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Background: Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease,

where patients often suffer from fatigue. Biological pathways underlying fatigue are

unknown. In this study aptamer-based SOMAscan technology is used to identify potential

biomarkers and treatment targets for fatigue in pSS.

Methods: SOMAscan® Assay 1.3k was performed on serum samples of healthy

controls (HCs) and pSS patients characterized for interferon upregulation and fatigue.

Differentially expressed proteins (DEPs) between pSS patients and HC or fatigued and

non-fatigued pSS patients were validated and discriminatory capacity of markers was

tested using independent technology.

Results: Serum concentrations of over 1,300 proteins were compared between 63

pSS patients and 20 HCs resulting in 58 upregulated and 46 downregulated proteins.

Additionally, serum concentrations of 30 interferon positive (IFNpos) and 30 interferon

negative (IFNneg) pSS patients were compared resulting in 25 upregulated and 13

downregulated proteins. ELISAs were performed for several DEPs between pSS patients

and HCs or IFNpos and IFNneg all showing a good correlation between protein levels

measured by ELISA and relative fluorescence units (RFU) measured by the SOMAscan.

Comparing 22 fatigued and 23 non-fatigued pSS patients, 16 serum proteins were

differentially expressed, of which 14 were upregulated and 2 were downregulated. Top

upregulated DEPs included neuroactive synaptosomal-associated protein 25 (SNAP-25),

alpha-enolase (ENO1) and ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1).

Furthermore, the proinflammatory mediator IL36a and several complement factors were

upregulated in fatigued compared to non-fatigued pSS patients. ROC analysis indicated

that DEPs showed good capacity to discriminate fatigued and non-fatigued pSS patients.

Conclusion: In this study we validated the use of aptamer-based proteomics and

identified a novel set of proteins which were able to distinguish fatigued from non-fatigued

pSS patients and identified a so-called “fatigue signature.”
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INTRODUCTION

Primary Sjögren’s syndrome (pSS) is a common systemic
autoimmune disease, characterized by lymphocytic infiltrations
in salivary and lachrymal glands. This is accompanied by
sicca symptoms of the eyes and mouth and frequently also
extraglandular manifestations (1–3). Fatigue is one of the
most common extraglandular manifestation in pSS and is
associated with a poor quality of life (4–9). Fatigue affects
up to 70% of pSS patients, while ∼20% of healthy adults are
affected (10–13).

The biological basis of fatigue is largely unknown, however
proinflammatory mechanisms are thought to play a role.
Interferons (IFNs) are proinflammatory cytokines, which play
a pivotal role in the pathogenesis of pSS and are systemically
upregulated in 57% of the pSS patients (14). Elevated levels
of IFNs induce increased expression of IFN-stimulated genes
in the salivary glands, peripheral blood mononuclear cells
(PBMCs), isolated monocytes and B cells of pSS patients (15–
19). This so-called “IFN type I signature” is associated with
higher disease activity and higher levels of autoantibodies. In
addition, mutations affecting IFN signaling are observed in
TREX, IRF5, STAT4, and PTPN22W and are associated with
pSS (20–26). There is evidence for a link between IFNs and
fatigue. Patients receiving IFNα treatment for viral hepatitis or
melanoma can develop severe fatigue (27, 28). However, we
and others have previously shown that there was no correlation
between systemic upregulation of IFNs and fatigue in pSS
patients (13, 29).

Because fatigue is a common problem in pSS, it is important
to identify pathways underlying this fatigue. Here we use a
proteomics approach to identify pathways related to fatigue.
We used the aptamer-based SOMAscan technology, a highly
multiplexed proteomic assay that queries 1,300 proteins in
serum for protein biomarker discovery and identification of
serum proteomic signatures and possible treatment targets for
fatigue in pSS.

METHODS

Patients and Methods
PSS patients and healthy controls (HC) were recruited at
the Erasmus Medical Centre, Rotterdam, the Netherlands. All
pSS patients fulfilled the 2002 American-European Consensus
Group classification criteria (30) and were free of symptoms
of viral infection at inclusion. HC did not suffer from
autoimmune disease and did not use corticosteroids. Written
informed consents were obtained from all participants in the
study, in compliance with the Helsinki Declaration. Medical
Ethical Review Committee of the Erasmus MC approved
this study.

Blood Collection
Blood was collected in clotting tubes for serum preparation
and in PAXgene RNA tubes (PreAnalytix, Hombrechtikon,
Switzerland) for whole blood RNA analysis.

