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Although vaccination has been remarkably effective against some pathogens, for others, rapid antigenic evolution results in vac-

cination conferring only weak and/or short-lived protection. Consequently, considerable effort has been invested in developing

more evolutionarily robust vaccines, either by targeting highly conserved components of the pathogen (universal vaccines) or by

including multiple immunological targets within a single vaccine (multi-epitope vaccines). An unexplored third possibility is to

vaccinate individuals with one of a number of qualitatively different vaccines, creating a “mosaic” of individual immunity in the

population. Here we explore whether a mosaic vaccination strategy can deliver superior epidemiological outcomes to “conven-

tional” vaccination, in which all individuals receive the same vaccine. We suppose vaccine doses can be distributed between distinct

vaccine “targets” (e.g., different surface proteins against which an immune response can be generated) and/or immunologically

distinct variants at these targets (e.g., strains); the pathogen can undergo antigenic evolution at both targets. Using simple math-

ematical models, here we provide a proof-of-concept that mosaic vaccination often outperforms conventional vaccination, leading

to fewer infected individuals, improved vaccine efficacy, and lower individual risks over the course of the epidemic.
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Impact Summary
Evolutionary biologists and ecologists have long noted that vari-

ation in a host population can be protective against disease. Con-

fronted with a specific pathogen threat, homogeneous popula-

tions may face one of two extreme scenarios. In the best case,

all individuals are resistant to the pathogen, whereas in the worst

case, all individuals are highly susceptible. The role of hetero-

geneity, therefore, is to hedge against the worst case at the cost of

potentially failing to achieve the best case. Although this protec-

tive effect of host heterogeneity has received empirical support in

some systems, human disease control measures often attempt to

constrain variation. Indeed, vaccination aims to replicate the best-

case scenario above: all individuals fully resistant to a particular

pathogen threat should provide the best population-level protec-

tion. Yet, vaccination against some diseases (e.g., influenza) fails

to achieve this ideal and would still fail even if 100% of indi-

viduals were vaccinated. This is because the targeted pathogens

are themselves variable and rapidly evolving, and the immune re-

sponses elicited by vaccination against a particular strain are not

fully protective against other circulating strains. Given that vac-

cination often fails to replicate the best-case scenario for a ho-

mogeneous population, we used mathematical models to answer

the question, should vaccination instead seek to exploit the ben-

efits of a heterogeneous population? Our analysis demonstrates

that creating a “mosaic” of immunity at the population level by

distributing a set of qualitatively different vaccines (focused ei-

ther on different strains or different antigens) often outperforms

conventional vaccination, reducing the total number of infections

and increasing estimates of vaccine efficacy.
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MOSAIC VACCINATION

After hygiene, vaccines are arguably the greatest success

story in public health to date. Vaccines are responsible for the

eradication of smallpox in humans and rinderpest in livestock,

and have driven substantial declines in the incidence of numer-

ous childhood illnesses. Between 2010 and 2015, an estimated 10

million lives were saved by vaccines (World Health Organization

2017). Although other control measures, like drugs, are failing

in the face of pathogen evolution, vaccines seem comparatively

robust (Kennedy and Read 2017, 2018).

Yet vaccines are not immune to the challenges posed by

pathogen evolution. As a result of either high mutation rates

or existing standing variation, many pathogen populations har-

bor diversity in relevant immune-signaling sites. If that diversity

translates to relatively weak immune responses against strains

other than the one to which a host was previously exposed, then

vaccines—often produced from one or a few target strains—will

fail to offer broad protection. It is precisely this combination of

limited cross-immunity (i.e, protection against different strains),

resultant strong selection (Smith et al. 2004; Xue and Bloom

2020), and rapid evolution that necessitates yearly updating of

the composition of, for example, seasonal influenza vaccines.

Efforts are ongoing to improve vaccination strategies against

evolving threats like influenza (Petrova and Russell 2018). In

particular, the search for more highly conserved targets of im-

mune responses may yet produce a universal vaccine that need

not be updated in the face of antigenic evolution (Okuno et al.

1993; Fiers et al. 2009; Mallajosyula et al. 2014; Nachbagauer

and Krammer 2017). Yet the consequences of such vaccines, in-

cluding for pathogen evolution, have not been fully elucidated

(Viboud et al. 2020). An alternative strategy is a vaccine cocktail,

designed to elicit immune responses against multiple targets (i.e.,

epitopes) with a single vaccine (Viboud et al. 2020); much like

drug cocktails, these are expected to be more robust in the face

of evolution (REX Consortium 2013). Multi-strain vaccines offer

another kind of cocktail (e.g., eliciting immune responses against

different variants of the same target), which has been broadly use-

ful for limiting disease caused by some pathogens (e.g., pneumo-

coccal vaccines; Hausdorff and Hanage 2016).

Here we investigate a different vaccination strategy by ask-

ing if and when vaccinating individuals with one of a number

of qualitatively different vaccines—essentially a “cocktail” at

the population level— produces better epidemiological outcomes

than a strategy that gives every individual the same vaccine. More

accurately, in the vernacular of resistance evolution, this would be

a “mosaic” strategy (REX Consortium 2013). The epidemiolog-

ical consequences of using a mosaic vaccination strategy, to our

knowledge, have not been explored. We analyze a mathematical

model to specifically ask, first, if vaccines with different targets

existed, what would be the optimal way to use them? Second,

we consider the scenario of having a set of vaccines that target

the same immunologic site, but different genetic (and antigenic)

variants, for which limited cross-immunity may exist. Finally, we

ask which source of variation across vaccine doses—targets or

variants—can produce the best outcomes when vaccine escape is

either likely or rare. Overall, using a simple model we demon-

strate that conventional vaccination programs, in which all in-

dividuals receive identical vaccines, are often outperformed by

mosaic strategies that deliberately seed variation in the host pop-

ulation.

