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Cerebral small vessel disease (CSVD) poses a serious socio-economic burden due to its

high prevalence and severe impact on the quality of life of elderly patients. Pathological

changes in CSVD mainly influence small cerebral arteries, microarteries, capillaries,

and small veins, which are usually caused by multiple vascular risk factors. CSVD is

often identified on brain magnetic resonance imaging (MRI) by recent small subcortical

infarcts, white matter hyperintensities, lacune, cerebral microbleeds (CMBs), enlarged

perivascular spaces (ePVSs), and brain atrophy. Endothelial cell (EC) dysfunction is earlier

than clinical symptoms. Immune activation, inflammation, and oxidative stress may be

potential mechanisms of EC injury. ECs of the blood–brain–barrier (BBB) are the most

important part of the neurovascular unit (NVU) that ensures constant blood flow to the

brain. Impaired cerebral vascular autoregulation and disrupted BBB cause cumulative

brain damage. This review will focus on the role of EC injury in CSVD. Furthermore,

several specific biomarkers will be discussed, which may be useful for us to assess the

endothelial dysfunction and explore new therapeutic directions.

Keywords: cerebral small vessel disease (CSVD), endothelial cells (ECs), hypertension, blood-brain barrier,

cognitive impairment, white matter hyperintensities (WMH)

INTRODUCTION

Cerebrovascular disease, one of the most important causes of neurological dysfunction, has become
an urgent human health issue (1). Cerebral small vessel disease (CSVD) affects almost all people
over 90, which is responsible for 45% of cases of dementia in the world (2). CSVD is caused by a
disorder in perforating cerebral vessels, and most of the lesions are in cerebral white matter and
deep gray matter (3). There is considerable evidence that vascular dysfunction is a fundamental
change in CSVD. Vascular endothelial cells (ECs) form the luminal surface of all blood vessels and
play an important role in maintaining vascular morphology and biological function (4). Recently,
endothelial dysfunction has been considered as a key in the pathogenesis of CSVD and vascular
dementia (VD).We focus on the decrease of cerebral blood flow (CBF) and the disruption of blood–
brain barrier (BBB) during CSVD. Until now, there is a lack of effective prevention and treatment
measures. A better comprehension of pathological mechanisms is beneficial for the investigation of
diagnostic biomarkers and the development of treatment targets.

Arteriosclerosis-Related CSVD
Currently, CSVD is classified into six types according to its etiology (5): arteriosclerosis-related
CSVD, amyloid-related CSVD, genetic CSVD (distinct from amyloid angiopathy),
inflammatory/immunologically mediated CSVD, venous collagenosis, and other CSVDs. From
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the pathological point of view, nongenetic CSVD is mainly
divided into arteriosclerosis-related CSVD and amyloid-related
CSVD (6), and the former CSVD is discussed in our
study. However, for brevity, we will simply refer to it as
CSVD. The aging of the population is closely related to
the occurrence of CSVD, but the contribution of ethnicity
in CSVD needs to be further confirmed by epidemiological
studies (7, 8). CSVD increases the risk of acute stroke more
than 2-fold (9), and its classical form is characterized by
cognitive impairment or dementia, motor dysfunction, and
psychobehavioral abnormalities. In addition, a typical pattern
of cognitive impairment due to CSVD is an impaired executive
function with the preservation of memory (5). In the acute
phase, its clinical feature is acute stroke syndrome, including
hemorrhage and infarction (10).

Currently, the opinion that CSVD is a local manifestation
of systemic small vessel lesions in the brain is widely accepted
(11), scholars have found that patients with CSVD were often
accompanied by small vessel damage in other organs, including
the kidney and retina (12, 13). The arterial walls demonstrated
hyaline degeneration, leading to thickening and narrowing of
the arteries eventually. Cerebral small vessel mainly involves
the penetrating vessels <1mm in diameter, including small
arteries, micro-arteries, capillaries, and small veins (14). Typical
lesions of CSVD were located in the thalamocortical loop and
the corticospinal tracts, affecting the information-processing
efficiency. Intracranial vessel wall lesions can be identified by
7T magnetic resonance imaging (MRI), but this technique is not
yet widely available in clinical centers (15). Advances in imaging
help us to check for indirect signs of CSVD on brain MRI.
There are six categories of specific changes, including (16) recent
small subcortical infarcts, white matter hyperintensity (WMH),
lacune, cerebral microbleeds (CMB), enlarged perivascular spaces
(ePVS), and brain atrophy. All of these changes may be
the result of vascular dysfunction and vascular pathology.
The MRI signal characteristics and typical manifestations of
CSVD have been shown in Table 1 and Figure 1 (except
brain atrophy).