Real-Time Quantitative PCR and
Calculation of IFN Score
Total RNA was isolated from PAXgene tubes and reverse-
transcribed to cDNA. For calculation of relative expression,
samples were normalized to expression of the household gene
Abl [31]. Relative expression values were determined from
normalized CT values using 2∧-11CT method (User Bulletin,
Applied Biosystems). The IFN score was defined by the relative
expression of 5 genes, IFI44, IFI44L, IFIT1, IFIT3,MXA.MeanHC

and SDHC of each gene in the HC-group were used to standardize
expression levels. IFN scores per subject represent the sum of
these standardized scores, calculated as previously described (31,
32). Patients were divided in groups being positive or negative for
the IFN score using a threshold of MeanHC + 2 x SDHC.

Proteomic Analysis of Serum Protein
Concentrations
Serum protein concentrations were measured using the
SOMAscan platform. SOMAscan utilizes single stranded DNA-
based protein affinity reagents called SOMAmers (Slow Off-rate
Modified Aptamers) (33, 34). The SOMAscan 1.3k kit was
used following manufacturer’s protocol, measuring over 1,300
proteins in 65 µl of serum. Intra-run normalization and inter-
run calibration were performed according to SOMAscan assay
data quality-control procedures as defined in the SomaLogic
good laboratory practice quality system. Data from all samples
passed quality-control criteria.

Measurement of Complement,
Immunoglobulin Levels, and
Autoantibodies
C3, C4, and IgG were measured as described previously (14).
Anti-SSA and anti-SSB were determined by EliA (Thermo
Fisher Scientific), confirmed with ANA profile immunoblot
(EuroImmun) and re-confirmed where needed by QUANTA Lite
ELISA-kit (INOVA).

Assessment of Fatigue and Depressive
Symptoms
Fatigue was assessed using the Dutch version of the
multidimensional fatigue inventory (MFI) (35). As a cut-
off the 25 percentile highest (fatigued group) and lowest scores
(non-fatigued group) were used resulting in the inclusion of
45 patients. The Dutch-validated Center for Epidemiologic
Studies Depression (CES-D) was used to study depression and
anxiety (36, 37).

Statistics
SOMAscan was performed to identify differences in quantitative
binding of proteins to aptamers. Data were analyzed using
empirical Bayes moderate t-test by the limma Bioconductor
package in the R environment (38–40). P-values were corrected
for multiple hypothesis testing using Benjamini-Hochberg
method (FDR< 0.05). Differential expression was calculated
on normalized log10 intensities. Visualization of differentially
expressed proteins (DEPs) between pSS and HC and fatigued
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and non-fatigued pSS patients was based on 2Log transformed
binding intensities and geometric means were calculated for HC
and pSS patients.

Independent T-test was used to compare means and the
Mann-Whitney U test was used to compare medians. Categorical
data were compared using Fisher’s exact test and correlations
were assessed using Spearman’s rho (rs). In order to determine
the discriminatory capacity of markers receiver operating
characteristics (ROC) curves and areas under the curves (AUCs)
were calculated. Statistical analysis and visualization of DEP was
performed using Instem/Omniviz, R version 3.4.3 bioconductor
package limma version 3.34., IBM SPSS 24.0 (SPSS, Chicago, IL,
USA) and Graphpad Prism 5.0 (Graphpad Software, La Jolla,
CA, USA), 9.

RESULTS

Differential Protein Expression in Serum of
pSS and Interferon Positive Patients
Characteristics of pSS patients and HC are summarized
in Supplementary Table 1. Using the SOMAscan multiplex
proteomic assay, in total 104 serum proteins were differentially
expressed between pSS patients and HCs after correction for
multiple testing. Of these proteins 58 were upregulated and
46 were downregulated. A heatmap representing the most
significant DEPs (2LogFC>0.5) is shown in Figure 1A and
indicates a clear distinction between pSS and HCs (Figure 1A).
Figure 1B shows in a volcano plot for the same DEPs.
Top upregulated DEPs include Fcγ receptor 3B, a receptor

FIGURE 1 | Differential protein expression in serum of pSS and healthy controls. Heatmap of differentially expressed proteins measured by SOMAscan technology in

serum samples of pSS patients (pSS) (n = 63) and healthy controls (CON) (n = 20) clustered unsupervised within the groups (A) and volcano plot (B) visualizing the

same DEPs. The correlation between RFU determined by SOMAscan and protein levels determined by ELISA is shown in (C).
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binding immune complexes which are often observed in pSS,
the interferon-inducible protein ISG15 and several female
hormones including follicle-stimulating hormone (FSH) and
human chorionic gonadotropin (HCG). A complete list of
all significantly up- and downregulated proteins is shown in
Supplementary Table 2.