The model
Here we provide an overview of the model; all mathematical

details can be found in the Supporting Information. Consider a

pathogen modeled in a standard SIR framework. Infection leads

to sufficiently broad and long lasting immunity such that once

infected, hosts cannot be reinfected over the timescale under

consideration. Let R denote the basic reproductive ratio of the

pathogen in an unvaccinated population.

The pathogen has two potential vaccine “targets,” A and B,

each of which may exhibit antigenic variation. Biologically, these

targets could be different surface proteins, or different epitopes on

the same surface protein. We use “variants” to refer to immuno-

logically distinct versions of these targets (described in more de-

tail below), and “strains” to refer to pathogens harboring different

variants, such that AiBj denotes the pathogen strain with variant

i at target A and variant j at target B (see Fig. 1A). Antigenic

space at each target is one dimensional (Lin et al. 2003), while

antigenic change is cumulative and equally likely at either target.

Thus if the initial pathogen strain is A0B0, then the next strain will

be either A1B0 or A0B1 with equal probability. Antigenic change

can be imported from an external source such as a reservoir an-

imal population or a geographic region in which the pathogen is

endemic (e.g., as for influenza A; Russell et al. 2008; Bedford

et al. 2015), or a geographic region in which a new variant has

recently been identified.

We treat pathogen evolution as a sequence of discrete anti-

genic changes, each of which may (or may not) produce a “wave”

of the epidemic, such that the overall infection process consists of

a series of strain-specific waves (Fig. 1B). To simplify the math-

ematical analysis, we assume that these strain-specific waves oc-

cur sequentially, rather than simultaneously, that is, a single strain

dominates at any time. This assumption is valid provided anti-

genic change is sufficiently infrequent that by the time a novel

strain has risen to appreciable levels in the population, the epi-

demic wave by the previous strain has largely concluded.

A fraction p of the population is vaccinated, and the vac-

cine doses can be distributed among four possible candidates

(Fig. 1C). A fraction x of the p doses are distributed to vac-

cine target A, and 1 − x to target B. Of the doses allocated to
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Figure 1. Model schematics. (A) Assumptions about pathogen

structure (left) and genome (right); each line represents a unique

pathogen genome, or “strain,” while the boxes represent specific

loci. We use “targets” to describe different surface proteins or,

equally, different epitopes on the same surface protein. We use

“variants” to capture antigenically distinct versions of a given tar-

get (see text for details). In (B), we illustrate typical dynamics of

our model, where Sn denotes the fraction of susceptible individu-

als (black curve) remaining after the nthwave of the epidemic. The

gray curve shows infected individuals, and captures our assump-

tion that each wave reaches its epidemiological conclusion before

another can begin, if the fraction of susceptibles is above 1/R. One

possible epidemic sequence of strains is shown. (C) The impacts

of different vaccination strategies. Hosts are either unvaccinated,

U, or receive one of four possible candidate vaccines, which pro-

vide different levels of protection against the hypothetical strains

in (B). Unlike conventional vaccination (e.g., VA0 only), distribut-

ing doses across targets (VA0 and VB0 ; solid box) provides strong

protection against the initial strain and some protection against

a subsequent strain; the consequences will depend on the precise

allocation of doses between targets and the evolutionary trajec-

tory of the pathogen; for the example shown in (B), greater alloca-

tion toward VB0 would be advantageous. In contrast, distributing

across variants (VA0 and VA1 or VB0 and VB1 ; dashed boxes) re-

duces population protection against the initial strain in exchange

for greater protection against a subsequent strain.

target A, a fraction yA are distributed to the most abundant vari-

ant in the population initially, A0, and 1 − yA to A1; likewise of

the doses against B, a fraction yB will target B0, while 1 − yB

target B1. Although we restrict vaccine distribution to the set

{A0, A1, B0, B1}, we make no such restriction for antigenic vari-

ation, and so it is possible that the variants Ak and/or Bk , k > 1

may emerge in the population. Note that we have assumed that

the breadth of antigenic protection of any vaccine is limited, due

to, for example, immune interference or safety considerations.

Each target/variant combination in our model is thus defined by

this limit; different variants are by definition antigens that escape

the coverage of a single vaccine. Of course in reality, vaccines

should be constructed to be as broadly cross-protective as possi-

ble, provided there is no trade-off with peak protection. Our basic

model assumes that “universal” vaccines are not available but in

Supporting Information S10.5 we investigate a trade-off in which

increasing the “broadness” of vaccine cross-protection causes a

concomitant reduction in “peak” protection.