Endothelial Cells
Vascular endothelium, a monolayer of ECs lining the
interior walls of vessels, is an important tissue that regulates
hemodynamic stability. ECs maintain the balance between
coagulation and fibrinolysis and participate in vascular injury,

TABLE 1 | Magnetic resonance imaging (MRI) characteristics related to cerebral small vessel disease (CSVD).

Recent subcortical infarct WMH Lacune ePVS CMB

T1 ↓ —/↓ ↓ ↓ —

T2 ↑ ↑ ↑ ↑ —

DWI ↑ — —/↓ — —

FLAIR ↑ ↑ ↓ ↓ —

T2*- weighted GRE — ↑ —(↓ if haemorrhage) — ↓(SWI)

diameter ≤20mm — 3−15mm ≤2mm ≤10mm

↑ : increased signal; — : iso-intense signal; ↓ : decreased signal.

inflammation, and repair (17). First, ECs are able to respond to
hemodynamic changes via the release of vasoactive substances.
For example, when shear stress increases, ECs release nitric oxide
(NO), which mediates smooth muscle relaxation in blood vessels.
This process begins with the upregulation of NO synthase in
ECs (18). Second, ECs can secrete antiplatelet agents, including
prostacyclin (PGI) and NO, which prevent platelet aggregation
via increasing the cyclic adenosine monophosphate (cAMP)
content in platelets (19). In addition, ECs can inactivate the
clotting factors VIIIa and Va and suppress thrombosis with
activation of the protein C/protein S pathway (20). Under the
physiological state, ECs exhibit anticoagulant activities. Third,
ECs express several innate immune receptors, including the
toll-like receptor (TLR) family. When agonists bind to these
receptors, the structure of adhesion molecules in ECs will
change. This will increase vascular permeability, promote the
production of inflammatory cytokines, recruit leukocytes, and
reach a procoagulant state (21). Furthermore, ECs also play an
important role in the process called angiogenesis, a physiological
process by which new blood vessels grow from existing ones.
During angiogenesis, activated ECs migrate toward the gradient
of vascular endothelial growth factor (VEGF) under hypoxic
conditions (22).

In the central nervous system, ECs mainly compose the
structure of the neurovascular unit (NVU) and BBB (Figure 2).
Nutrients transported via the blood supply ensure brain
activities. However, researchers described for the first time
that neuronal structures could influence brain blood flow (23),
which regulated the supply of oxygen and nutrients (24). The
NVU, a structure composed of neurons, interneurons, astrocytes,
basal lamina covered with smooth muscle cells and pericytes,
ECs, and an extracellular matrix, ensures the coupling relation
between blood supply and neuronal demand (25, 26). ECs can
interact with astrocytes and produce vasoactive factors (such as
NO) to regulate vascular tone (27). Specifically, autoregulation
maintains a nearly constant blood flow to the brain within the
range of 50–160 mmHg (28), and hyperemia improves regional

CBF by adjusting the changes in the activity of specific brain

sectors (29), the phenomenon is called neurovascular coupling
(NVC). In addition, complete BBB is the most important factor

in maintaining brain tissue homeostasis, which prevents the

entry of cells and molecules into brain tissue and eliminates
masses formed in the brain by metabolic waste from the
cerebral nerve. ECs anchored to each other by tight junctions or
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FIGURE 1 | The typical manifestation of cerebral small vessel disease (CSVD) on MRI.

adherens junction constitute the most important component of
the BBB. Astrocytes and pericytes provide essential support for
BBB function with additional contribution from the basement
membrane and the glycocalyx (1).

