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Objectives: Treatment of Systemic Lupus Erythematosus (SLE) is characterized by a
largely empirical approach and relative paucity of novel compound development. We
sought to stratify SLE patients based on their molecular phenotype and identify putative
therapeutic compounds for each molecular fingerprint.

Methods: By the use of whole blood RNA-seq data from 120 SLE patients, and in a data-
driven, clinically unbiased manner, we established modules of commonly regulated genes
(molecular endotypes) and re-stratified patients through hierarchical clustering. Disease
activity and severity were assessed using SLEDAI-2K and Lupus Severity Index,
respectively. Through an in silico drug prediction pipeline, we investigated drugs
currently in use, tested in lupus clinical trials, and listed in the iLINCS prediction
databases, for their ability to reverse the gene expression signatures in each molecular
endotype. Drug repurposing analysis was also performed to identify perturbagens that
counteract group-specific SLE signatures.

Results: Molecular taxonomy identified five lupus endotypes, each characterized by a
unique gene module enrichment pattern. Neutrophilic signature group consisted primarily
of patients with active lupus nephritis, while the B-cell expression group included patients
with constitutional features. Patients with moderate severity and serologic activity
org May 2022 | Volume 13 | Article 8607261
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exhibited a signature enriched for metabolic processes. Mild disease was distributed in
two groups, exhibiting enhanced basic cellular functions, myelopoiesis, and autophagy.
Bortezomib was predicted to reverse disturbances in the “neutrophilic” cluster,
azathioprine and ixazomib in the “B-cell” cluster, and fostamatinib in the “metabolic”
patient subgroup.

Conclusion: The clinical spectrum of SLE encompasses distinct molecular endotypes,
each defined by unique pathophysiologic aberrancies potentially reversible by distinct
compounds.
Keywords: molecular taxonomy, drug response prediction, systemic lupus erythematosus, drug repurposing, endotypes
INTRODUCTION

Systemic lupus erythematosus (SLE) has a unique set of
attributes, which has established it as the prototype among
systemic autoimmune diseases. With few notable exceptions,
recent advances in the understanding of SLE pathogenesis have
failed to translate into new therapies. High-throughput methods
have enabled the discovery of novel drugs in a time- and cost-
efficient manner. To this end, the Connectivity Map (CMap)
project is the first powerful drug repurposing platform that
embedded gene expression responses of 4 human cell lines
treated with different doses of a large collection of FDA-
approved compounds (1). Taking a step forward, the NIH-
supported Library of Integrated Network-Based Cellular
Signatures (LINCS) enriched the transcriptomic databases of
the CMap project by integrating the gene expression profiles of
more than 60 cell lines before and after exposure to more than
20,000 perturbagens (2). In this context, Toro-Dominguez et al.
employed the successor of the CMap, Lincscloud, suggesting the
therapeutic potential of phosphoinositol 3 kinase and
mammalian target of rapamycin (mTOR) inhibitors in SLE (3).

We have previously used mRNA sequencing to define the
transcriptomic signature of SLE patients. Our data showed that
SLE is characterized by a “susceptibility signature” present in
patients in clinical remission compared to healthy controls.
Additionally, we identified an “activity signature” present in
patients with active disease, which was mainly associated with
genes that regulate immune cell metabolism, protein synthesis
and proliferation. Lastly, we detected a “severity signature”, best
illustrated in active nephritis, linked to granulocyte and
plasmablast/plasma–cell pathways (4).

In the present study, we used the same RNA-sequencing
dataset in order to stratify lupus patients according to underlying
fundamental molecular aberrancies and predict personalized
therapeutic options. Specifically, we established an in silico
drug prediction pipeline to select the optimal treatments for
each patient subgroup, among compounds that have already
been tested against SLE in clinical trials. We also deployed a
personalized drug repurposing pipeline to identify FDA-
approved drugs or patented compounds for different
indications, that could be applied as potential therapeutic
agents for each group of SLE patients. We provide a
comprehensive, in-depth analysis of the human SLE
org 2
transcriptome to guide precision care and new therapeutic
compound development.
MATERIALS AND METHODS

Patients
Whole blood transcriptional profiles of 120 patients with SLE
and 58 healthy individuals (4) were analyzed. Disease activity at
the time of blood sampling was assessed by the modified
Systemic Lupus Erythematosus Disease Activity Index 2000
(SLEDAI-2K), after exclusion of the serologic features (anti-
dsDNA and complement levels) (clinical SLEDAI) (5).
Remission was defined as a clinical SLEDAI-2K = 0 and daily
prednisolone dose of ≤5 mg (6, 7). Active disease was defined as a
clinical SLEDAI-2K ≥4. Irreversible organ damage was assessed
using the SLICC damage index (SDI) (8). Lupus Severity Index
was calculated for each patient (9).

Co-Expression Network Analysis
We employed CoCena² (construction of co-expression network
analysis-automated, https://github.com/UlasThomas/CoCena2),
using the 10,000 most variable genes as input, to determine
modules of co-expressed transcripts. Next, agglomerative
hierarchical clustering of patients, based on their group fold
changes (GFC) for each cluster of co-expressed genes, defined
the disease molecular endotypes. Functional enrichment analysis
was performed using clusterProfilerR package (10).

Drug Prediction Analysis
DEseq2 was used to identify differentially expressed genes
(DEGs) specific for each patient’s endotype (11). We obtained
gene expression signatures of drugs that are incorporated in the
treatment recommendations for SLE (12), or have failed to reach
SLE clinical trials endpoints and are included in the following
iLINCS sublibraries: i) iLINCS chemical perturbagens
(LINCSCP); ii) iLINCS targeted proteomics signatures
(LINCSTP); i i i ) Disease-re lated s ignatures (GDS);
iv) Connectivity Map signatures (CMAP); v) DrugMatrix
signatures (DM); vi) Transcriptional signatures from EBI
Expression Atlas (EBI); vii) Cancer therapeutics response
signatures (CTRS); and viii) Pharmacogenomics transcriptional
May 2022 | Volume 13 | Article 860726
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signatures (PG). These were downloaded using the iLINCS API
(ht tps : / /g i thub .com/ucbd2k/ i l incsAPI /b lob/master /
usingIlincsApis.Rmd). Statistically significant DEGs from each
drug signature were ordered by decreasing fold change
magnitude . The top 300 DEGs were se lected and
upregulated/downregulated genes were identified. Gene set
enrichment analysis (GSEA) was performed using fgsea R
package (13). To determine the optimal number of drug
clusters for k-means clustering, the elbow method was applied.

