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Systems analysis identifies miR-29b
regulation of invasiveness in melanoma
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Abstract

Background: In many cancers, microRNAs (miRs) contribute to metastatic progression by modulating phenotypic
reprogramming processes such as epithelial-mesenchymal plasticity. This can be driven by miRs targeting multiple
mRNA transcripts, inducing regulated changes across large sets of genes. The miR-target databases TargetScan and
DIANA-microT predict putative relationships by examining sequence complementarity between miRs and mRNAs.
However, it remains a challenge to identify which miR-mRNA interactions are active at endogenous expression
levels, and of biological consequence.

Methods: We developed a workflow to integrate TargetScan and DIANA-microT predictions into the analysis of
data-driven associations calculated from transcript abundance (RNASeq) data, specifically the mutual information
and Pearson’s correlation metrics. We use this workflow to identify putative relationships of miR-mediated mRNA
repression with strong support from both lines of evidence. Applying this approach systematically to a large,
published collection of unique melanoma cell lines – the Ludwig Melbourne melanoma (LM-MEL) cell line panel –
we identified putative miR-mRNA interactions that may contribute to invasiveness. This guided the selection of
interactions of interest for further in vitro validation studies.

Results: Several miR-mRNA regulatory relationships supported by TargetScan and DIANA-microT demonstrated
differential activity across cell lines of varying matrigel invasiveness. Strong negative statistical associations for these
putative regulatory relationships were consistent with target mRNA inhibition by the miR, and suggest that differential
activity of such miR-mRNA relationships contribute to differences in melanoma invasiveness. Many of these relationships
were reflected across the skin cutaneous melanoma TCGA dataset, indicating that these observations also show graded
activity across clinical samples. Several of these miRs are implicated in cancer progression (miR-211, -340, -125b, −221,
and -29b). The specific role for miR-29b-3p in melanoma has not been well studied. We experimentally validated the
predicted miR-29b-3p regulation of LAMC1 and PPIC and LASP1, and show that dysregulation of miR-29b-3p or these
mRNA targets can influence cellular invasiveness in vitro.

Conclusions: This analytic strategy provides a comprehensive, systems-level approach to identify miR-mRNA regulation in
high-throughput cancer data, identifies novel putative interactions with functional phenotypic relevance, and can be used
to direct experimental resources for subsequent experimental validation.
Computational scripts are available: http://github.com/uomsystemsbiology/LMMEL-miR-miner
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Background
Phenotypic switching is an important process that facilitates
melanoma progression, metastasis, and resistance to
therapy [1–6]. Despite the neural crest (i.e. non-epithelial)
origin of melanocytes, melanomas display cadherin-
switching and functional behaviours that resemble epithelial-
to-mesenchymal plasticity (EMP). Melanomas often harness
lineage-specific molecular pathways from more primi-
tive (less-differentiated) states in order to switch between
proliferative, minimally-invasive (i.e. ‘epithelial-like’, or
‘E-like’) and invasive, minimally-proliferative (i.e. ‘mes-
enchymal-like’, or ‘M-like’) phenotypes [7–9]. Several
transcription factors, including ZEB1/2, SNAIL1/2,
TWIST1/2, MITF and JUN, have been shown to play
key roles in melanoma EMP-like processes [4, 7, 9, 10];
however, the mechanisms by which internal and micro-
environmental signals are integrated to modulate tran-
scriptional activity are not fully understood.
Micro-RNAs (miRs) are short (18–24 nucleotide) non-