Currently, a lot of studies have shown that vascular endothelial
injury is a key pathological process in many vascular diseases,
including CSVD (Table 2). In trials, endothelial dysfunction has
been shown to be associated with lacunar cerebral infarction
(38). An Australian study (39) further demonstrated that in
cerebral white matter lesions, the function of ECs and the
integrity of BBB were significantly reduced compared to that
of normal brain tissue. In addition, the content of intracellular
adhesion molecule-1 (ICAM-1) was significantly increased in
the diseased region of white matter (40). When focusing on the
altered cerebral hemodynamics, it can be found that impaired
CBF regulation is widely available in CSVD (41). Furthermore,
endothelial impairment is common in the population with
atherosclerosis, hypertension, diabetes, and chronic kidney
disease (42). Such people are at a higher risk of CSVD. However,
themechanisms has not yet elucidated. In summary, to unfold the
nature of CSVD, this review focuses on the relationship between
endothelial dysfunction and CSVD.

ETIOLOGIES OF AND RISK FACTORS FOR
CSVD AND ENDOTHELIAL DYSFUNCTION

Similar to the cardiovascular risk factors associated with large
vessel strokes and heart disease, common systemic vascular
risk factors, such as hypertension, diabetes, hyperlipidemia, and
hyperhomocysteinemia (43), also play an important role in

CSVD. Such factors have been proven to be closely associated
with WMH, lacune, and CMB. Among the many risk factors
for CSVD, hypertension and age are the most important and
independent ones (44). A study showed that EC integrity
decreased with age, ultimately leading to an exponential decline
in BBB function (45), which might be a potential reason for the
high incidence of CSVD among the elderly population. With
increasing age, other vascular risk factors further accelerate the
development of CSVD (11). Compared to CSVD patients with
normal blood pressure, those with hypertension exhibit more
severe clinical manifestations and more obvious neuroimaging
signs (46). Hypertension may induce microcirculatory change.
Rajani et al. (32) also confirmed that EC injury caused by
hypertension might be the earliest manifestation of CSVD in
rats. Adequate antihypertensive medication contributes to a
higher degree of microstructural integrity in cerebral white
matter, providing the potential method to delay or prevent
the emergence of WMH (47). Unsurprisingly, a recent meta-
analysis showed that intensive blood pressure control could
prevent the progression of WMH (48). It was found that there
is a narrowing of the lumens in the arterioles, which suggested
that arteriolosclerosis might be one of the complications
associated with hypertension (49). In addition, hyperglycemia
and smoking cause CSVD mainly via damage to vessel ECs.
A study found that type 2 diabetes mellitus (T2DM) increased
the risk for WMHs (50). NO produced by ECs plays an
important role in blood flow regulation. While the endogenous
NO synthase inhibitor, asymmetric dimethylarginine (ADMA),
was shown to be significantly elevated in the plasma of
patients with CSVD, the level of ADMA correlated with
cognitive impairment in patients (51). Both elevated blood
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FIGURE 2 | The structure of blood–brain barrier (BBB) and neurovascular unit (NVU). BBB regulates substance influx and efflux to ensure a homeostatic environment

for the brain function, which is composed by basement membrane, astrocytes, and endothelial cells (ECs) anchored to each others by tight junction. Neurones,

interneurones, astrocytes, smooth muscular cells, pericytes, and ECs are important constituents of NVU, which provides a basic structure for NVC and regulates the

cerebral blood flow (CBF).

glucose levels and smoking (52) can cause vasodilatory
dysfunction by downregulating the expression of endothelial
nitric oxide synthase (eNOS), which affects endothelium-
dependent vasodilation. Furthermore, metabolic syndrome, a
combination of abnormalities, including hypertension, T2DM,
obesity, and dyslipidemia, is able to stimulate generalized
inflammation and promote arteriolosclerosis (53). Insulin
resistance (IR) increases the risk of metabolic syndrome.
Interestingly, a high triglyceride–glucose (TyG) index (a marker
of IR) has been shown to be associated with a higher prevalence
and burden of CSVD (54).

As noted previously, the risk factors for atherosclerosis are
very similar to those for CSVD. However, almost 90% of cerebral
infarctions caused by intracranial atherosclerosis are larger than
2 cm in diameter, and large-artery atherosclerosis occasionally
leads to lacunar stroke. In addition, the small perforating
arterioles are thickened and stiff, with a reduced lumen size but
not containing clots or occlusion. Thus, the pathology of CSVD is
distinct from that of atherosclerosis, and the specific mechanisms
are still unknown. Furthermore, Arntz et al. (55) conducted a
follow-up study of young patients with transient ischemic attack
or acute cerebral infarction for nearly 10 years. It was found that
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TABLE 2 | Studies suggest that the injury to endothelial cells (ECs) is involved in

the pathology of CSVD.