Drug Repurposing Analysis
Drug repurposing results were prioritized using the
bioinformatic tool CoDReS (Computational Drug repositioning
score) (14), which enables the exploration of compound
drugability, based on an algorithm that combines functional
and structural scores. The functional score quantifies the
pharmacodynamic potential of a compound by assessing its
association to SLE hallmarks. This potential includes the
binding affinity to SLE molecular targets (enzyme, receptor,
transcription factor, etc.), as well as the overlap of its genomic
targets with genes implicated in the pathogenesis of the disease.
The structural score pertains to the pharmacokinetic properties
of compounds and contains information related to the
hydrophilic-lipophilic balance, solubility, permeability, as well
as oral bioavailability of a drug candidate, based on the “Lipinski
rules of 5” (15) and “Veber’s rule” (16).
RESULTS

Co-Expression Analysis Stratifies SLE
Patients Into Distinct Endotypes in an
Unbiased Data-Driven Manner
Applying the CoCena² pipeline, we identified nine modules of
co-expressed transcripts illustrated with different colors in
Figure S1. Hierarchical clustering of samples according to each
module’s group fold changes (GFC) reassigned patients into five
groups (G1 to G5) (Figures 1A, B). To define disease-driving
molecular mechanisms, we investigated the CoCena²-derived
modules enrichment in each patient group (Figures 1C, D).
Interestingly, groups displayed distinct enrichment patterns,
each exhibiting unique major module predominance. Platelet
activation and hemostasis were identified as two group 1 specific
signals (G1, “Hemostasis” group), overrepresented in the orchid
module. Detailed functional enrichment analysis of the dark-grey
module revealed that autophagy-associated signatures were
prominently enriched in patient group 2 (G2, “Autophagy”
group). Macroautophagy disturbances in G2 are accompanied
by deregulation of pathways involved in neutrophil activation
and toll-like receptor (TLR) cascade. Combined enrichment of
the pink module, linked to aberrancies of mRNA splicing and
mRNA surveillance mechanisms, and the dark-orange module,
implicated among others in mitochondrial dysfunction,
efficiently distinguished group 3 (G3, “Metabolism” group).
Heightened expression of the indian-red module, which
predominantly consists of genes implicated in neutrophil
Frontiers in Immunology | www.frontiersin.org 3
activation and degranulation, defines group 4 (G4,
“Neutrophil” group). Enrichment of the dark-green module,
which comprises genes (such as CD38, BLNK, IGHA1,
TNFRSF17, CD22, CD79A, MS4A1, IGHD) linked to B-cell
and plasmablast-mediated responses, was indicative of group 5
(G5, “B cell” group). Interestingly, G5 displays a concurrent
increased expression of the steel-blue module, which is
associated with type I interferon (IFN) signaling.

Molecular Clusters Are Associated With
Distinct Clinical Traits
To evaluate the clinical implications of molecular endotype
characterization, we next assessed each group’s clinical
features, including demographics, clinical manifestations,
serologic features, and administered treatments. The
“Neutrophil” group (G4, n= 11, 9.1% of the total cohort)
almost uniformly encompassed patients with active lupus
nephritis (n=9/11) (Figure 2). Patients of this cluster also
exhibited high serologic and clinical activity; the majority were
treated with cyclophosphamide at the time of blood sampling
(Figures 2, S2, S3). The “B-cell” group (G5, n=18, 15% of the
total cohort) was characterized by high prevalence of
constitutional symptoms. Although statistical significance was
not reached, a tendency to a higher frequency of hematological
and neurological manifestations was apparent in this cluster.
Mucocutaneous and musculoskeletal manifestations were most
common in the “Metabolism” group (G3, n=30, 25% of the total
cohort), occurring in 63% and 50% of patients, respectively,
while a history of neuropsychiatric SLE (NPSLE) was reported in
27%. Interestingly, the clinically heterogenous “Hemostasis”
group (G1, 24.2% of the total cohort) was characterized by
high frequency of male patients, while Disease Modifying Anti-
Rheumatic Drugs (DMARDs) were the most commonly used
therapy. Finally, the “Autophagy” group (G2, n=32, 26.7% of the
total cohort) consisted of patients with mild to moderate SLE.
Accordingly, photosensitivity and malar rash were found in
59,3% and 81,2% of the patients of G2, respectively.

Molecular Endotypes Can Be Used to
Predict Group-Specific Effective
Compounds Towards Personalized
Therapeutic Decisions
To explore personalized therapeutic solutions, we identified
compounds tailored to each group’s molecular fingerprint.
This was achieved through leveraging our CoCena² based co-
expression analysis, to establish an in silico, signature-based,
drug prediction pipeline. As group-specific signatures, we
employed the DEGs resulting from the comparison of each
SLE endotype with a pool of 58 healthy controls.