coding RNAs which play an important role regulating
the activity of other RNA transcripts. They have been
implicated in the oncogenesis and progression of several
cancers, as reviewed thoroughly elsewhere [11, 12]. Some
miRs directly target important transcription factors, such
as miR-200 regulation of ZEB in epithelial carcinomas
[13, 14], while in melanoma, miR-148 mediated dysreg-
ulation of MITF [15] and miR-125b control of JUN [16]
have been noted. In melanoma, a network of miRs, in-
cluding miR-211 and miR-222 has been shown to medi-
ate some effects of oncogenic BRAF signalling [17].
ArrayCGH studies suggest miR-29b copy number in-
creases in melanoma and a number of miRs have been
implicated in melanocyte transformation [18, 19], melan-
oma progression [20–23], modulating the extent and mode
of melanoma cell invasiveness [17, 24, 25], and switching of
cellular phenotype (i.e. epithelial-mesenchymal plasticity) in
a number of epithelial cancers [14, 26, 27].
Identifying endogenous miRs that play a key role in

oncogenesis remains challenging for a number of rea-
sons. Firstly, within mammalian cells, miRs exert their
effects through multiple mechanisms that are difficult
to observe experimentally utilising any single current
method. Multiple lines of evidence have shown that
miRs regulate protein abundance by modulating protein
translation [28], influencing mRNA transcript stability
[29, 30] or through both effects [31]. These effects may
not be entirely independent [32, 33], and it has been argued
that changes in mRNA stability can be attributed to
repression of translation [33]. A recent review has de-
tailed the molecular mechanisms mediating target tran-
script sequestration or degradation, and translational
inhibition [32].
Secondly, there is extensive ‘crosstalk’ and broader,

coordinated targeting by miRs [27, 34], by virtue of the

mapping of miRs to multiple potential transcript targets
with potentially different binding affinities. One common
effect which influences miR activity is variation in the abun-
dance of alternative RNA targets within the intracellular
milieu – although the effect of protein-coding competitive
endogenous RNAs (ceRNAs) is thought to be minimal [35],
non-coding ceRNAs [36] and circular RNAs [37, 38] have
been shown to act as miRNA “sinks” which exert biological
effects in a combinatorial fashion. Together, these effects
make it difficult to identify individual miR-mRNA interac-
tions which are consistent across many experimental sys-
tems and conditions.
Finally, well-known differences between cellular pro-

cesses active in transformed cell lines and in primary tis-
sues taken from patients lead to a differing repertoire of
miRs, transcripts, and metabolic intermediates. As a
direct consequence, experimental results observed in
one model system, particularly in cell lines, may not be
observable in or relevant to patient tumours in vivo
[39]. Overcoming these challenges requires an integra-
tive systems analysis relating miR abundance to target
mRNA abundance, as well as to a relevant phenotype.
Here we report such an analysis using the Ludwig
Melbourne melanoma (LM-MEL) cell line panel [40],
an experimental resource designed for the identification
and verification of molecular mechanisms contributing to
the heterogeneity observed across melanoma tumours.
The LM-MEL panel data were collected from 57

established melanoma cell lines [40] which display a
range of phenotypes across the epithelial-like to
mesenchymal-like spectrum [41]. The original LM-MEL
molecular data were supplemented with miR transcript
abundance data (Additional file 1), and information on
invasiveness through matrigel (Additional file 2),
which allowed us to identify putative interactions
between miRs and mRNAs associated with differences
in the functional phenotypes of these melanoma cell
lines.
We applied statistical measures of association (Pearson’s

correlation [rP] and mutual information [MI]) together
[42] to identify miRs and mRNAs which showed a strong
inverse association across the LM-MEL dataset. Mutual
information is an information-theoretic metric that
measures divergence from statistical independence [43].

It contains a log P A;Bð Þ
P Að ÞP Bð Þ

� �
term that tends to zero with

statistical independence, where P(A, B) = P(A)P(B).
Mutual information and MI-based metrics have been
successfully applied for the analysis of large biological
data sets [44–46] (further details within Methods/Stat-
istical associations). Conversely, Pearson’s correlation
purely measures the tendency towards a linear associ-
ation, although it does provide directionality through
positive/negative values.
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This report describes a systems approach to identify puta-
tive regulatory miR-mRNA relationships across related cell
lines and clinical samples, applying measures of statistical
association and refining the results through the principled
inclusion of knowledge from specific relevant databases.
Our computational workflow identifies a novel role for
miR-29b-3p in regulating melanoma invasiveness, and the
results improve our understanding of how miR activity can
influence melanoma phenotype switching and EMP.