Each vaccine reduces the probability of infection against its

intended target/variant combination by a factor χ0, and more gen-

erally, reduces the probability of infection by a variant �� anti-

genic units from its intended target/variant combination by a fac-

tor χ��. If vaccine cross-protection were sufficiently broad, any

antigenic variation would be irrelevant for vaccinated individu-

als, and so the allocation of vaccine doses would not matter. As

cross-protection decreases, however, antigenic variation will al-

low pathogens to escape vaccine protection and so how vaccine

doses are distributed is increasingly important. In our model, the

broadness of vaccine cross-protection will depend on both the

units of antigenic space and the timescale of interest, and so we

focus on the case in which vaccine cross-protection is negligi-

ble. This is done for simplicity, but we stress that the primary

effect of broadening cross-protection is to reduce the impact of

vaccine distribution. Note that our model assumes the protec-

tion from naturally acquired immunity is superior (or no worse)

to vaccine-acquired immunity. The validity of this assumption

will be disease- and vaccine-specific: for example, it seems to

hold for influenza (Kim et al. 2016; Chen et al. 2018; Viboud

et al. 2020), but not SARS-CoV-2 (e.g., Greaney et al. 2021).

We later consider the implications of waning naturally acquired

immunity.

Let S0 denote the initial density of individuals without

infection-acquired immunity (susceptibles). S1 is then the den-

sity of susceptibles after the first wave (caused by the initial strain

A0B0) and in general Sn denotes the susceptible density following

the nth wave. These individuals can be further divided based on

whether they have been vaccinated. Let Un denote the density of

susceptible, unvaccinated individuals, and V τ
n denote the density

of susceptible individuals vaccinated against target/variant com-

bination τ (where τ can be A0, A1, B0, or B1), following the nth
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wave. Therefore,

Sn = Un +
∑

τ

V τ
n . (1)

Suppose the initial densities are known, that is, U0 = S0(1 − p)

and the initial vaccine distribution is given. Then for a partic-

ular sequence of antigenic changes, the state of the population

after each epidemic wave could be determined by numerically

integrating the full SIR model. By rescaling time, however, we

can directly compute the outcome of each wave using the ap-

proach described in the Supporting Information S3. In brief, for

any sequence of antigenic changes, the remaining vaccinated in-

dividuals, after the nth wave, can be computed based only on

the unvaccinated individuals remaining after each of the previ-

ous waves. To compute the unvaccinated individuals after each

wave, Ui, we first determine whether the reproductive number of

the pathogen strain with n antigenic changes is greater than 1. If

it is less than or equal to 1, then Un is simply given by Un−1, oth-

erwise Un can be computed using a standard final size equation.

All code used in numerical calculations and creating figures was

written in MATLAB (MATLAB 2019), and has been uploaded as

a Supporting File.

THE LIKELIHOOD OF VACCINE ESCAPE

Given our assumption about the strength of immunity acquired

through infection, there can be at most a single epidemic wave in

an unvaccinated population. In a vaccinated population, however,

antigenic change may cause successive waves as strains escape

vaccine coverage. Our analysis will therefore focus on two repre-

sentative scenarios of vaccine escape; in both we are interested in

the expected remaining uninfected, denoted E[Sfinal]. In the first

scenario, we assume that vaccine escape is rare, that is, at most

one antigenic change occurs over the timescale of interest. Fol-

lowing the initial potential wave by strain A0B0, typically no anti-

genic change occurs, but there is a small probability that a single

antigenic change occurs at either target with equal probability.

Thus E[Sfinal] is the average of these possibilities (Supporting In-

formation S4).

In the second scenario, vaccine escape is common, and

thus the sequence of epidemic waves is not limited by anti-

genic change. Specifically, following the initial potential wave

by strain A0B0, the pathogen undergoes successive one unit anti-

genic changes (and successive potential waves) until the density

of remaining individuals without infection-acquired immunity is

less than or equal to 1/R; at this point, the population will have

herd immunity and any novel strain will be unable to cause an

epidemic wave. In this case, E[Sfinal] is the average remaining

uninfected individuals computed over all possible antigenic se-

quences terminating in Sn ≤ 1/R (Supporting Information S4).

We take maximizing E[Sfinal] as the metric for evaluating the

efficacy of particular vaccination strategies. An important point

to note is that when vaccine escape is common, the best possible

outcome is E[Sfinal] = 1/R. Thus irrespective of vaccine cover-

age, the population will ultimately be protected by herd immunity

acquired through infection. The purpose of vaccination is then to

“ease” the population gradually to the point of herd immunity so

that when it is reached, there are few active infections in the pop-

ulation and “overshoot” (i.e., reducing the susceptible fraction to

below 1/R) can be avoided (Handel et al. 2007). (NB: Overshoot

occurs when herd immunity is reached while many active infec-

tions exist, even though, on average, infections are not able to

replace themselves at this point, further transmissions occur as

the wave declines.) In contrast, when vaccine escape is rare, con-

siderably better outcomes than 1/R can be achieved.

Although we focus on choosing vaccination strategies that

maximize E[Sfinal], we are also interested in the consequences of

these strategies for other metrics of vaccine success (Supporting

Information S6). The first metric is vaccine efficacy, defined as

VE = 1 − prob. of infection for vaccinated individual

prob. of infection for unvaccinated individual
. (2)

Here the probability of infection is computed over the entire epi-

demic. Vaccine efficacy measures the reduction in infection due

to vaccination. Second, given an individual is both vaccinated and

infected, what is the probability that they were infected by the

strain they were vaccinated against (the “matched” strain)? We

refer to this as vaccine matching, calculated as

VM = # of vaccinated individuals infected by ‘matched′ strain

# of vaccinated individuals infected
.

(3)

The importance of vaccine matching is that although our model

assumes that the vaccine match determines only the probability

of infection (i.e., χ��), there may be additional impacts including

on the severity of symptoms and likelihood of hospitalization.