To this end, we initially collected the transcriptional profiles
corresponding to cellular responses against drugs that are either
currently used in clinical practice, are or have failed in SLE
clinical trials and are listed in the iLINCS prediction databases
(Table S1). Our query returned 3,900 drug signatures (Table S2).
Using SLE group-specific transcriptional profiles as input, we
performed GSEA against the datasets of the top upregulated and
May 2022 | Volume 13 | Article 860726
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top downregulated DEGs for each drug signature and
normalized enrichment scores (NES) were defined. Next, we
calculated the difference (DNES) of the NES from the
downregulated gene set and the NES from the upregulated
gene set for each drug signature per SLE cluster (Table S3).
Accordingly, a positive DNES indicated compounds that were
predicted to reverse the group-specific transcriptomic
aberrancies. To determine endotype-specific drug candidates,
we applied k-means clustering, in order to group drug signatures
according to DNES (Figures S4, S5). Drug signatures with the
highest DNES within each drug cluster induce cellular
transcriptional alterations which most efficiently counteract
group-specific SLE signatures.
Frontiers in Immunology | www.frontiersin.org 4
In G5, the top signatures were linked to azathioprine
(DNES=2.76) and ixazomib (DNES=2.67) (Figure 3A), whereas
in G2 to the proteasome inhibitor bortezomib (DNES=2.84).
Signatures related to the SYK kinase inhibitor tamatinib
(DNES=2.81) were top ranked in G3 subgroup (Figure 3B). In
G4 group, signatures related to bortezomib occurred in high
frequency (76%) among the top 50 signatures, starting with a
DNES score 2.54 and, together with the calcineurin inhibitor
cyclosporine (DNES score 2.49), might represent alternative G4-
specific therapeutic options (Figure 3C). Finally, in both groups
4 and 5, signatures related to vitamin D derivatives (such as
seacalcitol) prevailed, with a DNES score 3.04 and
2.97, respectively.
A C

D

B

FIGURE 1 | (A) Hierarchical clustering of the samples based on the magnitude of the expression of each gene module (identified in Figure S1) defined five groups
of patients (G1 to G5). Briefly, the x-axis demonstrates the patients analyzed in our study. GFC denotes the Group Fold Changes (defined in Figure S1); GB denotes
the sample; the number after the GB acronym denotes each patient database ID. (B) Alluvium plot illustrating the distribution of the SLE patients into the patient
groups G1-G5 generated after the hierarchical clustering of the samples according to each module’s group fold changes. Briefly, the 120 SLE patients included in
our study are displayed in the left vertical box (Patients). Each horizontal block corresponds to a patient. The distribution of the patients according to the presence
and the activity of Lupus Nephritis (LN) was demonstrated in the middle vertical box. The distribution of the patients into the five CoCena2 analysis defined patient
groups was shown in the right vertical box. (C) Heatmap showing the mean of the GFCs of the CoCena2 analysis derived gene modules in each one of the
previously defined patient groups. Group specific GFCs demonstrated similar and counteracting gene expression patterns among patient groups. Briefly, increased
expression of the indian-red module characterized G4. Enrichment of the dark-green module defined G5. Heightened expression of the dark-grey module
distinguished G2. Lastly, enrichment of the pink and dark-orange modules was indicative of G3. (D) Dot plot displaying the functional enrichment analysis of the
CoCena2-derived modules. Gene modules are shown on the basis of the graph. Enriched gene ontologies and pathways are shown on left side of the graph. Briefly,
the indian-red module included genes that were mainly enriched in neutrophil activation and degranulation. Functional enrichment analysis of the dark-green module
revealed disturbances related to plasmablast-mediated responses. Dark-grey module predominantly consisted of genes related to autophagy. Genes of the pink
module were enriched in mRNA splicing, whereas gene ontologies related to mitochondrial function were overrepresented among the genes included in the dark-
orange module.
May 2022 | Volume 13 | Article 860726
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Since the majority of the G4 patients were treated with
cyclophosphamide at sampling, an agent that could drastically
alter the whole blood transcriptional landscape, we divided G4
into two subgroups; one treated with cyclophosphamide (G4A,
n=6/11) and a “cyclophosphamide-free” subgroup (G4B, n=5/
11) and we applied the drug prediction pipeline. In accordance
with our initial findings, bortezomib was overrepresented among
the top 10 signatures in both subgroups (Tables S4, S5).

Drug Repurposing Tailored to SLE
Molecular Aberrancies
Finally, we sought to propose new SLE therapeutic agents. To
this end, we used a drug repurposing pipeline identifying
patented compounds with potentially unrecognized efficacy in
SLE. Using the iLINCS and CLUE platforms, we identified novel
compounds that could reverse the previously defined SLE group-
specific signatures. To sort out the top perturbagens derived from
the iLINCS platform, we applied a negative concordance score
cut-off of ≤ -0.5. Regarding the CLUE based analysis, only
compounds exhibiting an inhibitory score of ≤ -50 were
selected. Lastly, group-specific perturbagens were determined,
as shown in the Venn diagram (Figures 4A, B). To enhance the
performance of our approach, group-specific compounds were
ranked, according to their druggability (“druggability
prediction”). For this purpose, we used the bioinformatic tool
Frontiers in Immunology | www.frontiersin.org 5
CoDReS (Computational Drug Repositioning Score) (14).
Uploading the iLINCS- and CLUE-derived compound lists
(which were related exclusively to each SLE endotype) to the
CoDReS platform resulted in the re-ranking of the repurposed
drugs, according to their biological and pharmaceutical potential
(Tables S6–S15).

G1 Subgroup
Our analysis indicated the p38 MAP kinase inhibitor vx-102 (17)
and the TBK1 and IKK kinase inhibitor amlexanox, as
potentially beneficial compounds. Lenalinomide, which has
been tested in SLE clinical trials (18), and the c-met-HGFR
(hepatocyte growth factor receptor) inhibitor pf-04217903 (19)
might also be considered as treatment options for G1
SLE patients.