Results
Changes in miR abundance were predicted to regulate
mRNA transcript stability across a panel of melanoma cell
lines
Given the evidence implicating miRs in cancer progres-
sion and invasiveness, we hypothesised that miRs with
differential activity across the LM-MEL cell line panel
may drive post-transcriptional regulatory changes that
influence cell phenotype. To identify relationships where
miRs may regulate mRNA transcripts through reduced
stability, we examined miR and mRNA transcript
abundance across the LM-MEL cell line panel and
selected those with a strong, negative (or inverse)
statistical association between miR and mRNA abun-
dance (Fig. 1a).

Numerous known and predicted miR-mRNA interactions
show evidence of post-transcriptional regulation across
the LM-MEL cell line panel
We integrated TargetScan [47–49] and DIANA-microT
[50, 51] (Additional file 1) to limit the search space for
putative miR-mRNA interactions. Numerous strong, nega-
tive associations across the LM-MEL data were supported
by sequence-based predictions with a relatively high confi-
dence (TargetScan top 15th percentile; and/or DIANA-
microT top 30th percentile; details in Methods/Databases).
Matching putative relationships to miRTarBase (using
‘strong evidence’ experimental methods), only a small sub-
set of interactions appear to have been previously validated
(Fig. 1b). A full list of predicted relationships is given in
Additional file 3 with further details.

Putative regulatory associations contain a number of
previously validated associations
Selected relationships are shown in Fig. 2 using in vitro
LM-MEL data with phenotypic annotations (top of
panel; red, high matrigel-invasiveness cell lines; blue, low
invasiveness), and in vivo TCGA [52] Skin Cutaneous
Melanoma (SKCM) data (bottom of panel).
Several putative relationships have been validated across

different human cell systems (Fig. 2a-h; ‘miRTarBase vali-
dated’), and were supported by TCGA data (further details
within Additional file 4). In parallel, a number of putative
relationships emerged which have not been previously

observed within human cell lines, and many of these po-
tentially novel relationships involved mRNA transcripts
implicated in melanoma phenotype switching [3] and in-
vasive behaviours (Fig. 2i-q; Additional file 4).
Within the unvalidated interactions, the predicted regula-

tory interactions between the transcription factors SOX9
and miR-502-3p (Fig. 2r; LM-MEL rP = −0.50, MI = 0.33;
TCGA rP = −0.13), and SOX10 and miR-222-3p (Fig. 2s;
LM-MEL rP = −0.61, MI = 0.37; TCGA rP = −0.19), is
particularly interesting. In melanoma, SOX10 functions
both independently and in cooperation with MITF to
promote more differentiated and/or proliferative cel-
lular states [53, 54]. A SOX10-low state is associated
with reduced cell proliferation and engagement of
EMT-like processes in melanoma to promote more
invasive phenotypes [55] - a state maintained, in
part, through mutual-antagonism with the closely re-
lated transcription factor SOX9 [56]. SOX10 sup-
pression contributes to BRAF- and/or MEK-inhibitor
resistance in BRAF mutated melanoma, by activating TGFβ
signalling to upregulate EGFR and PDGFRB [57], whilst in-
creasing SOX9 transcript abundance has been observed in
breast cancer EMT [58]. SOX9-high LM-MEL cell lines are
also enriched for an invasive phenotype (Fig. 2r) and there is
a distinct subset of SOX10-low, high-invasive LM-MEL cell
lines (Fig. 2s) which appears to be recapitulated within the
TCGA data.