Thus, all else being equal, a higher VM is desirable from a public

health perspective.

EPIDEMIC CASES

To provide a baseline for comparison, consider “conventional”

vaccination, in which all doses are directed toward the primary

variant of target A: x = 1 and yA = 1. Here it is helpful to divide

the space of epidemic outcomes into three qualitatively different

cases, based on the expected outcome of conventional vaccination

with vaccination coverage, p, and vaccine protection, χ0 (Fig. 2).

As illustrated in Figure 2A, case I occurs when protection is

sufficiently weak that the initial wave reduces the density of sus-

ceptibles to below 1/R and no further waves can occur; we denote

the vaccine protection threshold at which this occurs as T I
II

(p).
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Figure 2. The three qualitatively different epidemic regimes under conventional vaccination. In case I, a single epidemic by the initial

strain A0B0 occurs (A). In case II, there can be two epidemics, one by the initial strain, and one by the strain AiB j , here assumed to be A1B0
(B). In case III, the initial strain is blocked and a single epidemic wave occurs by a secondary (antigenically novel) strain (again, assumed

here to be A1B0; C). In (D), we show the outcome in terms of the remaining uninfected individuals, Sn, as we vary vaccine coverage, p,

and vaccine protection, χ0, where the upper translucent surface is the outcome achieved when vaccine escape does not occur, whereas

the lower surface is the outcome achieved when vaccine escape is common. The curves delineating the thresholds between cases, T I
II
(p)

and T II
III
(p), are shown for reference, while (A)–(C) show examples of the epidemic dynamics for each case. On the remaining susceptible

curves, the two colors indicate the strain circulating in the population, whereas on the infecteds curves, the single color indicates what

variant caused the epidemic wave. In all cases, R = 1.75.

Thus when χ0 ≤ T I
II

(p), infection-acquired immunity (due to the

large number of individuals who were infected) protects the pop-

ulation against further waves (Fig. 2A). Note that T I
II

(p), and the

scope of case I, has an intuitive dependence on R: as R increases,

so too does the likelihood that a given χ0 and p will fall in case

I. This is because increasing R increases pathogen transmissibil-

ity, so vaccines must be more protective (larger χ0) and vaccine

coverage must be higher (larger p) in order for vaccines to have a

substantial protective influence.

Case II occurs when coverage is of intermediate strength.

As shown in Figure 2B, in case II the wave caused by the initial

strain is such that S1 > 1/R, and so antigenic change can generate

subsequent waves until Sn ≤ 1/R (Fig. 2B). Thus, in case II, anti-

genic change is possible but not necessary for an epidemic. We

denote the vaccine protection threshold for the upper limit of case

II as T II
III

(p), and thus case II occurs when T I
II

(p) < χ0 ≤ T II
III

(p).

Finally, in case III, antigenic change is necessary for an epi-

demic to occur. As illustrated in Figure 2C, in case III vaccine

protection is sufficiently strong that the reproductive number of

the initial strain is less than 1 and so antigenic change at target

A must occur before the epidemic proceeds, χ0 > T II
III

(p). Thus

the first wave can only be caused by a strain with variant k ≥ 1 at

target A (Fig. 2C).

Results
In what follows, we consider how to distribute vaccine doses

against an evolving pathogen when vaccines have sufficient
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Figure 3. Optimal distribution of vaccines across targets when vaccine escape is common. (A and B) Example epidemic dynamics for

case II (A) and case III (B), with conventional vaccination (light gray) shown for reference; colors used are as in Figure 2. Values of p,

χ0, and the optimal distribution x∗ for these plots are indicated by the purple circles in (C). Following the initial epidemic wave by

strain A0B0, there are two possible sequences of interest, A0B0 → A1B0 → A1B1 and A0B0 → A0B1 → A1B1; both are shown. On the

remaining susceptible curves, the two colors indicate the strain circulating in the population, whereas on the infected curves, the single

color indicates what variant caused the epidemic wave. (A) Mosaic vaccination is superior to conventional vaccination regardless of the

sequence, whereas in (B) Mosaic vaccination is better on average and never worse. The optimal distribution across targets (shown in

(C) as vaccine coverage, p, and protection, χ0, vary) maximizes the remaining susceptibles averaged over these sequences; when x is

optimal, so is 1 − x (purple, green). In (D)–(F), it is shown how distributing across targets outperforms conventional vaccination for three

metrics; positive values indicate the degree to which mosaic vaccination is superior. (D) The difference in remaining uninfected, Sn. (E)

The difference in vaccine efficacy, measured as attack rate over the course of the epidemic (Supporting Information 7). (F) The difference

in vaccine matching, defined as the probability that an individual that is both vaccinated and infected is infected by a strain that they

were vaccinated against. In all panels, the thresholds T I
II
(p) (yellow surface) and T II

III
(p) (black lines) are included for reference; beyond

the yellow surface (i.e., further reducing p or χ0), vaccine efficacy is sufficiently low that evolution has no effect on the epidemic, and

any distribution of vaccines between targets will produce the same outcome (for a given p and χ0). In all cases, R = 1.75.

protection and coverage that antigenic escape has public health

consequences (i.e., we are in case II or III). We summarize our

key results in Table 1.