G2 Subgroup
The GSK3B/CDK double kinase inhibitor kenpaullone (20) was
found to reverse G2-specific transcriptional patterns. Notably,
the antidiabetic DPP4 inhibitor saxagliptin (21), the DNA
methylation inhibitor zebularine [used for the treatment of
CD4+ T cells mediated uveitis in a murine model (22)], the
smoothened receptor antagonist erismodegib [inhibitor of the
sonic hedgehog signaling (23)] were also identified as potential
therapeutic compounds.
FIGURE 2 | Barplots demonstrating the prevalence of clinical features, Physician Global Assessment (SLE.status.(Physician)) and serological activity across patient
groups. The G4 was defined by the high prevalence of active lupus nephritis. Constitutional symptoms occurred most frequently in the G5. Mucocutaneous and
musculoskeletal manifestations were more prevalent among patients of the G3. *p < 0.05; **p < 0.01 in Kruskal-Wallis test, Chi-squared test.
May 2022 | Volume 13 | Article 860726
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A

B

C

FIGURE 3 | (A) Heatmap of the selected top 50 drug signatures from signature cluster 3 (Figure S4) showing the highest DNES score in the G5 patient group.
Signatures of the azathioprin and the ixazomib showed the highest DNES scores in the G5 patient group. MLN2238: Ixazomib. Labeling was carried out based on
the following strategy: “drug name”_”database”. (B) Heatmap of the selected top 50 drug signatures from signature cluster 1 with the highest DNES score in the G3
patient group. Signatures of SYK kinase inhibitor tamatinib showed the highest DNES scores in the G3 patient group. (C) Heatmap of the selected top 50 drug
signatures from signature cluster 4 with the highest DNES score in the G4 patient group. 76% of the top 50 drug signatures for G4 patient group belonged to the
proteasome inhibitor bortezomib. 179324-69-7: Bortezomib.
Frontiers in Immunology | www.frontiersin.org May 2022 | Volume 13 | Article 8607266
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Other Subgroups
Concerning G3, we identified numerous potential drug
candidates, including the protein kinase c (PKC) inhibitor
sotrastaurin (24), the EGFR receptor kinase inhibitor
tyrphostin 47 (25), and the mTOR kinase inhibitors azd-8055,
wye-125132, ku-0063794, wye-354 and torin-1 (26). Our data
also underlined the potential role of the dual PI3K/mTOR kinase
Frontiers in Immunology | www.frontiersin.org 7
inhibitor dactolisib, the proteasome inhibitors ixazomib and mg-
132 (27), the histone deacetylase inhibitors (HDACs)
panobinostat, vorinostat, dacinostat, apicidin and merck60 (28,
29), and the HSP90 inhibitor biib021 (30) for potential treatment
of patients in G3. Based on their pathophysiological relevance,
the HIF (hypoxia inducible factor) modulator vu-0418946-1
(31), the NFkB inhibitor cay-10470 (32), the CXCR2
A

B

FIGURE 4 | (A) Group specific compounds derived from iLINCS platform-based drug repurposing analysis. (B) Group specific compounds derived from CLUE
platform-based drug repurposing analysis.
May 2022 | Volume 13 | Article 860726
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antagonist sb-225002 (33), the JAK2 inhibitor fedratinib (34),
might represent promising therapeutic choices for G3 patients.

Moreover, chemical substances, such as the EGFR 2 receptor
tyrosine kinase inhibitor varlitinib (25), the A2A adenosine
receptor antagonist preladenant (35) and the niacin (vitamin
B3) (36) were found to be G4-specific drug candidates.

Finally, small molecules, such as the artemisinin derivative
artesunate, a drug applied for malaria (37), the dual FLT-3/JAK 2
kinase inhibitor lestaurtinib (38), the class1/2 HDAC inhibitor
givinostat (39), the mTOR kinase inhibitor vistusertib (26) and
the autophagy inhibitor bafilomycin-a1 (40) were identified as
G5-specific compounds.
DISCUSSION

Despite advances in our understanding of SLE pathogenesis,
selecting the optimal treatment for each individual patient
remains a challenge. Herein, we applied a whole blood
transcriptome-based molecular taxonomy strategy to stratify
SLE patients according to their molecular fingerprints.
Leveraging high-throughput computational methods, we
exploited patient molecular endotypes to optimize putative
therapeutic choices in a personalized approach. Finally, we
applied available bioinformatic tools to establish a personalized
drug repurposing methodology for the identification of new
compounds that could enrich our armamentarium in
SLE treatment.

Our data-driven re-stratification approach recapitulated the
spectrum of previously identified lupus pathophysiological
processes. For example, Banchereau et al. have shown that
progression to active lupus nephritis is accompanied by an
incremental enrichment of neutrophilic gene expression
signatures (41). Accordingly, transcriptional signatures
reflective of neutrophil activation defined G4 subgroup in our
study, which consisted almost exclusively of active lupus
nephritis patients.

Previous studies have highlighted the crucial role of type I
IFN signaling in the loss of B cell tolerance and autoantibody
production in SLE-prone mice (42). Gene expression signatures
indicative of type I IFN production, B cells and plasmablast
activation prevail in G5 group, implying the presence of type I
IFN-induced autoreactive B cell development.

Incomplete response to existing drugs remains a substantial
challenge for SLE patients, while various reasons related both to
the disease and to trial design have accounted for the failure of
several SLE clinical trials. Exploiting one of the largest drug
signature databases to date, iLINCS, allowed us to predict the
best patient endotype-specific drug candidates from a pool of
currently available therapies and drugs. To this end, Alexander
et al. have proposed the proteasome inhibitor bortezomib as a
putative therapeutic option for patients with refractory lupus
(43). Our unbiased approach indicated that use of bortezomib
might be efficacious for the treatment of patients belonging to the
“Neutrophil”molecular endotype. Moreover, expression of Syk is
increased in SLE T cells and skin lesions of lupus MRL/lpr mice
Frontiers in Immunology | www.frontiersin.org 8
(44, 45), while administration of Syk inhibitors ameliorates
kidney injury in lupus-prone mice (44). In this regard, our
results suggest that patients in the G3 “Metabolism” subgroup
might benefit most from treatment with fostamatinib. Depletion
of abnormal plasma cells is considered a potential mechanism of
action of the proteasome inhibitor ixazomib (46). In this context,
our drug prediction analysis further substantiates the therapeutic
relevance of targeting B cell responses in patients’ group G5 (“B-
cell” subgroup).