Additionally, IFN positive (IFNpos) and IFN negative
(IFNneg) pSS patients were compared. Characteristics of IFNpos
and IFNneg pSS are summarized in Supplementary Table 3.
IFNpos patients showed significantly higher IgG levels, higher
frequency of anti-SSA and anti-SSB autoantibodies and lower
C3 complement levels compared to IFNneg patients. Comparing
protein expression between IFNpos and IFNneg patients 38
proteins were DEPs of which 25 were upregulated and 13
were downregulated. As expected many interferon-inducible
proteins were found upregulated including ISG15, CXCL11/I-
TAC, CXCL10/IP-10, OAS1, and TNFSF13B/BAFF. Volcano
plots and a full list of all significantly up- and downregulated
proteins between IFNpos and IFNneg pSS patients is shown in
Supplementary Figure 1 and Supplementary Table 4.

To validate the SOMAscan data, ELISAs were performed
for several DEPs between pSS patients and HCs or IFNpos
and IFNneg pSS patients. Proteins for validation were selected
based upon availability of reliable ELISAs. The selected proteins
included CXCL10/IP-10, CCL5/RANTES, CRP, sCD163, LAG-
3, CXCL11/I-TAC, TNFSF13B/BAFF, and CXCL13/BLC. All
protein levels measured by ELISA significantly correlated
with relative fluorescence units (RFUs) determined by the
SOMAscan (Figure 1C).

Fatigued pSS Patients Are Characterized
by a Differential Serum Protein
Expression Pattern
Characteristics of fatigued and non-fatigued pSS patients are
summarized in Table 1. In total 16 serum proteins were
differentially expressed between fatigued and non-fatigued pSS
patients, of which 14 were upregulated and 2 were downregulated
in fatigued patients. Top upregulated DEPs included neuroactive
synaptosomal-associated protein 25 (SNAP-25), alpha-enolase
(ENO1) and ubiquitin carboxyl-terminal hydrolase isozyme L1
(UCHL1). Furthermore, the proinflammatory mediator IL36a
and several complement factors were upregulated in fatigued
compared to non-fatigued pSS patients. A heatmap representing
the DEPs is shown in Figure 2A. When unsupervised clustering
of patients was performed 15 of the 22 fatigued patients (∼68%)
clustered together and only one non-fatigued patients clustered
with this group. This grouping of fatigued pSS patients indicated
a signature for fatigue in pSS. A volcano plot of the DEPs
is shown in Figure 2B and a full list of all DEPs, Log Fold
changes and (adjusted) p-values is depicted in Table 2 and
Supplementary Table 5.

As hydroxychloroquine (HCQ) is sometimes used to
treat fatigue, differential protein expression was additionally
determined after exclusion of patients who used HCQ. No
differences were found compared to the analyses including HCQ
users (data not shown). Additionally, dimensions of fatigue were

TABLE 1 | Characteristics fatigued and non-fatigued pSS patients*.

Fatigued

(n = 22)

Non-fatigued

(n = 23)

Significance

DEMOGRAPHICS

Female (%) 22/22 (100) 21/23 (91) n.s.

Mean age (years) 58.7 ± 11.3 57.3 ± 12.4 n.s.

Disease duration (years) 11.0 (15.5) 11.5 (16.8) n.s.

ESSDAI 7.5 (8.0) 4.0 (9.5) n.s.

IFN score 3.6 (9.4) 11.2 (8.7) p = 0.020

CES-D 27.0 (18.0) 6.0 (4.0) p < 0.0001

MFI

General fatigue 20.0 (1.5) 10.0 (6.0) p < 0.0001

Physical fatigue 19.0 (3.0) 8.0 (5.5) p < 0.0001

Mental fatigue 17.0 (5.5) 7.0 (5.0) p < 0.0001

Reduced motivation 17.0 (5.0) 6.0 (4.0) p < 0.0001

Reduced activity 18.0 (4.0) 7.0 (5.0) p < 0.0001

MEDICATION STATUS (%)

Pilocarpine 11/22 (50) 8/23 (35) n.s.

Hydroxychloroquine 14/22 (64) 15/23 (65) n.s.

Corticosteroids 1/22 (5) 1/23 (4) n.s.