A number of miRs implicated in the progression of
melanoma and other cancers were enriched for
relationships with differential regulatory activity
As detailed earlier, miRs can drive phenotypic change
through the coordinated regulation of several mRNA
targets. To examine this we calculated the relative en-
richment of ‘active associations’ (Fig. 1b) for each miR
across the LM-MEL data. The top five miRs when
using high confidence TargetScan lists were miR-211-
5p, miR-340-5p, miR-125b-1-3p, miR-221-3p and
miR-29b-3p (Fig. 3a, top row). High confidence
DIANA-microT target lists also suggested differential
activity for miR-100-5p across the LM-MEL cell line
panel (Fig. 3a, second row).
The top four micro-RNAs identified have been shown

previously to regulate melanoma cell proliferation, migra-
tion and/or invasiveness. As mentioned above, expression
levels of miR-211 are inversely related to melanoma cell
migration and invasion, and it has been shown to function
as a tumour-suppressor through target genes including
IGF2R, TGFBR2 (Fig. 2e) and NFAT5 [59, 60]. Similarly,
miR-340 downregulation promotes melanoma progres-
sion [61] through de-repression of drug transporters
[62], RAS-RAF-MAPK signalling components [63] and
the key melanocytic transcription factor MITF [64].
The role of miR-125b in cancer progression has also
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been studied extensively – in melanoma miR-125b
over-expression reduces cell proliferation and migration,
mediated partly by the direct suppression of c-JUN mRNA
translation [16]; however, much of the literature has
examined miR-125b-5p (the dominant mature form;
Fig. 3a, seventh column), rather than the -3p forms.
Finally, miR-221 has a well-studied role in melanoma
progression [20, 65] and circulating miR-221 has been
proposed as a melanoma biomarker [66].

Enrichment analyses implicate miR-29b-3p in melanoma
phenotype switching
The role of the fifth ranked micro-RNA, miR-29b-
3p, in melanoma has not yet been explored. In other

cancer types, members of the miR-29a/b/c family in-
fluence EMP [67–69], and act as tumour suppressors
[70–72]. In cutaneous melanoma, down-regulation of
miR-29c has been associated with an adverse prog-
nosis, attributed in part to its regulation of tran-
scripts for the DNA methyltransferases DNMT3A/
DNMT3B [73].
Given roles for phenotype switching [4, 74, 75] and

pigmentation changes [76] in melanoma progression,
we extracted Gene Ontology database terms associated
with melanogenesis or pigmentation (‘Pigmentation’),
or epithelial-mesenchymal plasticity (‘EMP’). Next, we
examined the relative enrichment of these ontological
classifications within high-confidence miR target lists

Fig. 1 Systems analysis of database-enriched statistical associations between miR and mRNA transcripts. a Density and contour plot for
mutual information and Pearson’s correlation between transcript abundance of all miR and mRNA pairs across the LM-MEL cell line
panel (n = 57). Associations within the top 10% of mutual information values (vertical dashed line) and bottom (most negative) 2.5%
of Pearson’s correlation values (horizontal dashed lines) were selected as those with strong negative associations (relative fraction of
associations in red). b These associations (a, bottom right) were matched against high-confidence, predicted relationships from TargetScan
and DIANA-microT, and previously validated relationships from miRTarBase. Relationships between hsa-miR-29b-3p and LAMC1, LASP1,
and PPIC are examined below, Additional file 3 lists all putative relationships
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Fig. 2 Many putative miR-mRNA relationships involve mRNAs previously implicated in EMP and melanoma phenotype switching. LM-MEL and
TCGA (top and bottom subplots, respectively) transcript abundance data for (a-h) selected, previously validated relationships (miRTarBase, ‘strong
experimental evidence’; see Methods/Databases), and (i-q) putative relationships regulating mRNAs implicated in melanoma phenotype switching
by Widmer et al. [3]. Further details are given in Additional file 4. Predicted regulatory interactions involving SOX transcription factors integral to
melanoma phenotype switching are shown (r-s).
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from TargetScan and/or DIANA-microT (Fig. 3a, at
right). Consistent with its role in melanoma progres-
sion [61–63], miR-340-5p had a particularly strong
loading for both “pigmentation” and “EMP” categories,

whilst miR-29b-3p was also enriched around 10-fold
(~5.5%), providing further support that miR-29b-3p
may be regulating melanoma cell invasiveness through
a diverse repertoire of regulatory interactions.