Over the last years, in silico drug repositioning studies for SLE
have been published, based on gene expression and genetic
profiles (47–49). Furthermore, efforts have been made to
individualize drug repurposing results, according to the
molecular features of lupus patients (49), whereas several
studies have applied literature mining approaches, in order to
prioritize the most promising compounds (50, 51). Herein, we
performed personalized drug repurposing analysis using two
robust, high-throughput platforms (iLINCS and CLUE).
Notably, the top-ranked compounds were assessed not only
through extensive literature review, but also according to their
“druggability” profile. Activation of PI3K/Akt/mTORC1
signaling pathway characterizes T cells of SLE patients (52). In
addition, pharmacological dampening of PI3K signaling in
lupus-prone mice provides evidence for the therapeutic
potential of targeting PI3K/Akt/mTORC1 pathway in SLE (52).
Similarly, our findings indicate that several inhibitors of the
PI3K/mTOR pathway (azd-8055, dactolisib) might be promising
therapeutic options for patients belonging to the “Metabolism”
(G3) group. Aberrant type I IFN and IFN-g signaling and the
encouraging results from baricitinib phase 2 study in SLE
provide a clear rationale for targeting the JAK/STAT pathway
in SLE (53). To this end, administration of the JAK2 inhibitor
fedratinib, identified by our approach as an appropriate
treatment for patients in G3 group, might also confer
therapeutic benefit.

Certain limitations of our study deserve acknowledgment.
First, the vast majority of patients included in this study were
receiving immunosuppressive treatment at sampling, thus
therapy-induced immunosuppression may be mirrored in the
whole blood transcriptional profile, altering the expression of
essential pathophysiological mechanisms. Moreover, our in silico
drug prediction strategy is an explorative approach and
additional in vitro and in vivo studies are clearly required to
confirm our findings. Results of the phase III clinical trials
BLISS-LN (54) and AURORA 1 (55) have shown a clinical
benefit of adding belimumab or voclosporin, respectively, on
top of standard-of-care in patients with lupus nephritis.
Regarding the molecular complexity of the disease, also
underscored by our findings, these studies might denote the
need towards combination treatment approaches. Obviously,
further drug combination prediction analysis might be useful
to explore new avenues for SLE treatment.

In summary, we present a molecular taxonomy-based
pipeline to guide therapy and identify new compounds for
patients with SLE, based on a comprehensive, in-depth analysis
of the transcriptome. These data need to be further validated and
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tested in preclinical models of SLE and in longitudinal
clinical studies.
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Supplementary Figure 1 | Modules (pink to indian-red) of commonly regulated
transcripts as identified by CoCena2 analysis and heatmap depicting the group fold
changes (GFC) of each sample per module. The identified transcript modules were
illustrated in the annotation color bar on the right side of the heatmap. The patients
analyzed in our study were shown in the x-axis of the heatmap. GFC were defined
for each gene by computing the mean expression of a gene across all samples,
followed by calculating the sample specific fold change of the gene expression from
the overall mean. Then, the GFC of all genes within each module were added and
divided by the total number of genes of each module, returning the GFCs of each
sample per module. Briefly, the color intensity represented the relative magnitude of
the expression of each gene module per SLE patient. GFC denotes group fold
change; GB followed by number denoted the patient identifier according to our
anonymous coding system.

Supplementary Figure 2 | Barplots demonstrating the distribution of
demographic features as well as the frequency of NPSLE history, Antiphospholipid
Syndrome (APS) history, serum anti-DNA antibodies positivity, antiphospholipid
antibodies positivity across the patients groups. *:p<0.05; **:p<0.01 in Kruskal-
Wallis test, Chi-squared test.

Supplementary Figure 3 | Barplots displaying the treatments the patients were
receiving at the sampling timepoint. Cyclophosphamide and MMF were the most
commonly used treatments in the G4. *:p<0.05; **:p<0.01 in Kruskal-Wallis test,
Chi-squared test.
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Supplementary Figure 4 | Clusters of drugs signatures (Cluster 1-4) as
identified by k-means clustering according to the DNES scores. DNES score was
defined as the difference between the NES from the downregulated gene set and
the NES from the upregulated gene set for each drug signature. Utilizing the
calculated DNES scores, drug signatures were next grouped using the k-means
clustering method into 4 clusters, which were shown on the right side of the
heatmap. The heatmap visualized how each of the 4 identified drug clusters were
enriched in the specific patient groups. A group specific predominant
enrichment of a drug cluster indicated that the drugs included in the drug cluster
of interest might be the most potent drug candidates for the specific patient
group. Briefly, cluster 4 contained drug signatures that were predicted to most
efficiently reverse the transcriptional aberrations of G4. Accordingly, drug cluster
3 might contain the best drug candidates for group G5, whereas drug cluster 1
included drug signatures that might most effectively counteract the G3-specific
transcriptional changes.

Supplementary Figure 5 | Elbow method identified optimal number of drug
clusters for k-means clustering.

Supplementary Table 1 | Drugs that are currently used in the treatment of SLE or
evaluated in SLE clinical trials and their gene expression signatures are included in
iLINCS sublibraries.

Supplementary Table 2 | Gene expression signatures of the drugs of table 1.
that are listed in the iLINCS prediction databases.

Supplementary Table 3 | Ranking of specific drug related signatures for each
SLE patients’ molecular endotype, according to DNES score.

Supplementary Table 4 | Drug related signatures with DNES scores for patient
group G4A.

Supplementary Table 5 | Drug related signatures with DNES scores for patient
group G4B.

Supplementary Table 6 | Ranking of the compounds derived from the iLINCS
platform through the CoDReS platform. This analysis was performed for SLE
patients’ molecular endotypes separately.

Supplementary Table 7 | Ranking of the compounds derived from the iLINCS
platform through the CoDReS platform. This analysis was performed for SLE
patients’ molecular endotypes separately.

Supplementary Table 8 | Ranking of the compounds derived from the iLINCS
platform through the CoDReS platform. This analysis was performed for SLE
patients’ molecular endotypes separately.

Supplementary Table 9 | Ranking of the compounds derived from the iLINCS
platform through the CoDReS platform. This analysis was performed for SLE
patients’ molecular endotypes separately.

