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Most viral pathogens that have emerged in humans have

originated from various animal species. Emergence is a

multistep process involving an initial spill-over of the infectious

agent into single individuals and its subsequent dissemination

into the human population. Similar to simian immunodeficiency

viruses and simian T lymphotropic viruses, simian foamy

viruses (SFV) are retroviruses that are widespread among non-

human primates and can be transmitted to humans, giving rise

to a persistent infection, which seems to be controlled in the

case of SFV. In this review, we present current data on the

discovery, cross-species transmission, and molecular

evolution of SFV in human populations initially infected and thus

at risk for zoonotic emergence.
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2 Département de Virologie, Institut Pasteur, 25-28 rue du Dr Roux,

75724 Paris, Cedex 15, France
3 CNRS, UMR369, 28 Rue du Dr. Roux, F-75015 Paris, France
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Most viral pathogens that have emerged in humans

during the last century are thought to have originated

from various animal species and are thus of zoonotic origin

[1]. While the modes of viral dissemination within the

human population are generally well characterized, the

initial steps at the interspecies interface that lead to viral

emergence remain poorly understood. Epidemiological

field studies conducted in certain specific high-risk popu-

lations are thus crucial to obtain new insights into these

early events of the emergence process.

Human infections by simian viruses represent an increas-

ing public health concern. Indeed, non-human primates

(NHPs) are considered to be the likely sources of viruses
www.sciencedirect.com 
that infect humans and thus may pose a significant threat

to human population [2]. This is well illustrated by some

retroviruses, which have the ability to cross-species, pos-

sibly adapt to a new host and sometimes spread within

this new species. It is now clear that the emergence of

human immunodeficiency virus type 1 (HIV-1) and HIV-

2 in humans has resulted from several independent

interspecies transmissions. Different SIV types from

chimpanzees and gorillas in the western part of Central

Africa as well as sooty mangabeys in West Africa, gave rise

to HIV-1 and HIV-2 respectively, probably during the

first part of the last century [2]. Similarly, the origin of

most Human T cell Lymphotropic virus type 1 (HTLV-

1) subtypes appears to be linked to interspecies transmis-

sion between STLV-1-infected monkeys and humans,

followed by variable periods of evolution in the human

host [2]. In this brief review, we will present the current

available data on the discovery, cross-species transmission

and molecular evolution of the simian foamy viruses

(SFV) present in different human populations at risk

for zoonotic emergence.

Simian foamy viruses in humans
Since the initial description of foamy virus (FV) in rhesus

monkey kidney cells in 1954 [3], such viruses have been

isolated from several animal species, including numerous

NHP species. The prevalence of FVs in naturally

infected animals is generally high, but varies widely

according to species [2]. Among NHP populations,

SFV seroprevalence can reach up to 75–100% in adults

[2]. In African green monkey and macaques, oral mucosa

tissue is an important site for viral replication, explaining

why foamy viral RNA is found at a high concentration in

the saliva of such primates [4��]. Saliva-based means of

transmission, such as bites, have been thus strongly

suggested. Infection by SFV itself does not seem to cause

any disease in infected NHPs, but studies have not been

conducted to address this question specifically. However,

when considering co-infections in macaques, SFV can

increase the pathogenicity of simian immunodeficiency

virus [5].

In 1971, the first human foamy virus was isolated from the

cell culture of a Kenyan patient suffering of nasopharyn-

geal carcinoma [6]. Phylogenetic studies demonstrated

that this virus originated from the East African chimpan-

zee subspecies (Pan troglodytes schweinfurtii). This strain is

now considered to be the ‘prototype foamy virus’ (PFV).

However, its exact origin remains unclear (in vivo cross-

species transmission from a chimpanzee to the African
Current Opinion in Virology 2015, 10:47–55
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patient, or cell culture contamination) [7]. In the 1970/

80s, several papers showed conflicting results on the

presence of SFV in human populations and in different

patients [8,9]. These findings reflected the high percent-

age of non-specific serological reactivity and the lack of

specific confirmatory tests at that time.