VACCINES DISTRIBUTED ACROSS TARGETS

First, we consider distributing equally effective vaccines between

two targets: a fraction x of available vaccine doses are used

against target A and 1 − x are used against B. All doses are al-

located to the primary variant at each target, that is, we vary x

while yA = yB = 1. Because both vaccines offer equal protection

against the initial strain, the choice of x only impacts subsequent

waves, to which conventional vaccination provides no protection

(under our assumption of limited cross-immunity). As a result,

mosaic vaccination (0 < x < 1) is at least as good as conven-

tional vaccination in terms of maximizing E[Sfinal]. In fact, when

antigenic evolution either can cause secondary waves (case II,

Fig. 3A) or is necessary for an initial wave (case III, Fig. 3B), any

variation in targets across vaccine doses, 0 < x < 1, is superior

to conventional vaccination in terms of maximizing the expected

number of individuals who do not contract the disease.
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Figure 4. Epidemiological dynamics when optimally distributing across targets (A and B) or variants (C and D) when vaccine escape

is rare. In all panels, there is a small probability of a single mutation at either target, giving rise to two equally probable sequences,

A0B0 → A1B0 and A0B0 → A0B1; both of these sequences are shown. For the latter sequence, conventional vaccination blocks the second

epidemic wave and so matches with the horizontal multi-colored line in each panel. For the former sequence, conventional vaccination

performs poorly, and is shown in light gray, except in (C) when the optimal distribution is also conventional vaccination. In Figures S1

and S2, we show the optimal distribution and the performance metrics for mosaic vaccination when vaccine escape is rare.

Perhaps more surprisingly, Figure 3C demonstrates that for

cases II and III, an equal distribution of doses between targets,

x = 1/2, is rarely the best strategy for maximizing E[Sfinal], re-

gardless of the likelihood of vaccine escape. This is because there

are two equally probable sequences of antigenic change, differ-

entiated by which target changes first (i.e., is the second wave

caused by A1B0 or A0B1?). We can choose x to maximize vac-

cine protection against either one of these sequences. If vaccine

escape is common, this means choosing x so that for one of the

sequences, Sfinal = 1/R as shown in Figure 3A and B. If vaccine

escape is rare, this means choosing x to block the second wave

of one sequence, while allocating the excess doses against the

other target (Fig. 4A and B). In comparison with x = 1/2, either

of these choices of x∗ will reduce protection against the other se-

quence. However, for a wide range of parameter space, Figure 3D

demonstrates that the average outcome of x∗ across the two possi-

ble sequences outperforms the expected outcome when x = 1/2,

and always outperforms conventional vaccination (Fig. 3C, and

D; Fig. S1C and D).

The advantage of distributing across targets over conven-

tional vaccination is not limited to increasing the remaining un-

infected, E[Sfinal]. Figure 3E and F show that distributing across

targets also increases vaccine efficacy and vaccine matching; re-

sults that also hold when vaccine escape is rare (Fig. S1E and F).

Thus not only does mosaic vaccination improve population level

outcomes, it also reduces individual-level risks associated with

weaker protection against symptoms from mismatched vaccines.

VACCINES DISTRIBUTED ACROSS VARIANTS

Next, we consider distributing equally effective vaccines between

two variants of target A, that is, setting x = 1 and varying yA.

Clearly, any yA < 1 will reduce the protection against the ini-

tial strain, and so if vaccine coverage is sufficiently weak (case

I), all doses should be allocated to the primary variant, yA = 1

(conventional vaccination). In cases II and III, however, conven-

tional vaccination performs poorly because the population is ef-

fectively unvaccinated against any variation at target A (Fig. 2B

and C).

If vaccine escape is rare, then it is optimal to maximize pro-

tection against the primary variant, A0. In case II, because con-

ventional vaccination is not sufficiently strong to block the initial

A0B0 epidemic wave, all doses should be allocated against A0

EVOLUTION LETTERS OCTOBER 2021 465



D. V. MCLEOD ET AL.

Figure 5. Optimal distribution of vaccines across variants when vaccine escape is common. (A) and (B) Example epidemic dynamics for

case II (A) and case III (B), with conventional vaccination (light gray) shown for reference. Values of p, χ0, and the optimal distribution

y• for these plots are indicated by the purple circles in (C). For both panels, there is only one sequence of interest, corresponding to

antigenic changes at target A: A0B0 → A1B0 → A2B0. In case II, the optimal distribution weakens protection against the first epidemic

wave, as compared to conventional vaccination so as to provide better protection against the second; the outcome across both epidemics

is substantially improved. In case III, the optimal distribution across variants is to block the epidemic wave by strainA0B0 and then allocate

any excess doses against variantA1. (C) The optimal distribution across variants, y• and y∗ as vaccine coverage, p, and protection, χ0, vary.

In (D)–(F), it is shown howdistributing across variants (using y•) outperforms conventional vaccination for threemetrics; each panel shows

the difference between distributing across targets and conventional vaccination. (D) The difference in remaining uninfected, E[Sfinal]. (E)

The difference in vaccine efficacy, measured as attack rate over the course of the epidemic. (F) The difference in vaccine matching, defined

as the probability that an individual that is both vaccinated and infected is infected by a strain that they were vaccinated against. In all

panels, R = 1.75 and the thresholds T I
II
(p) (yellow surface) and T II

III
(p) (black lines) are included for reference.