References Year Conclusion

Ashby et al. (30) 2021 ECs participate in the CSVD by regulating CBF

Quick et al. (31) 2021 Endothelial dysfunction do damage to BBB

and cerebral white matter

Rajani et al. (32) 2018 Endothelial dysfunction is the initial feature of

CSVD

Hainsworth et al.

(33)

2015 The disruption of BBB caused by endothelial

dysfuncion play an important role in the

process of CSVD

Nezu et al. (34) 2015 Endothelial dysfunction positively correlates

with the severity of WMH and microhemorrhage

Kimura et al. (35) 2012 Anti-endothelial cell antibodies play a role in

CSVD

Hassan et al. (36) 2004 Hyperhomocysteinemia, an independent risk

factor for CSVD, may play a role by mediating

endothelial dysfunction

Leeuw et al. (37) 2002 Endothelial activation is associated with WMH

these patients developed CSVD 10–20 years earlier than controls
and had more severe lesions. Patients with a history of stroke
are more susceptible to cerebrovascular diseases because of their
poor tolerance to vascular risk factors. Genetic predisposition
may be a potential factor, which needs further investigation.

VASCULAR EC INJURY IN CSVD

In basilar ganglion, brain stem, centrum semiovale, and
subcortical white matter, there are mutiple anastomoses between
perforators from pial arteries and intracranial large arteries. The
capillary bed composed of these terminal microarteries enables
the actual exchange between the blood and the brain, which
are diseased under the effect of vascular risk factors as we have
discussed. In the 1960s, Fisher (56) performed an autopsy on
a patient with lacunar cerebral infarction and first described
the pathological features of CSVD in terms of vascular stenosis
and hyalinosis, which were mainly found in arteries with a
diameter of 40–150µm. With the breakdown of the integrity
of the vascular walls, these smaller arteries have thickened and
narrowed (57). Meanwhile, vascular endothelial dysfunction is
related to decreased CBF and impaired BBB (58, 59). Endothelial
dysfunction is gradually being considered as the driving factor in
the development of CSVD (31, 37) (Figure 3).

CBF Dysregulation in CSVD
Stable CBF ensures a sufficient supply of nutrients and
elimination of metabolic waste. Dramatic changes in CBF
will result in ischemia or hemorrhage (60), and impaired
cerebrovascular hemodynamics is associated with the loss of the
structural integrity of cerebral white matter (61).

The neurovascular unit is important in the blood circulation
of the brain (4), which provides a basic structure for NVC
(Figure 2). In patients with CSVD, an altered adaptive response
of the cerebral microvasculature has been found (62). The

regulation of CBF depends on intact vascular endothelial
structure and function (30). Pericytes have also been shown
to play an important role in vasoconstriction. The loss of
pericytes severely affects NVC and impairs cerebral vascular
autoregulation (63). In summary, the modes of endothelium-
derived blood flow regulation include chemical control of
CBF, cell–cell interactions, second messenger signaling, and
endothelial response to physical forces and inflammatory factors
(30). Endothelial injury may alter this adaptation of blood
supply to the local energy needs of the brain. In addition,
cerebrovascular ECs are sensitive to elevated shear forces and
hypoperfusion, which further affect microcirculation regulation
due to endothelial dysfunction. This vicious circle aggravates
the ischemic–hypoxic brain injury. Anatomically, the deep white
matter of the bilateral cerebral hemispheres is supplied by
terminal branches of small vessels from two sources, making it
extremely fragile to this chronic hypoperfusion. Sustained and
intermittent hypoxia causes damage to white matter fiber tracks
of the brain resulting in corresponding clinical symptoms, which
may be precursors or predictors of dementia (64).

In addition, a few studies have shown reduced CBF in the
white matter of patients with CSVD, and the CBF is lower
in subjects with more WMH (65, 66). More significantly,
researchers confirmed the presence of decreased CBF in the
normal-appearing white matter surrounding WMH. This area,
termed the CBF penumbra, may be associated with future WMH
expansion (67).