Data are presented as mean ± SD, median (IQR) or as number (%) of patients according

to data distribution.

*Patients are selected from the cohort by a cut-off the 25 percentile highest (fatigued

group) and lowest scores (non-fatigued group) in the MFI.

ESSDAI, the European League Against Rheumatism Sjögren’s Syndrome Disease Activity

Index; IFN, interferon; MFI, multiple fatigue inventory.

compared between HCQ users and non-users and no differences
were observed (Supplementary Figure 2).

The SOMAscan data of DEPs were validated by ELISAs
when these were available. ELISAs for ENO1 and epidermal
growth factor (EGF) showed significant correlations with RFUs
determined by SOMAscan (Figure 2C). In addition, C3 and
C4 RFUs were compared to C3 and C4 complement levels
determined through routine diagnostics at the Erasmus MC,
clinical chemistry lab by Immage nephelometer. Proteins selected
for validation showed good correlation with protein levels
determined by ELISA and Immage nephelometer. Fatigued pSS
patients showed higher complement levels and lower IFN scores
than non-fatigued patients (Figure 2D). There was no difference
in European League Against Rheumatism Sjögren’s Syndrome
Disease Activity Index (ESSDAI) score, although there was a
trend toward higher ESSDAI scores in the fatigued patients,
which had higher scores in the articular and pulmonary domain
(data not shown).

Predictive Value of Markers for Fatigue
in pSS
The predictive potential of the proteins found to be differentially
expressed between fatigued and non-fatigued pSS patients was
studied. In order to do this ROC curves were calculated for
the most DEPs (2LogFC>1) including SNAP25, complement
factors C4a/C4b and C3a, IL36a, UCHL1, ENO1, EGF and
formimidoyltransferase-cyclodeaminase (FTCD) (Figure 3A).
Additionally, the corresponding boxplots are shown (Figure 3B).
ROC analysis yielded AUC values between 0.752 and
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FIGURE 2 | Differential protein expression in serum of fatigued pSS patients. Heatmap showing the unsupervised clustering of differentially expressed proteins

between fatigued (n = 22) and non-fatigued (n = 23) pSS patients (A) and volcano plot (B) visualizing the same DEPs. (C) Correlation between RFU determined by

SOMAscan and protein levels determined by ELISA (for ENO1 and EGF) and Immage nephelometer (for C3 and C4). (D) Comparison of complement levels, IFN and

ESSDAI score between fatigued and non-fatigued pSS patients.

0.845 confirming a robust discriminatory capacity between
fatigued from non-fatigued patients pSS patients using these
proteins (Table 3).

DISCUSSION

PSS is a heterogeneous disease with complex pathogenesis.
Traditional proteomic approaches of lachrymal or salivary fluids
have shown increased expression of inflammatory and immune

response-related proteins (41). Furthermore, gene expression
profiling of pSS blood also revealed systemic upregulation of
immune related pathways, like the IFN pathway and B cell
receptor signaling pathway (18, 42, 43). Using SOMAscan
technology we were able to identify upregulation of similar
pathways as described using other proteomic techniques. To
our knowledge one other study used SOMAscan technology to
study pSS (44), although a more limited number of proteins
were measured. Nishikawa et al. identified several DEPs in
serum of pSS patients compared to serum of HCs and DEPs
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TABLE 2 | Differentially expressed proteins between fatigued and non-fatigued pSS patients.

2LogFC FDR Function

UPREGULATED PROTEIN

SNAP25 2.01 5.90E-04 Presynaptic plasma membrane protein involved in the regulation of neurotransmitter release. Restricted expression in brain.

C4b 1.67 1.04E-02 Basic form of complement factor 4, part of the classical activation pathway.

IL36A 1.53 1.44E-03 Cytokine that can activate NF-kappa-B and MAPK signaling pathways to generate an inflammatory response.

C3a 1.43 6.68E-03 C3a is an anaphylatoxin released during activation of the complement system.

UCHL1 1.14 2.69E-02 Belongs to the peptidase C12 family. This enzyme is a thiol protease that hydrolyzes a peptide bond at the C-terminal

glycine of ubiquitin. This gene is specifically expressed in the neurons and in cells of the diffuse neuroendocrine system.

ENO1 1.00 1.10E-02 Alpha-enolase, glycolytic enzyme. Alpha-enolase has also been identified as an autoantigen in Hashimoto encephalopathy.

iC3b 0.98 4.56E-04 Proteolytically inactive product of the complement cleavage fragment C3b that still opsonizes microbes, but cannot

associate with factor B.