(yA = 1; Fig. 4C). In case III, because conventional vaccination

is sufficiently strong to block the A0B0 epidemic wave, yA should

be chosen such that the reproductive number for strain A0B0 is

reduced to one. Here, any excess doses not needed to block the

A0B0 epidemic wave are diverted to protect against the (rare) pos-

sibility that a strain carrying the variant A1 emerges (Fig. 4D, Fig.

S2).

When vaccine escape is common, we can always choose yA

to ensure that E[Sfinal] = 1/R, as illustrated in Fig. 5A and B.

Thus in contrast to distributing vaccine doses between targets,

when distributing across variants we can, in theory, always at-

tain the optimum. This can be achieved with two values of yA:

we can use strategy y∗, such that the population reaches herd im-

munity after the first wave; or we can use strategy y•, such that

herd immunity is reached after the second wave (Fig. 5C). Al-

though both y∗ and y• maximize E[Sfinal], from a public health

perspective y• is the superior option as it maximizes E[Sfinal] af-

ter at least one antigenic change, and so two potential waves,

rather than one epidemic and no antigenic change. By staggering

the waves, the peak burden on the healthcare system is reduced

(e.g., Qualls et al. (2017)). Indeed, the less desirable outcome of

y∗ could simply be achieved using conventional vaccination with

lower coverage. In Figure 5A and B, we show example epidemi-

ological dynamics for y•.
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As was the case when distributing across targets, the advan-

tage of distributing across variants (using y•) over conventional

vaccination is not limited to increasing the remaining uninfect-

eds, E[Sfinal] (Fig. 5D). Distributing across variants also increases

vaccine efficacy (Fig. 5E) and vaccine matching (Fig. 5F). In case

III, these results also hold when vaccine escape is rare (Fig. S2E

and F). Thus distributing across variants improves both popula-

tion level outcomes as well as reducing individual risk.

DISTRIBUTING ACROSS TARGETS AND VARIANTS

SIMULTANEOUSLY

Finally, consider distributing vaccines across both targets and

variants. When we are free to choose all three of (x, yA, yB), many

different combinations can lead to similar Sn, so we can apply

further constraints to identify optimal combinations. We opt to

impose the constraint that yA = yB = y; this allows us to isolate

whether distributing over targets or variants is more important.

Under these circumstances, the outcome is as we would ex-

pect from consideration of our previous results. When the like-

lihood of vaccine escape is low, the optimal solution is to rely

on distributing doses between targets (varying x) while target-

ing the primary variant, y = 1. As vaccine escape becomes more

common, the optimal strategy is to distribute between variants

(varying y), while keeping doses equally divided across targets,

x = 1/2. The reason for this is intuitive: when there is a low prob-

ability of a second wave, we want to maintain maximum protec-

tion against the initial strain (y = 1), but are free to distribute

between targets so as to block one of the epidemic sequences.

As the likelihood of vaccine escape increases, a wave by a sec-

ondary variant is increasingly likely, and so it can be beneficial

to sacrifice protection against the initial strain to allocate doses

against the secondary variants. Although we previously showed

x = 1/2 is not optimal when distributing across targets only, if

we are free to distribute across both variants and targets, and

are allocating doses to both the primary and secondary variant,

the logic changes. Specifically, as either epidemic sequence is

equally likely, when relying on distributing between variants it

makes sense to distribute equally between targets (x = 1/2; Fig.

S3).

MORE COMPLEX EPIDEMIOLOGICAL SCENARIOS

In the previous sections, we examined an idealized epidemio-

logical model in order to clearly lay out mosaic vaccination as

a proof-of-concept. Here we briefly consider how incorporating

different epidemiological assumptions affects our predictions; to

do so, we retain our focus on cases II and III, and discuss two

reasons why mosaic vaccination can be more effective than con-

ventional vaccination. More details on the calculations used in

this section can be found in the Supporting Information S10.

Conventional vaccination leads to overshoot
By definition, conventional vaccination allocates the greatest pos-

sible protection against strains carrying variant A0, and so follow-

ing the first epidemic wave, the largest possible pool of individ-

uals with weak or no protection against variant A1 remains. As a

result, if strain A1Bj enters the population, it will cause the largest

possible epidemic wave. Moderately increasing the size of the

first wave produces a disproportionate reduction in the size of the

second wave by increasing the fraction of individuals with natu-

rally acquired immunity to variant A1. This will improve the out-

come over the course of the epidemic (Restif and Grenfell 2007;

Zarnitsyna et al. 2018).

That reducing protection against the first wave can be bene-

ficial has clear implications for mosaic vaccination. In particular,

two of the seemingly largest challenges to mosaic vaccination

would be accurately predicting future variants and/or identifying

two roughly equally effective targets. However, as increasing the

size of the first wave can reduce total infections, even if the vac-

cine doses allocated toward either future variants or against tar-

get B generate a substantially inferior immune response to those

doses allocated toward current variants or against target A (e.g.,

due to inaccurate predictions or unequal targets), mosaic vacci-

nation still does no worse than conventional vaccination.

Mosaic vaccination provides greater protection against
future epidemic waves
In general, however, mosaic vaccination does not simply involve

“wasting” doses. By allocating doses against the other target or

against other variants, then all else being equal, it provides greater

protection against future epidemic waves. Thus if our model were

extended to include epidemiological factors that increase the size

of future waves, we should still expect mosaic vaccination to gen-

erally outperform conventional vaccination.