The Function of BBB in CSVD
The blood-brain barrier is made up of ECs, pericytes and
astrocytes, which regulates the exchange of substances between
the brain and the blood. While ECs tightly regulate this exchange
across the BBB (30). In addition to the reduction of CBF, BBB
failure also plays an equally important role in the pathological
process of CSVD (33). Classical vascular risk factors, salt toxicity,
inflammation/infection, and altered hemodynamics can damage
the BBB (68).

Via dynamic contrast-enhanced MRI, a larger volume with
BBB leakage in WMH and cortical gray matter could be
found in patients with CSVD (69), and the compromised BBB
integrity was associated with total MRI CSVD burden (70).
Interestingly, Wong et al. (59) confirmed by functional MRI
that BBB permeability was higher in the normal appearing white
matter surrounding WMH than in other normal white matter,
suggesting that increased BBB permeability might precede the
onset of WMH. Researchers also suggested the altered BBB
permeability in the normal white matter might be an early
indicator of CSVD, which signified a poor prognosis (71, 72).
Another study added to mounting evidence that the integrity of
BBB was associated with the severity of WMH (39).

White matter hyperintensity pathology might link to the
decline of information processing speed (73). Besides, cognitive
function descending of patients with CSVD was associated with
the degree of BBB leakage at baseline, especially in executive
function (74). BBB leakage leads to local microhemorrhage and
reduced distal blood flow, which intensifies regional ischemia and
hypoxia in the brain. What is more, the leakage and deposition
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FIGURE 3 | Graphic abstract of this review.

FIGURE 4 | Physiological functions of Endocan. The yellow squares at the upper or lower edges represent ECs, which form vascular endothelium by tight junctions;

the red hollow circles represent red blood cells; the light blue circles represent leukocytes; the yellow squares with black borders represent platelets. (1) Endocan

regulates the interaction between ECs and leukocytes. (2) Endocan promotes the expression of vascular endothelial growth factor-A (VEGF-A) and enhances the

binding of VEGF-A to its receptors. The activation of a VEGF signaling pathway contributes to the production of Endocan. (3) Endocan promotes the release of

pro-inflammatory substances.

of hematogenous material can lead to perivascular edema (75),
which injuries brain cells and leads to demyelination as observed
in WMH. Unfortunately, whether BBB breakdown is the starting
point of CSVD remains to be studied.

At the same time, it was found that local low CBF was
significantly negatively correlated with the permeability of
BBB (57). On one hand, it is possible that the low shear

stress caused by hypoperfusion leads to the downregulation
expression of tight junctions, which results in larger
intercellular space and increased material permeation (76).
On the other hand, hypoxia may, to some extent, induce the
increase of vascular permeability adaptively, allowing more
nutrients to enter the brain parenchyma (77). However, the
interaction between the two in CSVD and whether they jointly
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contribute to disease progression remains to be elucidated
by further studies.

Potential Mechanisms of ECs Injury
Endothelial cell injury includes two important
pathophysiological processes: EC overactivation and EC
dysfunction. Endothelial activation refers to the alterations in
the expression, structure, and distribution of endothelial tight
junctions responding to a variety of pathological conditions, and
ECs turn to an abnormal pro-inflammatory and pro-thrombotic
phenotype (78). EC dysfunction is mainly reflected in the
imbalance between biomolecules produced by the endothelium
that contribute to vasodilation and vasoconstriction, which leads
to a series of pathological changes, such as vasoconstriction,
leukocyte aggregation, platelet activation, and thrombosis
(79). As we have discussed earlier, increased vascular shear
stress and ischemic–hypoxic injury both lead to endothelial
dysfunction; however, pathological responses, including immune
activation, inflammation, and oxidative stress, may be potential
mechanisms for EC injury, which ultimately leads to the
development of CSVD.

Produced bymany different cellular processes, reactive oxygen
species (ROS) are the mediators of demyelination and disruption
of the BBB. ROS have strong oxidant effects and are able to induce
the accumulation and extravasation of leukocytes and trigger the
innate immune response. Indeed, several vascular risk factors,
such as hypertension, diabetes, smoking, hyperhomocysteinemia,
and infections, can promote excess ROS levels. The imbalance
between ROS and the antioxidant defense system will cause
endothelial injury (80). Homocysteine (HCY) has been shown
to promote oxidative injury to the endothelium (81), and total
HCY level correlates with CSVD MRI burden (43). In addition,
it is believed that smoking-induced oxidative stress can also be a
triggering factor that disrupts endothelial integrity (82).