Fig. 3 a Putative target list enrichment for individual miRs using TargetScan and DIANA-microT target lists (first and second row, respectively).
Relative enrichment of combined miR target lists are also shown for GO terms associated with pigmentation or EMP. b Relationships between
miR-29b-3p and LAMC1 (left), LASP1 (centre) and PPIC (right) within the LM-MEL data; for cell lines with matrigel invasiveness measurements,
these data are overlaid (red, high invasiveness; blue, low invasiveness). c miR transcript abundances measured by quantitative PCR (qPCR; bar
graph) for selected miRs and LM-MEL cell lines (indicated by number along the x-axis), plotted against high-throughput LM-MEL panel data
(black triangles); adjusted regression coefficients between these datasets are indicated (negative for miR-211-5p due to multiple non-
expressing cell lines)
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TargetScan predicts hsa-miR-29-3p family-mediated
regulation of Peptidylprolyl Isomerase C (Cyclophilin C;
PPIC), Laminin, γ1 (LAMC1) and LIM and SH3 Protein
1 (LASP1), and DIANA-microT also predicts miR-29b-
3p regulation of LAMC1 (Fig. 1b). All three predicted
targets show a strong negative association across the
LM-MEL cell line panel (Fig. 3b) in a manner suggesting
that reduced expression of miR-29b-3p and increased
expression of these targets is associated with more inva-
sive cell lines (Fig. 3b).

Validation of miR and mRNA transcript abundances
across a subset of LM-MEL cell lines
We performed quantitative PCR (qPCR) on selected
LM-MEL cell lines to validate the high-throughput
panel expression data for interactions of interest. Using
miRNA-specific qPCR, transcript abundance of hsa-let-
7a-5p, hsa-miR-211-5p, hsa-miR-222-3p, hsa-miR-29b-3p
and hsa-miR-9-5p within total RNA showed reasonable
concordance with sequencing-derived abundance data
from the LM-MEL panel, and expected trends were appar-
ent for divergent miR abundances between cell lines clas-
sified as E-like or M-like (Fig. 3c). Expression levels of
target gene transcripts assessed using standard qPCR con-
firmed measurable levels of ATP2A2, CPEB1, TCF4,
NRP1, ADAM19, CAV2, LAMC1, LASP1 and PPIC in the
cell lines studied, again with trends for divergent levels be-
tween E- and M-like cell lines consistent with microarray-
derived data (Figure AF5.1 within Additional file 5).

hsa-miR-29b-3p regulates LAMC1, LASP1 and PPIC within
several LM-MEL cell lines
As shown in Fig. 2 (panels F-H), targets of hsa-miR-29b-3p
(miR-29b) include several molecules with documented roles
in extracellular matrix formation, sensing, signalling or
modulation, consistent with a role in invasiveness or
EMT-like processes. To elucidate the role of miR-29b
in melanoma invasiveness, we examined the effect of
miR-29b perturbation on the transcript abundance of
several putative targets in a subset of LM-MEL cell
lines. Cells were transiently transfected at high efficiency
with either miR-29b inhibitor or mimic (Figure AF5.2A
& B within Additional file 5). MiR-specific qPCR demon-
strated a 2-3-log increase in detectable miR-29b levels
following transfection with miR-29b mimic at 1nM
(Figure AF5.2C within Additional file 5), whilst trans-
fection of miR-29b inhibitor did not appreciably alter
qPCR-detectable mature miR-29b abundance.
MiR-29b inhibitor treatment of the E-like cell lines LM-