In 1995, based on specific serological and molecular

assays, the first clear evidence of SFV in Humans was

reported among 3 laboratory and monkey house person-

nel [10��]. Since then, other groups have reported similar

findings in a series of workers occupationally exposed to

NHPs in the USA and Canada and more recently in

personnel from zoos or primate centers in Gabon and

China [8]. Infection by SFV in a more natural setting was

then demonstrated in villagers from Cameroon [11]. They

were mostly hunters who reported direct contacts with

blood and/or body fluids from wild NHPs. We extended

such studies into different areas and populations of this

Central African country and found the presence of SFV

infection in at least 50 persons [12��]. The great majority

of them (Bantus or Pygmies) were men who had been

bitten by an ape (mostly gorillas but also chimpanzees) or

a small monkey (mostly Cercopithecus nictitans) during

hunting activities. A recent report from Gabon confirmed

such frequent cross-species transmission in hunters after

severe bites from mostly gorilla [13]. Infected women

were also recently found in the Democratic Republic of

Congo [14]. In South and Southeast Asian countries, SFV

zoonotic infection has also been detected in various

contexts of interspecies contact including ‘monkey tem-

ple’ workers, pet owners and people living around free-

ranging macaques in South and Southeast Asia [15]. It is

interesting to note that the Human/NHP interface in Asia

differs greatly from that in Africa [16]. Human and

macaques sympatry in Southeast Asia dates back as far

as 25,000 years. Human-macaque commensalism is fre-

quent in many monkey temples of these regions each year

putting a very large number of persons, including tourists,

at risk for macaques bites [17]. Indeed, human subjects in
Figure 1
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some South Asian countries came into contact with rhesus

macaques mostly in the context of their daily lives,

sharing a geographical area that is the ‘home range’ of

both primate populations [16]. Such frequent interactions

can lead to possible viral interspecies transmission. The

situation is very different in central Africa where bush-

meat hunting (including Apes such as gorillas and chim-

panzees) is the major risk factor associated with SFV

interspecies transmission [12��]. Furthermore, in Central

Africa, the number of contacts between humans (mostly

hunters and their wives and butchers) and potentially

infected NHPs has probably greatly increased during the

last century. This is believed to be due to increased

hunting activities, resulting from a combination of urban

demand for bush-meat, greater access to NHP habitats

provided in part by logging roads, easier accessibility to

fire arms, an increase in populations living in forest areas,

and the associated increase in local food needs [2].

While nowadays, Humans are not considered to be a

natural host of SFV, more than 100 cases of SFV infection

have been reported so far in individuals in close contact

with NHPs [8]. Among them, no specific pathology has

been yet demonstrated. However, the selection bias

inherent in the enrollment of healthy persons in the very

few performed studies greatly limits the current ability to

identify any potential associated disease.

SFV genomic organization and structural
proteins
The SFV genome comprises the retroviral gag, pol and env
genes, and two regulatory genes tas and bet. An internal

promoter allows basal transcription of tas and bet
(Figure 1). The transactivator Tas then activates a second

promoter located in the long-terminal repeat, which

induces the synthesis of the Gag, Pol and Env structural

proteins. SFVs can also go through a late reverse tran-

scription step, before the release of SFV particles. Thus,

SFV particles can contain SFV RNA and SFV DNA

genomes (Figure 2A) [18].
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rain). The SFV genome is flanked by two long terminal repeat (LTRs)

ag encodes the full-length gag protein (74 kDa) and the shorter p70

protein and the integrase (INT). env encodes the leader peptide (LP),

ditional genes tas and bet encode proteins having regulatory functions.

of the structural genes gag, pol and env.
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Figure 3
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Observation of SFV and SFV-infected cells. BHK-21 cells were

infected with a chimpanzee SFV strain isolated from an SFV-infected

hunter [31]. A large syncytium with a ‘foamy’ aspect is visible using

light microscopy (A). An immunofluorescent staining was performed as

previously described [62]. SFV antigens are revealed in the green

channel and nuclei are stained with DAPI (B). U87MG cells were

infected by SFV-1 and used for electron microscopy (C,D). Scale bars

represent 10 mm (A), 3 mm (B) or 300 nm (C,D).
SFV tropism
In vitro, SFV can infect most cell types. Heparan sulfates

represent attachment factors [19]. However, an SFV

receptor has not yet been discovered and is probably

ubiquitous. Once productively infected, cells usually

form syncitia with a ‘foam-like’ cytopathic effect, before

cell death occurs (Figure 3, A to D). However, some cell

lines as well as primary cells of the myeloid or lymphoid

lineage can remain chronically infected [20,21]. In NHPs,

SFV is latent in blood cells and replicates in the superfi-

cial epithelial layer of the oral mucosa [4��,22], which

explains the mode of transmission of SFV to humans,

mainly through bites [12��]. Viral genomes in the buccal

swab usually reflects those found in the blood [23]. In
(Figure 2 Legend) Mechanisms of action of antiviral factors against FV.