There are two relevant examples. First, suppose there are two

possible epidemic waves, and some fraction of recovered indi-

viduals lose their naturally acquired immunity between waves;

for example, influenza infection triggers a short-term, broadly

neutralizing immune response that decays over time (Kucharski

et al. 2018). This will increase the availability of susceptible hosts

following the first wave, making the second wave worse than it

would be otherwise, and so mosaic vaccination will still gener-

ally outperform conventional vaccination. Second, in addition to

undergoing antigenic evolution, the pathogen may also undergo

life-history evolution, for example, by becoming more transmis-

sible following the first wave. As this will worsen future epi-

demic waves, again mosaic vaccination will generally outperform

conventional vaccination. Only if the pathogen becomes signif-

icantly less transmissible, and we are distributing across vari-

ants, will mosaic vaccination be outperformed by conventional
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vaccination; here the doses allocated to the future variants are

“wasted,” but additionally, the second epidemic wave is signifi-

cantly smaller than expected as the number of infections required

to reach herd immunity decreases.

Discussion
We have used a simple model to explore the optimal distribution

of vaccines that differ in antigenic targets and/or specific variants

at those targets (i.e., strains). We show that with weak vaccines

(either low coverage or weak protection), evolutionary change in

the pathogen population does not alter epidemiological outcomes

and so a mosaic vaccination strategy, in which individuals receive

one of a set of possible vaccines, is not better than a conventional

strategy. In cases where pathogen evolution can lead to successive

waves of an epidemic, or is required for an initial wave, using a

mosaic vaccination strategy often leads to better outcomes than

giving all individuals identical vaccines.

Vaccines distributed across targets are equally effective

against the initial circulating strain, thus producing outcomes at

least as good as conventional vaccination. However, if antigenic

evolution occurs, the benefits of mosaic vaccination are real-

ized. Although a conventional vaccine would offer no protection

against a strain that had evolved at one of the two targets (given

our assumptions about cross-immunity), some protection would

be maintained in a population that received a mosaic strategy.

Perhaps surprisingly, the optimal distribution of vaccine doses

between targets is not 50:50—better outcomes can be achieved

on average with unequal allocation by providing greater protec-

tion against one sequence of antigenic changes, while still retain-

ing some protection against the other possible sequence (unlike

conventional vaccination).

While neither our focus nor motivation, it is interesting to

consider our results in the context of the ongoing COVID-19

pandemic, given the rapid and parallel development of dozens of

vaccines against SARS-CoV-2 (Al-Kassmy et al. 2020; Poland

et al. 2020; World Health Organization 2020). Although many

COVID-19 vaccines in development target the spike protein,

some target epitopes in other proteins (Al-Kassmy et al. 2020)

and the potential for multi-epitope (i.e., cocktail) vaccines are be-

ing investigated (e.g., Bhattacharya et al. 2020; Enayatkhani et al.

2021; Kar et al. 2020; Kalita et al. 2020). If in the future mul-

tiple COVID-19 vaccines were approved with similar efficacies

(i.e., roughly equal protection against the predominant circulat-

ing strain), then our results suggest that to minimize the risk of

evolutionary escape and reduce the total number of individuals

who get infected, the vaccines should be used in a mosaic strat-

egy (sensu REX Consortium 2013). Multiple plausible vaccine

targets exist for other infectious diseases (e.g., hemagglutinin and

neuraminidase in influenza; Johansson and Cox 2011); our model

provides a framework for evaluating the efficacy of mosaic vac-

cination strategies given the details of specific diseases.

What happens when vaccines are distributed across variants

of a given target is perhaps more subtle. If evolutionary change

in antigens is unlikely, then diverting any vaccine doses away

from the predominant strain can lead to worse epidemiological

outcomes. However, even if antigenic change is unlikely, if vac-

cine efficacy (χ0) is sufficiently strong or coverage (p) is suffi-

ciently high (i.e., our case III), then from a population perspec-

tive better outcomes can be achieved by vaccinating a fraction of

the population against a secondary variant. As the likelihood of

waves from antigenically distinct strains increases, then a trade-

off emerges between protection in an initial wave versus subse-

quent ones. Put simply, a small initial wave due to strong vac-

cine protection against an initial variant leaves a large pool of

susceptible individuals that could be exploited by a subsequent

strain (assuming weak cross-immunity from vaccination), while

a large initial wave due to poor vaccine protection leaves few

individuals susceptible to future waves (assuming strong cross-

immunity from natural infections). The optimal strategy essen-

tially titrates between these scenarios, offering intermediate pro-

tection against initial and subsequent strains and dampening—but

not eliminating—individual waves. This intermediate strength

optimal strategy echoes results from previous work: in an ex-

plicit two-strain epidemiological model, if vaccination dispropor-

tionately impacts one strain (and vaccine-induced immunity is

weaker than natural immunity), then increasing vaccine coverage

or protection can lead to outgrowth of infections with the sec-

ond strain and worse outcomes overall (Restif and Grenfell 2007;

Zarnitsyna et al. 2018).