MEL-9 and LM-MEL-42 (high baseline levels of miR-29b)
induced dose-dependent increases in transcript abundance
of ADAM19, CAV2, LAMC1, PPIC, and to a lesser degree,
LASP1 (Figure AF5.3 within Additional file 5). Treatment
of the M-like cell lines LM-MEL-45, −57 and −77 with a

miR-29b mimic markedly reduced transcript abundance of
ADAM19, LAMC1, and PPIC, with more modest effects
on CAV2 and LASP1 (Fig. 4a and Figure AF5.3 within
Additional file 5). All three genes selected for further
investigation (LAMC1, LASP1 and PPIC) exhibited a
dose-dependent reduction in transcript level following
miR-29b mimic transfection, although this effect was
near-maximal at 1nM.
We assessed the effect of miR-29b overexpression

on protein levels for putative targets using Western
blotting for LAMC1, LASP1 and PPIC in the proto-
typical M-like cell line LM-MEL-45. Marked reduc-
tions in LAMC1 and PPIC protein levels were seen
at 96 h following transient transfection with a miR-
29b mimic, consistent with the effects of specific
siRNAs (Fig. 4b & c). Contrasting transcript abun-
dance changes, LASP1 protein levels were unaffected
by either the miR-29b mimic or specific siRNA treat-
ment, suggesting high protein stability and minimal
LASP1 protein turnover within the duration of the
assay (Fig. 4b & c).
To examine whether these putative relationships are

present in vivo, we examined matched miR and mRNA
transcript abundances within TCGA skin and cutaneous
melanoma (SKCM) data. The abundances of mature
hsa-miR-29b-1 and hsa-miR-29b-2 transcripts were ex-
amined against mRNA abundances for LAMC1, PPIC,
and LASP1 (Fig. 4d). Within the TCGA data there was
a relatively strong negative association between LAMC1
and miR-29b, no association between miR-29b and LASP1,
and a weak negative association between miR-29b and
PPIC.

hsa-miR-29b-3p reduces melanoma cell motility and
invasiveness through mechanisms beyond single-gene
targets
Mild effects were observed for miR-29b-3p mimic in re-
ducing LM-MEL-45 outgrowth survival at 21 days, with
little change in cellular proliferation observed at 72 h
(Figure AF5.4 & AF5.5 within Additional file 5).
To better assess the effect of miR-29b on melanoma

cell motility, cultured LM-MEL-45 cells were allowed to
migrate into a central detection zone of the Oris plate
assay system (without a chemotactic gradient) following
treatment with miR-29b mimic or specific siRNA for
either LAMC1 or PPIC. LASP1 was not examined on
the basis that we did not demonstrate reduced levels of
protein within the duration of this assay. The density of
cells migrating into the central detection zone was mea-
sured after 48 h. Following all three treatments, LM-
MEL-45 cells demonstrated a comparable reduction in
migration, compared with control-treated cells (Fig. 5a).
Next, spheroid collagen invasion assays were performed

to compare the same treatments in a three-dimensional
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Fig. 4 (See legend on next page.)
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matrix-embedded setting. Spheroids were imaged fol-
lowing staining for viable cells. As predicted, miR-29b
treatment reduced LM-MEL-45 cellular invasion into
surrounding collagen almost entirely (representative
spheroids, Fig. 5b). Invasiveness was generally less in
siRNA-treated cells, with minimal difference seen for
LAMC1 knock-down. Cross-sectional cellular density
profiles (Fig. 5c; method illustrated by Figure AF5.6
within Additional file 5) and quantitation of the colla-
gen invasion distance (Fig. 5d) confirmed sharp transi-
tions between relatively acellular surrounding collagen
matrix and cell spheroid following miR-29b mimic and
LAMC1 transfection (Fig. 5c), consistent with reduced
invasion of cells into surrounding collagen.
Unexpectedly, siRNA-mediated knockdown of PPIC

