
62, 138, 150). Interestingly, lifestyles associated with disruption
of sleep cycles and circadian rhythms (e.g., shift work, jet lag)
have been suggested as potential triggers for IBD flares (151).
Thus, while there have been recent major achievements in the
understanding of how ILC3 sense signals from the CNS and ENS
and perceive circadian cues (72, 74, 75, 95–97), the physiological
impact of these systems on ILC3 function in the context of IBD
could prove important in beginning to decode the multitude of
factors that lead to disease onset and progression.

In conclusion, ILC3 are strategically positioned within
mucosal sites where they act as a hub of multiple distinct, yet

complementary, sensory circuits. Together, these circuits act
to continually survey the intestinal tract for perturbations in
microbial, dietary and external environmental cues and enable
the rapid communication and translation of this information,
resulting in protective effector responses that continually
reinforce normal tissue function and health. Strategies aimed at
exploiting these cues and sensory circuits to promote or restore
homeostatic ILC3 function, while simultaneously suppressing
the dysregulated signaling associated with maladapted immune

function, may lead to novel therapeutic intervention strategies in
a number of human diseases.
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