A few experts pointed out that inflammatory factors play
an important role in the pathogenesis of CSVD, and patients
with ischemic or hemorrhagic lesions on brain MRI have a
different distribution of inflammatory markers in their plasma
(83). Pro-inflammatory cytokines induce ECs to secrete adhesion
molecules and chemokines, recruit immune cells, and generate a
waterfall-like inflammatory response, which further impairs the
function of endothelium and BBB. In innate immune responses,
monocytes activate inflammatory polarization pathways and
produce ROS, while macrophages infiltrate the vascular wall,
causing smooth muscle cell proliferation and blood vessel
remodeling (84). In addition, both cytokines and neopterin
secreted by mononuclear macrophages are able to impair BBB
by acting directly on the endothelium (85). Neopterin can
promote the interaction between EC adhesion molecules and
leukocytes, perhaps through the kappa-B pathway (86). In
addition, neopterin is able to induce the production of C-reactive
protein in the liver, which further generates systemic vascular
inflammation (85). In fact, it has been confirmed that adaptive
immune responses also participate in the process of endothelial
injury. A previous study suggested that aggregated T-cells can
attack vascular endothelium directly and decrease CBF (87).
Various anti-EC antibodies were detected in the serum of patients

with CSVD (35), suggesting that the activation of B-cells might
play a role in pathophysiological processes and, to some extent,
confirming widespread endothelial dysfunction in CSVD.

ECS IN THE DIAGNOSIS AND TREATMENT
OF CSVD

Diagnostic Strategies
The autoregulation of cerebral blood flow is the most important
feature of cerebral microcirculation. Endothelial injury, the
critical part of vascular dysfunction, can be evaluated by flow-
mediated dilatation (FMD) of the brachial artery or digital
reactive hyperemia index in peripheral arterial tonometry (88,
89). However, these devices have not become popular in
clinical practice for various reasons. Thankfully, new techniques,
such as digital pulse amplitude tonometry and passive leg
movement technique, are on the way (90, 91). In addition,
taking BBB leakage into consideration may be helpful in
diagnosing CSVD. Another study showed that markers of
vascular inflammation and endothelial injury were significantly
elevated in blood samples from patients with hypertension-
induced CSVD (30). And, it has been found that BBB
leakage could be reflected by slow-wave activity during sleep,
which could be another biomarker of CSVD (92). However,
circulating biomarkers are the ones that provide us with the
most opportunities to assess endothelial function (Table 3).
These biomolecules are mainly related to endothelial injury
and activation (131), including ICAM-1, vascular cell adhesion
molecule-1 (VCAM-1), the soluble fraction of von Willebrand
factor (vWF), and endothelium-derived exosomes (109, 132).
However, most of them are still limited to the laboratory.
Previous longitudinal research found that ICAM levels and
baseline WMH load were independent predictors of WMH
progression (98). Abnormally increased ADMA levels are
associated with endothelial dysfunction and the risk of silent
brain infarcts (93). Patients with CSVD had higher levels of
ADMA in their blood. Matrix metalloproteinase-9 (MMP-9)
regulates the metabolism of an extracellular matrix, which is
an important component of the blood vessel wall. The levels
of MMP-9 were determined to be significantly elevated in
patients with WMH (41). In addition, it was confirmed that EC-
specific molecule-1 reflected endothelial injury with increased
specificity and sensitivity (110). This molecule, also known as
Endocan (92), is a soluble dermatopoietin sulfate proteoglycan
(DSPG) secreted mainly by ECs. Other studies found that
higher levels of Endocan contributed to the production of
proinflammatory substances, such as lipopolysaccharide, tumor
necrosis factor-α, and interleukins-1β (111). It was hypothesized
that Endocan exerted its biological effects through several
mechanisms (Figure 4):

1© Involve in endothelial activation by regulating the interaction
between ECs and leukocytes (133).