dramatically increased LM-MEL-45 cell invasiveness,
and on cross-sectional spheroid cell density analysis,
no clear transition point was observed in spheroids
treated with PPIC siRNA (Fig. 5b & c), indicating dif-
fuse cellular invasion into surrounding collagen.
Within the limitations of the assay system used, it
could not be determined whether this diffuse invasion
of PPIC-knocked-down cells represented enhanced
cellular invasiveness, decreased cell-cell cohesion, or a
mixture of both processes. The effect of PPIC knock-
down was opposite to that predicted following the
observation that miR-29b-3p overexpression, which re-
duces PPIC expression, led to a decrease in spheroid
collagen invasion. This contradictory effect is entirely
consistent with the notion that microRNAs exert their
overall observable effects through the summation of
effects on multiple individual gene targets. Such indi-
vidual effects may be concordant, or discordant, with
the overall effect. In this case, specific PPIC knock-
down appears to be pro-invasive, but when combined
with the totality of perturbations induced by miR-29b-
3p overexpression, the pro-invasive effect of PPIC knock-
down is more than negated, leading to a net reduction in
invasion. This finding demonstrates that the effects of miR-
29b-3p on melanoma cell migration are not accurately rep-
licated by perturbation of any single mRNA target in
isolation.

Discussion
Integrated analysis of matched microRNA and mRNA
abundance data across a large panel of melanoma cell
lines identified several putative regulatory relation-
ships influencing melanoma phenotypic plasticity. We
demonstrate a novel modulatory effect for miR-29b-
3p activity on melanoma cell invasiveness, most likely
mediated by the combined effects on multiple gene
targets. Dysregulation of miR-29b has been observed
in a range of carcinomas of gastrointestinal [69, 71],
breast [68], gynaecologic [77] and prostatic origin
[78], with a more specific role in suppression of tumour
growth and metastasis in colorectal cancer cells shown to
involve blockade of epithelial-to-mesenchymal transition
[69]. In breast cancer models, it has been shown that miR-
29b is induced by, and mediates the EMT-inhibitory effect
of GATA3 via repression of tissue microenvironment re-
modelling factors such as MMP and VEGFA [68, 79].
The functions of miR-29b relevant to phenotypic plasti-
city in melanoma remain comparatively very poorly-
defined. In a study of an IFN-γ-STAT1-miR-29 family
interaction circuit, a minority of patient-derived primary
melanomas were found to have markedly elevated miR-29b
and miR-29a levels relative to benign nevi and normal skin,
whilst metastatic samples had marginal or no elevation in
miR-29a/b abundance [80]. In a small panel of melanoma
cell lines an inverse relationship between miR-29b level and
melanoma cell line proliferation was observed, seemingly
at odds with the higher miR-29a ~ b1 cluster abundance
in some primary melanomas, and our finding that high
miR-29b levels are associated with a more proliferative,
epithelial-like phenotype. The confluence-based assay
used to determine proliferation in the former study, to-
gether with markedly higher/combinatorial doses of miR-
29 mimics/inhibitor (up to 150nM) likely contribute to
these different findings.
We examined LAMC1 and PPIC in detail as potential

mediators of miR-29b-3p effects across our melanoma
cell models. Laminins, including LAMC1, are abundant
glycoproteins within basement membranes. Consistent
with our findings in melanoma, LAMC1 suppression by
miR-29a/b/c has been shown to influence prostate