Supplementary Table 10 | Ranking of the compounds derived from the iLINCS
platform through the CoDReS platform. This analysis was performed for SLE
patients’ molecular endotypes separately.

Supplementary Table 11 | Ranking of the compounds derived from the CLUE
platform, through the CoDReS platform. This analysis was performed for SLE
patients’ molecular endotypes separately.

Supplementary Table 12 | Ranking of the compounds derived from the CLUE
platform, through the CoDReS platform. This analysis was performed for SLE
patients’ molecular endotypes separately.

Supplementary Table 13 | Ranking of the compounds derived from the CLUE
platform, through the CoDReS platform. This analysis was performed for SLE
patients’ molecular endotypes separately.
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Supplementary Table 14 | Ranking of the compounds derived from the CLUE
platform, through the CoDReS platform. This analysis was performed for SLE
patients’ molecular endotypes separately.
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Supplementary Table 15 | Ranking of the compounds derived from the CLUE
platform, through the CoDReS platform. This analysis was performed for SLE
patients’ molecular endotypes separately.
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3. Toro-Domıńguez D, Carmona-Sáez P, Alarcón-Riquelme ME. Support for
Phosphoinositol 3 Kinase and mTOR Inhibitors as Treatment for Lupus
Using in-Silico Drug-Repurposing Analysis. Arthritis Res Ther (2017) 19
(1):54. doi: 10.1186/s13075-017-1263-7

4. Panousis NI, Bertsias GK, Ongen H, Gergianaki I, Tektonidou MG, Trachana
M, et al. Combined Genetic and Transcriptome Analysis of Patients With
SLE: Distinct, Targetable Signatures for Susceptibility and Severity. Ann
Rheum Dis (2019) 78(8):1079–89. doi: 10.1136/annrheumdis-2018-214379

5. Uribe AG, Vila LM, McGwin GJr., Sanchez ML, Reveille JD, Alarcon GS. The
Systemic LupusActivity Measure-Revised, the Mexican Systemic Lupus
Erythematosus Disease Activity Index (SLEDAI), and a Modified SLEDAI-
2K are Adequate Instruments to Measure Disease Activity in Systemic Lupus
Erythematosus. J Rheumatol (2004) 31(10):1934–40.

6. Ugarte-Gil MF, Acevedo-Vasquez E, Alarcon GS, Pastor-Asurza CA, Alfaro-
Lozano JL, CuchoVenegas JM, et al. The Number of Flares Patients
Experience Impacts on Damage Accrual in Systemic Lupus Erythematosus:
Data From a Multiethnic Latin American Cohort. Ann Rheum Dis (2014) 74
(6):1019–23. doi: 10.1136/annrheumdis-2013-204620

7. Zen M, Iaccarino L, Gatto M, Bettio S, Nalotto L, Ghirardello A, et al. Prolonged
Remission in Caucasian Patients With SLE: Prevalence and Outcomes. Ann
Rheum Dis (2015) 74(12):2117–22. doi: 10.1136/annrheumdis-2015-207347

8. Gladman D, Ginzler E, Goldsmith C, Fortin P, Liang M, Urowitz M, et al. The
Development and Initial Validation of the Systemic Lupus International
Collaborating Clinics/American College of Rheumatology Damage Index
for Systemic Lupus Erythematosus. Arthritis Rheum (1996) 39:363–9. doi:
10.1002/art.1780390303

9. Bello GA, Brown MA, Kelly JA, Thanou A, James JA, Montgomery CG.
Development and Validation of a Simple Lupus Severity Index Using ACR
Criteria for Classification of SLE. Lupus Sci Med (2016) 3(1):e000136.
doi: 10.1136/lupus-2015-000136

10. Yu G, Wang L, Han Y, He Q. Clusterprofiler: An R Package for Comparing
Biological Themes Among Gene Clusters. OMICS (2012) 16(5):284–7.
doi: 10.1089/omi.2011.0118

11. Love MI, Huber W, Anders S. Moderated Estimation of Fold Change and
Dispersion for RNA-Seq Data With Deseq2. Genome Biol (2014) 15:550.
doi: 10.1186/s13059-014-0550-8

12. Fanouriakis A, Kostopoulou M, Alunno A, Aringer M, Bajema I, Boletis JN,
et al. 2019 Update of the EULAR Recommendations for the Management of
Systemic Lupus Erythematosus. Ann Rheum Dis (2019) 78(6):736–45.
doi: 10.1136/annrheumdis-2019-215089

13. Korotkevich G, Sukhov V, Sergushichev A. Fast Genesetenrichment Analysis.
bioRxiv (2019). doi: 10.1101/060012

14. Karatzas E, Minadakis G, Kolios G, Delis A, Spyrou GM. A Web Tool for
Ranking Candidate Drugs Against a Selected Disease Based on a Combination
of Functional and Structural Criteria. Comput Struct Biotechnol J (2019)
17:939–45. doi: 10.1016/j.csbj.2019.05.010

15. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and
Computational Approaches to Estimate Solubility and Permeability in Drug
Discovery and Development Settings. Adv Drug Deliv Rev (1997) 23:3–25. doi:
10.1016/S0169-409X(96)00423-1

16. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW. Molecular
Properties That Influence the Oral Bioavailability of Drug Candidates.
J Med Chem (2002) 45:2615–23. doi: 10.1021/jm020017n
17. Jin N, Wang Q, Zhang X, Jiang D, Cheng H, Zhu K. The Selective P38
Mitogen-Activated Protein Kinase Inhibitor, SB203580, Improves Renal
Di sea se in MRL/ lpr Mouse Mode l o f Sys t emic Lupus . In t
Immunopharmacol (2011) 11(9):1319–26. doi: 10.1016/j.intimp.2011.04.015