containing RNA and/or DNA, decapsidation of the viral genome, reverse tra

DNA. Cellular activation of the internal promoter induces tas and bet transc

located in the long-terminal repeat, which induces the synthesis of the Gag

essentially from the endoplasmic reticulum, with a late reverse-transcription

by plasmacytoid dendritic cells (not exclusively) which triggers IFN-I produc

against SFV. TRIM5a are antiviral proteins that prevent SFV decapsidation [

(APOBEC) enzymes act on the negative strand DNA produced by the viral r

with potential deleterious consequences. FV Bet protein has been shown to

well as a member of the interferon-induced protein (IFP) family, IFP35, can 

by direct interaction with the viral transactivator Tas [46,47]. Tetherin is kno

budding virus at the cell membrane and is also efficient to prevent FV relea
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humans, SFV is also present in PBMCs and saliva. How-

ever, no active replication, as monitored by SFV RNA, has

been detected in the PBMCs nor in the saliva [24].

In the blood, the cellular targets of SFV remain poorly

studied. Preliminary studies, performed mostly in small

series of chimpanzees, African green monkeys, and in few

humans, have shown SFV DNA in lymphocytes, espe-

cially CD8+ T cells [25,26]. By studying a larger cohort of

humans infected with a gorilla strain of SFV in Cameroon,

we demonstrated that CD8+, CD4+ T cells and CD19+ B

lymphocytes were preferentially infected, compared to

monocytes and NK cells (Table 1). SFV DNA was

detected in both memory and naive CD4+ T lympho-

cytes and SFV DNA levels in CD4+ T cells were posi-

tively correlated with the duration of the infection [27].

SFV genetic stability
SFV genomes display a high evolutionary conservation

among all the species infected and SFV genetic vari-

ability within one infected animal is very low over time

(<1% variation over 13 years) [28]. This genetic stabil-

ity might be explained by the long co-evolution with

their host [29�] and their subsequent efficient adapta-

tion. SFV genetic stability could also prevent or delay

infection of new hosts as molecular changes may be

required to infect cells from a different species and/or

evade host-specific immune responses [30]. Genetic

stability was also found in SFV-infected humans, with

less than 1% divergence in the nucleotide sequence

over several years [13,24]. Several groups also reported

genetic modifications including mutations in the Bet

accessory gene [25,31], deletion in the U3 sequence of

the LTR which improves FV replication in vitro [31,32]

and deletions in the Tas sequence, which might be

linked with the chronicity of the infection [31]. How-

ever, most of these modifications are not a unifying trait

of zoonotic strains, and can also be found in NHP or

experimentally infected animals [31]. This suggests

that viral strains remain mainly stable, even decades

after cross-species transmission. This is probably relat-

ed to the apparent low level of SFV replication in

infected humans, which could be linked with their

efficient immune control.
 (A) SFV life cycle starts with infection of a new cell by SFV particles

nscription of RNA genomes and integration of viral DNA into cellular

ription. The transactivator Tas then activates a second promoter

, Pol and Env structural proteins. After assembling, viral particles bud

 step giving rise to both DNA and RNA particles. (B) SFV is detected

tion. Several antiviral factors that can be induced by IFN-I are active

50]. Apolipoprotein B-editing catalytic polypeptide-like subunit

everse transcriptase, resulting in G-to-A mutations in the viral genome,

 partially prevent APOBEC action [40–43]. N-Myc interactor (NMI) as

inhibit the replication of the prototype and the bovine FV respectively,

wn to block many different types of enveloped viruses by tethering the

se [48,49].
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Table 1

SFV tropism and viral load in the blood of SFV-infected humans and NHPs. The proportion of SFV DNA positive samples among leukocyte populations in SFV-infected NHP and SFV-

infected humans is indicated.