Distributing across variants seems intuitively risky. For in-

fluenza, for example, substantial work goes into choosing which

variant of each flu subtype will be included in a vaccine in a given

year (e.g., Morris et al. 2018). Part of the decision is based on the

frequency of circulating variants and the likelihood that any one

variant will seed the coming year’s seasonal epidemic. If there is

good reason to expect a particular variant will circulate predomi-

nantly, it would seem unethical to allocate any vaccine doses to a

different variant. Yet our results show that over a considerable

range of parameters (i.e., vaccine efficacy and coverage, like-

lihood of antigenic change), the conventional strategy does not

give rise to the best outcomes and so the principle of equipoise

would not be breached by distributing vaccines across variants.

For influenza, evolutionary predictions are improving (e.g., Łuk-

sza and Lässig 2014; Neher et al. 2016; Morris et al. 2018); our

results suggest a novel way of using those predictions for vaccine

design, assuming any practical barriers can be overcome.

Somewhat akin to mosaic vaccination, previous work has

explored the epidemiological and evolutionary consequences of

vaccines that produce variable effects across hosts. First, using a
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data-driven model of a viral disease of fish, Langwig et al. (2017)

showed that vaccines that induce variation in susceptibility across

hosts can lead to better epidemiological outcomes than vaccines

that have individually invariant effects (analogous to theoretical

results exploring the effects of natural variation in susceptibil-

ity (Dwyer et al. 2000; Lloyd-Smith et al. 2005; Lively 2010).

This is because with variation, average susceptibility declines

over the course of the epidemic, as hosts that are the most sus-

ceptible get infected earlier on average. Likewise, in our model,

distributing vaccine doses across targets or variants changes the

landscape of host susceptibility both initially and as circulating

pathogens evolve. In our case, distributing across targets miti-

gates the increase in susceptibility that would occur with conven-

tional vaccines following antigenic evolution, while distributing

across variants can actually reverse it. Second, in seeking to ex-

plain why few vaccines have failed in the face of pathogen evo-

lution relative to the alarming rise and spread of drug resistance,

Kennedy and Read (2017) suggest a potential role for individ-

ual variation in response to vaccination. Much of that paper is

focused on processes that impede the evolutionary emergence of

resistance or escape within a host, and vaccines with the potential

to generate immunity against multiple antigens may lead to more

diverse within-host selection pressures on (and thus greater evo-

lutionary hurdles for) pathogens compared to the use of a single

drug. But Kennedy and Read (2017) also note that if the reper-

toire of vaccine-induced immune responses varies across individ-

uals, then that rugged fitness landscape plays out at the host pop-

ulation level too, and the population may be more robust to the

introduction of a new pathogen variant. In practice, for influenza

at least, there is strong evidence that individuals do respond qual-

itatively differently to the same vaccine, due to differences in past

history of exposure (e.g., Gostic et al. 2016; reviewed in Cobey

and Hensley 2017). Our work reinforces the idea that, in some

cases, this variation can be beneficial from a public health per-

spective (Kennedy and Read 2017) and so generating such varia-

tion could be an explicit aim of vaccination.

Our model makes a number of key assumptions. First, anti-

genic change was assumed to arise without consideration of its

source. This is reasonable if antigenic novelty originates outside

the focal population. For example, it may come from a reser-

voir animal population or be otherwise imported from a source

population (e.g., influenza A; Bedford et al. 2015; Russell et al.

2008). If instead we focused strictly on antigenic change from

de novo mutation in the focal population, then unless mutations

are very likely, conventional vaccination tends to perform better

than our results show; in this case, it is typically better to “hit

hard” in the hopes of preventing antigenic change. Second, we

assumed cross-protection was limited. The “broadness” of vac-

cine cross-immunity determines the reduction in vaccine pro-

tection against new strains. If vaccine cross-immunity is broad,

antigenic change will cause a small reduction in vaccine protec-

tion, and so a smaller subsequent wave. Thus increasing cross-

protection increases the efficacy of conventional vaccination in

cases II and III. In our model, the broadness of cross-immunity

will ultimately depend on the units of antigenic space and the

time scale of interest. Third, we assumed each wave consists of a

single strain. Although this may be reasonable if antigenic vari-

ation originates elsewhere, it is less likely when variation is gen-

erated by de novo mutation. If our results were extended to in-

clude multi-strain waves, the predicted efficacy of conventional

vaccination would be weakened, as whenever an escape mutant

arises during an ongoing wave, there are more individuals with-

out infection-acquired immunity and so susceptible to the escape

mutant. This would lead to a larger wave by the strain with lim-

ited vaccine protection.

Although the evolutionary and epidemiological conse-

quences of universal vaccines have received some theoretical at-

tention (e.g., Subramanian et al. 2016), here we explored the po-

tential for vaccination strategies to essentially generate univer-

sal coverage at the host population level by delivering variable

vaccines to individuals. This mosaic strategy generates hetero-

geneity in the host population (and, thus, the fitness landscape

for pathogens), which has long been thought to be protective

against disease outbreaks (Elton 1958). Theory predicts that “nat-

urally” variable host populations are less likely to experience

sustained disease spread (e.g., Lloyd-Smith et al. 2005; Lively

2010), and the protective effect of host variation has been em-

pirically demonstrated in a number of experimental (e.g., Alter-

matt and Ebert 2008; Common et al. 2020) and natural systems

(Ekroth et al. 2019), especially those in which rapid host evolu-

tion is unlikely (Gibson and Nguyen 2020). Our work suggests

that vaccination strategies that harness—and, in fact, generate—

variation can often outperform conventional vaccines.
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