18. Okon L, Rosenbach M, Krathen M, Rose M, Propert K, Okawa J, et al.
Lenalidomide in Treatment-Refractory Cutaneous Lupus Erythematosus:
Efficacy and Safety in a 52-Week Trial. J Am Acad Dermatol (2014) 70
(3):583–4. doi: 10.1016/j.jaad.2013.11.007

19. Hübel J, Hieronymus T. HGF/Met-Signaling Contributes to Immune
Regulation by Modulating Tolerogenic and Motogenic Properties of
Dendritic Cells. Biomedicines (2015) 3(1):138–48. doi: 10.3390/
biomedicines3010138

20. Zhao J, Wang H, Huang Y, Zhang H,Wang S, Gaskin F, et al. Lupus Nephritis:
Glycogen Synthase Kinase 3b Promotion of Renal Damage Through
Activation of the NLRP3 Inflammasome in Lupus-Prone Mice. Arthritis
Rheumatol (2015) 67(4):1036–44. doi: 10.1002/art.38993

21. Kim SC, Schneeweiss S, Glynn RJ, Doherty M, Goldfine AB, Solomon DH.
Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes may Reduce the Risk of
Autoimmune Diseases: A Population-Based Cohort Study. Ann Rheum Dis
(2015) 74(11):1968–75. doi: 10.1136/annrheumdis-2014-205216

22. Zou Y, Hu X, Schewitz-Bowers LP, Stimpson M, Miao L, Ge X, et al. The DNA
Methylation Inhibitor Zebularine Controls CD4+ T Cell Mediated Intraocular
Inflammation. Front Immunol (2019) 10:1950. doi: 10.3389/fimmu.2019.01950

23. Qin S, Sun D, Li H, Li X, Pan W, Yan C, et al. The Effect of SHH-Gli Signaling
Pathway on the Synovial Fibroblast Proliferation in Rheumatoid Arthritis.
Inflammation (2016) 39(2):503–12. doi: 10.1007/s10753-015-0273-3

24. Hage-Sleiman R, Hamze AB, Reslan L, Kobeissy H, Dbaibo G. The Novel
PKCq From Benchtop to Clinic. J Immunol Res (2015) 2015:348798.
doi: 10.1155/2015/348798

25. Huang C-M, Tsai C-H, Chen C-L, Chang C-P, Lai C-C, Tsai F-J. Epidermal
Growth Factor Receptor (EGFR) Gene Bsr I Polymorphism is Associated
With Systemic Lupus Erythematosus. Lupus (2004) 13(10):773–6.
doi: 10.1191/0961203304lu1081oa

26. Fernandez D, Perl A. mTOR Signaling: A Central Pathway to Pathogenesis in
Systemic Lupus Erythematosus? Discov Med (2010) 9(46):173–8.

27. Xi J, Zhuang R, Kong L, He R, Zhu H, Zhang J. Immunoproteasome-Selective
Inhibitors: An Overview of Recent Developments as Potential Drugs for
Hematologic Malignancies and Autoimmune Diseases. Eur J Med Chem
(2019) 182:111646. doi: 10.1016/j.ejmech.2019.111646

28. Waibel M, Christiansen AJ, Hibbs ML, Shortt J, Jones SA, Simpson I, et al.
Manipulation of B-Cell Responses With Histone Deacetylase Inhibitors. Nat
Commun (2015) 6:6838. doi: 10.1038/ncomms7838

29. Mishra N, Reilly CM, Brown DR, Ruiz P, Gilkeson GS. Histone Deacetylase
Inhibitors Modulate Renal Disease in the MRL-Lpr/Lpr Mouse. J Clin Invest
(2003) 111(4):539–52. doi: 10.1172/JCI16153

30. Shimp SK3rd, Chafin CB, Regna NL, Hammond SE, Read MA, Caudell DL,
et al. Heat Shock Protein 90 Inhibition by 17-DMAG Lessens Disease in the
MRL/lpr Mouse Model of Systemic Lupus Erythematosus. Cell Mol Immunol
(2012) 9(3):255–66. doi: 10.1038/cmi.2012.5

31. Zhao W, Wu C, Li LJ, Fan YG, Pan HF, Tao JH, et al. RNAi Silencing of HIF-
1a Ameliorates Lupus Development in MRL/lpr Mice. Inflammation (2018)
41(5):1717–30. doi: 10.1007/s10753-018-0815-6

32. Chalmers SA, Garcia SJ, Reynolds JA, Herlitz L, Putterman C. NF-kB
Signaling in Myeloid Cells Mediates the Pathogenesis of Immune-Mediated
Nephritis. J Autoimmun (2019) 98:33–43. doi: 10.1016/j.jaut.2018.11.004

33. Hsieh SC, Wu TH, Tsai CY, Li KJ, Lu MC, Wu CH, et al. Abnormal In Vitro
CXCR2 Modulation and Defective Cationic Ion Transporter Expression on
Polymorphonuclear Neutrophils Responsible for Hyporesponsiveness to IL-8
Stimulation in Patients With Active Systemic Lupus Erythematosus.
Rheumatology (Oxford) (2008) 47(2):150–7. doi: 10.1093/rheumatology/
kem320

34. Alunno A, Padjen I, Fanouriakis A, Boumpas DT. Pathogenic and
Therapeutic Relevance of JAK/STAT Signaling in Systemic Lupus
May 2022 | Volume 13 | Article 860726