Host Infecting

strain

Read-out for SFV

DNA detection

Quantification

method

SFV DNA detection and load in sorted white blood cell populations from SFV-infected individuals Refs

CD8+ T

lymphocytes

CD4+ T

lymphocytes

CD19+ B

lymphocytes

CD14+

monocytes

CD56+ NK

lymphocytes

Granulocytes

AGM SFV-3 Nb. of SFV DNA +

samples/ind. tested

9/9 1/3 NTa 2/7 NTa 1/7 [26]

SFV DNA copies/number

of cells

Semi-quant. PCR

(serial dilutions)

�1–100 SFV

DNA/105 cells

�10 SFV

DNA/105 cells

NTa �1 SFV

DNA/105 cells

NTa �1 SFV

DNA/105 cells

[26]

CPZ SFV-6 Nb. of SFV DNA +

samples/ind. tested

4/4 3/4 NTa 1/4 NTa 3/4 [26]

SFV DNA copies/number

of cells

Semi-quant. PCR

(serial dilutions)

�1 SFV

DNA/105 cells

�1–10 SFV

DNA/105 cells

NTa �1 SFV

DNA/105 cells

NTa �1 SFV

DNA/105 cells

[26]

Hum. SFV-3

or HFV

Nb. of SFV DNA +

samples/ind. tested

2/2 0/2 NTa 0/2 NTa 0/2 [26]

SFV DNA copies/number

of cells

Semi-quant. PCR

(serial dilutions)

�1–10 SFV

DNA/105 cells

NA NTa NA NTa NA [26]

Hum. SFV-HU1

(SFV-3)

Nb. of SFV DNA +

samples/ind. tested

0/1 0/1 1/1 1/1 NT NT [25]

SFV DNA copies/number

of cells

Non-quant. PCR

(one dilution)

NA NA >70 SFV

DNA/105 cellsb
>70 SFV

DNA/105 cellsb
NA NA [25]

Hum. SFVgor Nb of SFV DNA +

samples/ind. tested

10/11 9/11 7/11 2/11 1/11 NT [27]

SFV DNA copies/number

of cells

Quantitative PCR 6–274 SFV

DNA/105 cells

6–61 SFV

DNA/105 cells

10–91 SFV

DNA/105 cells

4–5 SFV

DNA/105 cells

5 SFV

DNA/105 cells

NA [27]

AGM: African green monkey; CPZ: chimpanzee; Hum.: Human; NT: Not tested; Nb.: Number; Ind.: Individuals; NA: Not applicable. SFV-HU1 is a strain close to SFV-3.
a In the study from Von Laer et al. [26], the population tested is actually non-CD4+ non-CD8+ lymphocytes, and is thus likely enriched in both CD19+ B and CD56+ NK lymphocytes. The proportion of

positive samples are 7/9 AGM, 3/4 CPZ and 0/2 humans. SFV DNA loads in this sorted cell population is�1/105 cells (in the 7/9 positive samples from AGM) and�1/105 cells (in the 3/4 samples from

CPZ).
b In the study from Callahan et al. [25], only one dilution of leucocytes DNA was shown, corresponding to a viral load of >70 SFV DNA copies/105 cells, assuming the usual sensitivity of 1 SFV DNA

copies/105 cells.
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In vivo super-infection and recombination of
SFV
Some groups have reported cases of co-infection by two

different SFVs in apes, monkeys, as well as in humans.

Some chimpanzees infected by SFVcpz strains were co-

infected with SFV from colobus monkeys [33], or cerco-

pithecus monkeys [34]. More frequently, chimpanzees

and macaques can harbor distinguishable SFVcpz and

SFVmac strains respectively, likely the result of multiple

independent infections that accumulate with age

[16,35,36]. SFVcpz infection appears to first occur via
vertical transmission but is followed in adult life by the

acquisition of further infections, possibly stemming from

aggressive interactions [35]. In some of these studies, as

well as in a recent one, some SFV appears to be recombi-

nant strains [34,36,37]. We, and others, have found dif-

ferent clones of SFV in single individuals [12��,16,24],

suggesting a co-infection with multiple SFV strains.

Whether they were acquired at a single time or through

several contacts with NHP is not known.

Immune control of SFV
Innate restriction of SFV

Interferons are potent antiviral molecules and usually

represent one of the first lines of defense to pathogens.

In vitro, SFVs were first thought to be low interferon-

inducers [38] but this actually depends on the cell type.