2© Act on the VEGF signaling pathway to mediate the
inflammatory response (134): on one hand, Endocan
promotes the expression of VEGF-A and enhances the
binding of VEGF-A to its receptors. This process alters
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TABLE 3 | Potential biomarkers of endothelial injury.

Biomolecule Function Test Variation Conclusion References

asymmetric

dimethylarginine

(ADMA)

NO synthase inhibitor ELISA ↑ causing endothelial dysfunction by

blocking the activity of endogenous NO

synthase

(93, 94)

VCAM-1 inducing the interactions between

leukocytes and endothelium

ELISA ↑ higher expression of VCAM-1 is related

with endothelial activation

(82, 95, 96)

ICAM-1 inducing the interactions between

leukocytes and endothelium; participating

in the substance transmembrane

transportation

ELISA ↑ higher expression of ICAM-1 is related

with endothelial activation

(82, 97–99)

myeloperoxidase

(MPO)

involved in the impairment of tissues and

inflammation

ELISA ↑ MPO can cause endothelil injury and

dysfunction

(100)

Claudin-5 maintaining the structure of tight junction ELISA ↑ Decreased Claudin-5 level are associated

with the disruption of BBB integrity

(101, 102)

matrix

metalloproteinase-2/9

(MMP-2/MMP-9)

degrading the components of

extracellular matrix

gelatin zymography ↑ Increased MMP-2/MMP-9 level are

associated with the disruption of BBB

integrity

(103–105)

endothelin-1 (ET-1) regulating vasoconstriction ELISA ↑ Excess ET-1 causes pathological

vasoconstriction

(106)

vWF facilitating clotting and the adhesion of

platelets

ELISA;gelatin

zymography;Immunoelectrophoresis

↑ Injured ECs release polymeric vWF,

further causing vascular dysfunction

(106–108)

endothelial

microparticles (EMPs)

involved in the intercellular

communication

flow cytometry; atomic

force microscope;

electron microscope

↑ Activated ECs release specific EMPs into

the bloodstream

(92, 93, 98,

109–117)

Endoglin (CD105) involved in the angiogenesis, vasodilation,

and inflammation

ELISA; Western blot ↑ Increased Endoglin worsen inflammation

and weak the relaxation response of the

vessel

(118–123)

Endocan (ESM-1) inducing the interactions between

leukocytes and endothelium; regulating

the vascular function

ELISA ↑ Injured ECs release Endocan into the

bloodstream, which promotes the

infiltrating of leucocytes

(124–127)

micRNA participating in various kinds of

endothelial function

PCR ↑/↓ Several micRNAs expressed specifically

by ECs can suggest the endothelial

dysfunction

(128–130)

↑:increased expression level; ↓:decreased expression level.

vascular permeability; on the other hand, activation of the
VEGF signaling pathway contributes to the production
of Endocan.

3© Promote the release of proinflammatory substances from ECs,
including ICAM-1 and VCAM-1 (135).

In contrast to blood biomarkers, there are a few studies
assessing biomarkers of CSVD or endothelial dysfunction using
cerebrospinal fluid (CSF) samples. Elevated albumin and other
serum proteins have been found in the CSF of patients with
VD (42). An increased albumin CSF/serum ratio, though not
specific, may be useful in reflecting BBB dysfunction. In addition,
the CSF level of ICAM-1 and VCAM-1 were higher in diabetics
with cerebral vascular injury (136), but the correlation between
adhesion molecules in CSF and CSVD is still unknown. Further
studies are needed to search for CSF biomarkers of CSVD.

Currently, several methodological issues prevent clinical
practice, and the replication of these results is indispensable.
On one hand, the distribution of biomolecules in different
populations is also with heterogeneity and complexity, and the
variability of labs or measuring approaches will induce a great
measurement error. On the other hand, changes in peripheral

blood biomarkers may not be able to fully reflect the degree of
cerebral tissue damage and the state of brain function, and the
content of biological molecules may be influenced by various
physiological or pathological conditions. In addition, it may
be more reliable to assess endothelial function by monitoring
changes of a set of molecules rather than a single molecule.