https://doi.org/10.1126/science.1132939
https://doi.org/10.1016/j.cels.2017.11.001
https://doi.org/10.1186/s13075-017-1263-7
https://doi.org/10.1136/annrheumdis-2018-214379
https://doi.org/10.1136/annrheumdis-2013-204620
https://doi.org/10.1136/annrheumdis-2015-207347
https://doi.org/10.1002/art.1780390303
https://doi.org/10.1136/lupus-2015-000136
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1136/annrheumdis-2019-215089
https://doi.org/10.1101/060012
https://doi.org/10.1016/j.csbj.2019.05.010
https://doi.org/10.1016/S0169-409X(96)00423-1
https://doi.org/10.1021/jm020017n
https://doi.org/10.1016/j.intimp.2011.04.015
https://doi.org/10.1016/j.jaad.2013.11.007
https://doi.org/10.3390/biomedicines3010138
https://doi.org/10.3390/biomedicines3010138
https://doi.org/10.1002/art.38993
https://doi.org/10.1136/annrheumdis-2014-205216
https://doi.org/10.3389/fimmu.2019.01950
https://doi.org/10.1007/s10753-015-0273-3
https://doi.org/10.1155/2015/348798
https://doi.org/10.1191/0961203304lu1081oa
https://doi.org/10.1016/j.ejmech.2019.111646
https://doi.org/10.1038/ncomms7838
https://doi.org/10.1172/JCI16153
https://doi.org/10.1038/cmi.2012.5
https://doi.org/10.1007/s10753-018-0815-6
https://doi.org/10.1016/j.jaut.2018.11.004
https://doi.org/10.1093/rheumatology/kem320
https://doi.org/10.1093/rheumatology/kem320
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Garantziotis et al. Personalized Therapy Approach in SLE
Erythematosus: Integration of Distinct Inflammatory Pathways and the
Prospect of Their Inhibition With an Oral Agent. Cells (2019) 8(8):898.
doi: 10.3390/cells8080898

35. Bortoluzzi A, Vincenzi F, Govoni M, Padovan M, Ravani A, Borea PA, et al. A2A
Adenosine Receptor Upregulation Correlates With Disease Activity in Patients
With Systemic Lupus Erythematosus. Arthritis Res Ther (2016) 18:192.
doi: 10.1186/s13075-016-1089-8

36. Åkesson K, Pettersson S, Ståhl S, Surowiec I, Hedenström M, Eketjäll S, et al.
Kynurenine Pathway is Altered in PatientsWith SLE and AssociatedWith Severe
Fatigue. Lupus Sci Med (2018) 5(1):e000254. doi: 10.1136/lupus-2017-000254

37. Feng X, Chen W, Xiao L, Gu F, Huang J, Tsao BP, et al. Artesunate Inhibits
Type I Interferon-Induced Production of Macrophage Migration Inhibitory
Factor in Patients With Systemic Lupus Erythematosus. Lupus (2017) 26
(1):62–72. doi: 10.1177/0961203316651738

38. Whartenby KA, Small D, Calabresi PA. FLT3 Inhibitors for the Treatment of
Autoimmune Disease. Expert Opin Investig Drugs (2008) 17(11):1685–92.
doi: 10.1517/13543784.17.11.1685

39. Regna NL, Chafin CB, Hammond SE, Puthiyaveetil AG, Caudell DL, Reilly CM.
Class I and IIHistoneDeacetylase Inhibition by ITF2357Reduces SLEPathogenesis
In Vivo. Clin Immunol (2014) 151(1):29–42. doi: 10.1016/j.clim.2014.01.002

40. Clarke AJ, Ellinghaus U, Cortini A, Stranks A, Simon AK, Botto M, et al.
Autophagy is Activated in Systemic Lupus Erythematosus and Required for
Plasmablast Development. Ann Rheum Dis (2015) 74(5):912–20. doi: 10.1136/
annrheumdis-2013-204343

41. Banchereau R, Hong S, Cantarel B, Baldwin N, Baisch J, Edens M, et al.
Personalized Immunomonitoring Uncovers Molecular Networks That Stratify
Lupus Patients. Cell (2016) 165(3):551–65. doi: 10.1016/j.cell.2016.03.008

42. Domeier PP, Chodisetti SB, Schell SL, Kawasawa YI, Fasnacht MJ, Soni C,
et al. B-Cell-Intrinsic Type 1 Interferon Signaling Is Crucial for Loss of
Tolerance and the Development of Autoreactive B Cells. Cell Rep (2018) 24
(2):406–18. doi: 10.1016/j.celrep.2018.06.046

43. Alexander T, Sarfert R, Klotsche J, Kühl AA, Rubbert-Roth A, Lorenz HM, et al.
The Proteasome Inhibitior Bortezomib Depletes Plasma Cells and Ameliorates
Clinical Manifestations of Refractory Systemic Lupus Erythematosus. Ann Rheum
Dis (2015) 74(7):1474–8. doi: 10.1136/annrheumdis-2014-206016

44. Deng GM, Liu L, Bahjat FR, Pine PR, Tsokos GC. Suppression of Skin and
Kidney Disease by Inhibition of Spleen Tyrosine Kinase in Lupus-Prone Mice.
Arthritis Rheumatol (2010) 62:2086–92. doi: 10.1002/art.27452

45. Grammatikos AP, Ghosh D, Devlin A, Kyttaris VC, Tsokos GC. Spleen
Tyrosine Kinase (Syk) Regulates Systemic Lupus Erythematosus (SLE) T Cell
Signaling. PloS One (2013) 8(8):e74550. doi: 10.1371/journal.pone.0074550

46. Saavedra-Garcıá P, Martini F, Auner HW. Proteasome Inhibition in Multiple
Myeloma: Lessons for Other Cancers. Am J Physiol Cell Physiol (2020) 318(3):
C451–62. doi: 10.1152/ajpcell.00286.2019

47. Wang YF, Zhang Y, Zhu Z, Wang TY, Morris DL, Shen JJ, et al. Identification
of ST3AGL4, MFHAS1, CSNK2A2 and CD226 as Loci Associated With
Systemic Lupus Erythematosus (SLE) and Evaluation of SLE Genetics in
Drug Repositioning. Ann Rheum Dis (2018) 77(7):1078–84. doi: 10.1136/
annrheumdis-2018-213093
Frontiers in Immunology | www.frontiersin.org 11
48. Owen KA, Price A, Ainsworth H, Aidukaitis BN, Bachali P, Catalina MD, et al.
Analysis of Trans-Ancestral SLE Risk Loci Identifies Unique Biologic
Networks Anddrug Targets in African and European Ancestries. Am J Hum
Genet (2020) 107(5):864–81. doi: 10.1016/j.ajhg.2020.09.007
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