Indeed, we found that SFVs are efficiently sensed by

human hematopoietic cells and induce the production of

high levels of IFN-I [39]. The main producers of IFN-I in

the blood are the plasmacytoid dendritic cells, which

detect SFV genome after uptake of SFV particles, through

the endosomal toll-like receptor 7 [39]. In culture systems,

the addition of type I IFN impairs SFV replication, sug-

gesting that interferon-inducible genes might be involved

in the control of SFV replication (Figure 2A and B):

- Apolipoprotein B-editing catalytic polypeptide-like

subunit (APOBEC) enzymes are a family of antiviral

cytidine deaminases that act on the negative strand

DNA produced by the viral reverse transcriptase,

resulting in G-to-A mutations in the viral genome,

with potential deleterious consequences. However,

viruses often produce proteins that counteract cellular

defense systems. FV Bet protein has been shown to

prevent APOBEC action [40–43]. Despite the action of

Bet, it was reported that SFV genomes found in humans

displayed some G-to-A mutations [24,44]. Matsen et al.

found that the frequence and the type of hypermuta-

tions were different in humans and macaques, with a

majority of hypermutations leading to stop codons in

humans, suggesting active restriction of the infecting

strain in humans and not only passive acquisition of

previously mutated strain [45�].

Additional studies have been performed in vitro to eluci-

date the mechanisms involved in the control of SFV
Current Opinion in Virology 2015, 10:47–55 
replication, although their relevance in vivo has not been

tested so far:

- Two homologous proteins, N-Myc interactor (NMI) as

well as a member of the interferon-induced protein

(IFP) family, IFP35, can inhibit the replication of PFV

and BFV, respectively, by direct interaction with the

viral transactivator Tas [46,47].

- Tetherin is known to block many different types of

enveloped viruses by tethering the budding virus at the

cell membrane and is also efficient to prevent FV

release [48,49].

- TRIM5a are antiviral proteins that prevent viral

decapsidation [50]. They act in a species-specific

manner: PFV and SFVmac are restricted by TRIM5a

from most New World monkeys, but not from other

primates including humans. This indicates that

TRIM5a is probably not involved in the restriction

of SFV after cross-species transmission from chimpan-

zees and macaques to humans, at least nowadays [51].

Of note, some known antiretroviral factors are not potent

against SFV. For instance, as reverse transcription occurs

predominantly before entry into target cell, these viruses are

resistant to the dNTP levels reduction by SAMHD1 [52].

Adaptative restriction of SFV
Few studies have addressed the question of adaptative

immune response to SFV.

First, neutralizing antibodies present in the serum of

infected animals inhibit SFV transmission and infection

in rhesus macaques [53], indicating a role of the adaptive

immune response in the control of SFV in vivo. This is

further supported by the fact that antibodies titers in feces

of chimpanzees infected with SFV are inversely correlat-

ed with SFV viral load [34]. However, very few data are

available concerning the adaptative immune response to

SFV in humans. Antibodies against SFV are detected in

the blood of infected individuals and were also found in

saliva and urine samples in four SFV-infected individuals

tested. However, antibody titers were lower than in

infected chimpanzees, which could be linked to lower

levels of SFV replication in humans [54]. Neutralization

of SFV by sera from three SFVagm-infected individuals

was reported in 1983 and 1997 [55,56].

Secondly, neutralization of IFN-gamma in activated

PBMCs infected with SFV, increases viral expression

[57] and SFV up-regulates MHC-I in vitro [58], suggest-

ing that adaptative immunity might be elicited and effi-

cient in the control of SFV in infected individuals.

Although virus-specific T lymphocytes are key effectors

that control the outcome of HTLV and HIV infection

[59], no report has addressed their presence in SFV-

infected NHPs or humans.
www.sciencedirect.com
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Conclusion
Human infection by SFV constitutes a unique natural

model to study the various parameters involved in restric-

tion of retroviral emergence. The future of SFV emer-

gence in humans remains an open question. However, the

current increase in NHP-to-human contacts (in part due

to hunting activities and animal handling) may favor such

cross-species transmission [2]. Furthermore, other factors

such as SFV co-infection with HIV, already reported in

Cameroon [60], may increase the risk of SFV pathogenic-

ity and will require further investigation. Nevertheless,

any prediction concerning viral emergence remains very

difficult and hazardous, as recently exemplified by Ebola

and MERS coronavirus outbreaks in West Africa and

Saudi Arabia respectively [61]. In this regard, intensive

research on mechanisms of the first steps of viral emer-

gence should be further developed.
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