Therapeutic Directions
The goal of treating CSVD is to prevent stroke, delay cognitive
decline, improve gait, and resolve psychological abnormalities.
According to the lesion changes revealed by MRI, doctors can
observe the curative effect (137). Currently, clinical interventions
for CSVD are mainly limited to health management of risk
factors. Tight blood pressure control may be beneficial in
preventing or delaying the onset of CSVD. It is important to
note that blood pressure variability (BPV) comes to be valued
in treatment. In addition, low-dose rosuvastatin (a kind of lipid
lower agents) may be a reasonable therapy for CSVD (138). In
a recent study, the results suggested that nimodipine (a kind
of antihypertensive medications) combined with rosuvastatin
was safe and effective in treating mild cognitive impairment in
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patients with CSVD (139). Apart from the routine drug therapy,
healthy lifestyles, such as smoking cessation, low-salt diet, and
exercise, may help to halt or delay the progression of CSVD.
Antiplatelet therapy is one of the most important measures in
the treatment of cerebrovascular disorders. Due to hemodynamic
fluctuations in the cerebral microcirculation and impaired BBB,
patients with CSVD have a higher risk of bleeding during the
application of antithrombotic drugs, especially in patients with
more microhemorrhage foci (140). Something else we need to
be careful about is the higher prevalence of aspirin resistance
in patients with CSVD (141). Unfortunately, donepezil and
memantine, which are commonly used to improve cognitive
function, have little effect on the cognitive impairment caused
by CSVD.

Endothelial dysfunction, the keystone of this article, is a key
in the pathological process of CSVD. Therefore, the treatment of
ECs is expected to be a breakthrough. The concept of “endothelial
therapy” was proposed in the late 1990s. The therapy was aimed
to prevent and repair EC injury and was mainly involved in
the treatment of cardiovascular diseases (142). A study (32) has
confirmed that reversal of endothelial dysfunction could reduce
the cerebral white matter damage in CSVD rats, providing a basic
theory for subsequent clinical applications.

Firstly, a healthy lifestyle may be beneficial to endothelial
health. A study found that the Mediterranean diet could
modulate endothelial function, even in those with severe
endothelial dysfunction (143). In addition, aerobic exercise
training was considered to provide the same benefit (144).
Secondly, existing drugs may be effective in protecting ECs.
For example, it has been found that metformin may exert
protective effects in preventing endothelial dysfunction (106).
Carvedilol, a nonselective beta- and alpha-receptor antagonist,
was found to have the antioxidative potential in vitro (145).
Anti-inflammation and anti-oxidation agents may play a positive
role in endothelial health. However, more randomized controlled
trials and experimental studies are needed to confirm the
above conclusions, and whether these interventions are effective
in delaying the progression of CSVD needs to be further
clarified. What is more, new therapeutic strategies targeting
endothelial repair are worth investigating. Several cytokines
or molecules may be useful in endothelial repair. Scholars
have found that granulocyte colonystimulating factor (G-CSF)
had protective effects on endothelial impairment and WM
injury in CSVD. G-CSF promoted the expression of VEGF

and downregulated the level of MMP-9, thus repairing the
cerebral vascular endothelium (146). Endothelial progenitor
cells (EPCs) are capable of repairing injured endothelium, thus
providing promising therapy to treat CSVD (147). In addition,
several plant extracts have also been shown to be potential
for alleviating the EC injury (148, 149). The pharmacological
functions of these natural substances mainly include lessening
oxidative injury, decreasing EC apoptosis, and reducing the
inflammation response. In addition, the therapeutic potential
of endothelium-specific microRNAs for the treatment of EC
dysfunction is attracting attention (150), and antibodies against
the endothelium may be a target for immunotherapy in
the future.

CONCLUSION

This review focuses on the function of ECs, particularly their
pathological changes in the process of CSVD. We hold the
opinion that ECs are culprits and victims during CSVD at
the same time. Increased shear stress or hypoxia causes EC
dysfunction. More importantly, endothelial activation enhances
the inflammatory response and immune reaction, leading to
BBB leakage and impaired cerebral blood supply. In addition,
reduced endothelial NO synthesis and the pro-thrombotic state
exacerbate the ischemic brain damage.

In summary, it is important to continue to deepen our
knowledge of endothelial dysfunction to understand the nature
of CSVD. Identification of endothelial-specific markers will be
useful for both laboratory studies and clinical trials. And, it
certainly makes sense to therapeutically target ECs during CSVD.
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