GPD1 0.91 2.69E-02 Member of the NAD-dependent glycerol-3-phosphate dehydrogenase family. The encoded protein plays a critical role in

carbohydrate and lipid metabolism.

C3d 0.69 5.60E-02 302-amino-acid fragment in the alpha chain of C3b.

BMP6 0.66 2.94E-02 Secreted ligand of the TGF-beta (transforming growth factor-beta) superfamily of proteins. Ligands of this family bind various

TGF-beta receptors leading to recruitment and activation of SMAD family transcription factors that regulate gene expression.

C3 0.55 3.98E-02 Complement component C3 plays a central role in the activation of the complement system.

GOT1 0.34 2.69E-02 Glutamic-oxaloacetic transaminase is a pyridoxal phosphate-dependent enzyme which exists in cytoplasmic and

mitochondrial forms, GOT1 and GOT2, respectively. GOT plays a role in amino acid metabolism and the urea and

tricarboxylic acid cycles.

MAP2K1 0.30 3.98E-02 The protein encoded by this gene is a member of the dual specificity protein kinase family, which acts as a

mitogen-activated protein (MAP) kinase kinase. MAP kinases, also known as extracellular signal-regulated kinases (ERKs),

act as an integration point for multiple biochemical signals.

CLEC4M 0.23 4.60E-02 Involved in the innate immune system and recognizes numerous evolutionarily divergent pathogens ranging from parasites

to viruses

DOWNREGULATED PROTEIN

FTCD −1.24 2.94E-02 The protein encoded by this gene is a bifunctional enzyme that channels 1-carbon units from formiminoglutamate, a

metabolite of the histidine degradation pathway, to the folate pool.

EGF −1.07 2.94E-02 Member of the epidermal growth factor superfamily.

were linked to disease activity measured by ESSDAI score.
When we compared pSS patients with HC we identified sets
of upregulated proteins such as CD163, CXCL10, TNFSF15,
FSH, CXCL11, and β2-microglobulin, that were in agreement
with previously published data (44). In summary, we identified
similar upregulated pathways as identified with other microarray
platforms (15–19) and found similar upregulated proteins with
the same technique in a different cohort of pSS patients (44)
indicating the SOMAscan technology as a reliable method for the
discovery of biomarkers for fatigue in pSS.

Fatigue is the most prevalent extraglandular symptom in
pSS of which we do not know the biological basis. Since
fatigue is often seen in conditions where the immune system is
dysregulated, proinflammatory mechanisms have been thought
to play a role. Previous attempts, however, to find a link between
proinflammatory signatures in serum or tissue and fatigue have
failed (13, 29, 45). Previous studies even showed decreasing levels
of several proinflammatory cytokines like IP-10/CXCL10, TNFα,
LTα, and IFNγ in fatigued pSS patients (13). Furthermore, we
previously described a negative trend between IFNs and fatigue
(29). In our current multiplexed proteomic analysis we show
the coordinated upregulation of a set of proteins of which some
are involved in inflammation including IL36a and complement
factors. IL36a is a pro-inflammatory cytokine belonging to
the IL-1 family and induces maturation of dendritic cells and
drives Th1 and Th17 responses in CD4+ T cells (46). This

cytokine was previously shown to be overexpressed in the salivary
glands and serum of pSS patients (47). Upregulation of this
cytokine is also seen in other diseases like psoriasis, rheumatoid
arthritis, systemic lupus erythematosus, inflammatory bowel
disease and fibromyalgia (46, 48, 49). In addition to IL36a,
several complement factors were upregulated in fatigued pSS
patients compared to non-fatigued patients. Quantification
of the complement levels, however, showed that all values
were in the normal range, but the non-fatigued patients lean
toward reduced complement levels. Reduced complement levels
are often associated with more severe disease manifestations,
vasculitis, and lymphoma in pSS (50).

Interestingly, among the “fatigue-signature“ proteins were
several proteins which have functions in the brain like SNAP-
25, UCHL1, and ENO1. SNAP-25 protein is a SNARE protein,
critical in neurotransmitter release (51). Aberrancies in this
protein are described in several neurological, cognitive and
psychological disorders like Alzheimer’s disease and fibromyalgia
(52–55). AlsoUCHL1 is particularly abundant in the brain, where
it is critical for proper function of the ubiquitin-proteasome
system in neurons (56). Reduced levels of this gene have
also been linked to among others Parkinson and Alzheimer’s
disease (56–59). ENO1 is a glycolytic enzyme which can be
expressed in the brain, but other tissues can also express this
protein and it has a wide variety of functions [reviewed in
(60)]. This protein has also been implicated in Alzheimer’s
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FIGURE 3 | Discriminatory capacity of markers for fatigue in pSS. (A) ROC curves of positively and negatively predictive proteins (2LogFC>1) for fatigue in pSS. (B)

Boxplots of differentially expressed proteins between fatigued (n = 22) and non-fatigued (n = 23) pSS patients.

TABLE 3 | Area under the ROC Curve for markers for fatigue in pSS.

Test result variable(s) Area Std. Errora Asymptotic Sigb Asymptotic 95% confidence interval

Lower bound Upper bound

SNAP25 0.781 0.075 0.001 0.634 0.927

C4a_C4b 0.824 0.064 0.000 0.699 0.949

IL36a 0.819 0.065 0.000 0.692 0.945

C3a 0.845 0.061 0.000 0.724 0.965

UCHL1 0.752 0.078 0.003 0.599 0.906

ENO1 0.790 0.071 0.001 0.650 0.930

EGF 0.837 0.061 0.000 0.718 0.957

FTCD 0.811 0.064 0.000 0.686 0.936

aUnder the non-parametric assumption.
bNull hypothesis: true area = 0.5.

disease. Interestingly, data indicate that ENO1 acts as an
autoantigen in several autoimmune diseases. Antibodies against
ENO1 have been described in Hashimoto’s encephalopathy,
Behçet’s disease, Crohn’s disease, rheumatoid arthritis (61–65)
Recently, antibodies against citrullinated ENO1 (Anti-CEP-1)

peptides have also been observed in pSS (66) and this raises the
question if such autoantibodies associate with fatigue. Although
aberrancies in all these proteins have been linked to a variety
of conditions they have never been described in the context
of fatigue.
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EGF and FTCD were both significantly reduced in fatigued
patients compared to non-fatigued patients. EGF is found in
many secretions including saliva. After binding to the EGF
receptor it regulates epithelial cell proliferation and survival and
therefore is thought to have protective effects. EGF has previously
been shown to be reduced in tears (67), salivary glands (68, 69)
and saliva of pSS patients and correlates with progression of
intraoral manifestations (70, 71). FTCD is a metabolic enzyme,
which is primary active in the liver and kidneys. However,
recently a study described additional neurological effects (72). So
far none of these proteins have been linked to fatigue.

Glycerol-3-phosphate dehydrogenase [NAD(+)]
(GPD1), bone morphogenetic protein 6 (BMP6), aspartate
aminotransferase (GOT1), dual specificity mitogen-activated
protein kinase kinase 1 (MAP2K1) and C-type lectin domain
family 4 member M (CLEC4M) were additionally found slightly
elevated in fatigued pSS patients compared to non-fatigued
patients. These proteins have a variety of metabolic and
immunological functions and GPD1, BMP6 and GOT1 also have
functions in the brain. However, it is unclear how these proteins
could contribute to fatigue.

Recently, proteomics performed on CSF revealed a signature
for fatigue in pSS patients (73). In this abstract they describe
similar as in our study upregulation of molecules in the
complement system. Overall most discriminatory proteins
between fatigued and non-fatigued pSS patients were involved in
innate immunity, cellular stress defense and/or function in the
central nervous system. It would be interesting to compare the
proteins found differentially expressed in the CSF of fatigued pSS
patients with the proteins we found in the serum.

A limitation of this study is that we were not able to validate all
DEPs between fatigued and non-fatigued patients because there
were no sensitive ELISAs available for these proteins. However,
in this study we showed that when ELISAs were available,
DEPs identified by SOMAscan showed good correlation with
protein levels measured using different techniques indicating the
reliability of the technology. Another limitation of this study
is the cross-sectional design and limited number of patients in
the fatigue vs. non-fatigue comparison. Furthermore, there could
be underlying confounding comorbidities leading to fatigue in
some patients.

CONCLUSION

In this study we validated the use of aptamer-based multiplex
proteomics and identified a novel set of proteins which were
able to distinguish fatigued from non-fatigued pSS patients
and identified a so-called “fatigue-signature.” Overall these
proteins were involved in inflammatory mechanisms and have
neurological and metabolic functions. More studies are necessary
to validate these proteins as markers for fatigue in pSS.
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