(See figure on previous page.)
Fig. 4 The effects of hsa-miR-29b transfection on mRNA transcript and protein levels for putative targets: LAMC1, LASP1 and PPIC. a For LM-MEL-45
and −77 (upper and lower row, respectively), two mesenchymal-like cell lines, mRNA transcript levels were measured following transfection with
hsa-miR-29b mimic. Expression has been normalised to non-transfected (NT) controls. Data represent mean + SD from independent biological
duplicates performed in technical triplicates. b Representative Western blots and (c) quantified densitometry for LM-MEL-45 cell lysate harvested 96 h
post-transfection with 10nM of miR-29b mimic, miR mimic negative control (ctrl), siRNA scrambled (scram) control, or specific siRNA to the indicated
mRNA target. Densitometry data represent mean + SEM signal intensities for independent triplicates normalised against a β-actin loading control, and
shown relative to non-treated cells. Pairwise one-tailed t-test statistics are indicated by * p < 0.05, ** p < 0.01, *** p < 0.001. d Relationships between
miR-29b-1 and miR-29b-2 (immature -3p precursors), and LAMC1 (at left) LASP1 (at centre) and PPIC (at right) within TCGA SKCM data.
Pearson’s correlations and the line of best fit are shown in red
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Fig. 5 (See legend on next page.)
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cancer cell migration and invasion [70]. PPIC, also known
as cyclophilin C, is a peptidyl-prolyl cis-trans isomerase
(PPIase) which influences protein folding. PPIases are sub-
strates for cyclosporin A and may be secreted in response
to cyclosporin exposure; PPIC plays a key role in endo-
plasmic reticulum redox homeostasis, together with PPIB
[81]. Little is known about PPIC in cancer, however PPIA
and another PPIase PIN1 have been shown to interact
with key growth and signalling proteins including cyc-
lin D1, CDK10, cdc27, and PLK1, with diverse down-
stream effects on MAPK signalling [82–85]. Further,
PIN1 participates in EMT processes within drug-
resistant breast cancer [86], and drives invasiveness
and tumorigenicity of A375 melanoma cells in murine
models [87]. PPIC has been used as a marker of circu-
lating tumour cells (CTCs) in epithelial ovarian cancer
[88]. Breast cancer studies suggest a more complicated
network of extracellular matrix-mitogenic signalling
interactions involving PPIC, osteopontin, CD147 and
AKT [89], warranting further exploration in the mel-
anoma setting given prior studies demonstrating that
CD147 is a clear driver of melanoma cell proliferation
and metastasis in murine models [90].
The inability of LAMC1 and/or PPIC siRNA to recap-

itulate the effects of a miR-29b-3p mimic within the col-
lagen spheroid assay (Fig. 5d) is likely attributable to
several aspects of miR biology. Firstly, miRs have mul-
tiple potential targets but only a subset of this repertoire
will be active in a given cell; for example, a miR cannot
post-transcriptionally regulate a target gene that is not
expressed. Secondly, the absolute abundances of miR
and target gene influence the likelihood of a physical
interaction, which is a pre-requisite for a regulatory
interaction. Importantly, the abundances of both miR
and targets may vary over time, thus creating a “moving
network” of interactions. Finally, the magnitude of effect
exerted by a miR on a target gene is not easily predicted
and may influence the functional outcome. Taken to-
gether, these factors imply that the overall functions of a

miR may be difficult to predict by perturbing any single
target in isolation.
Individual miR-29b family members display vari-

able expression patterns across tumour types and
tumour stage, despite all ultimately coding for ma-
ture miRs with equivalent target repertoires [71, 72].
This apparently independent regulation of expres-
sion of miRs from distinct genomic locations sug-
gests that coordination of miR function may be
intricately linked to the expression of other genomic
features, possibly linked by transcription factor
binding sites, co-location, and local epigenetic chro-
matin modification, all of which may combine with
other regional genomic effects to produce distinct
biological consequences.

Conclusions
Two key features of micro-RNA biology are their abil-
ity to target and downregulate a large number of
mRNAs [27], and the ability of many micro-RNAs to
target a single mRNA, resulting in a network architec-
ture for regulatory interactions [26]. We studied pair-
wise associations in a large panel of melanoma cell
lines informed by empirical phenotypic features. A de-
fining feature of this analysis is the examination of
mutual information together with Pearson’s correl-
ation, allowing us to identify strong associations which
may are not necessarily linear, before the principled
inclusion of sequence-based miR-mRNA predicted in-
teractions. Our approach should provide a useful
framework to guide experimental work and elucidate
the role of miRs in controlling cell phenotype across a
number of cancers.
Our findings implicate miR-29b as a regulator of

cellular phenotype in melanoma through proteins in-
cluding LAMC1 and PPIC within a network of post-
transcriptionally regulated genes. It is likely, however,
that a complex interplay between these and other as
yet undetermined miR-29b targets combine to define

(See figure on previous page.)
Fig. 5 Effects of miR-29b, LAMC1 and PPIC perturbation on motility and invasion of LM-MEL-45. a In the absence of a chemotactic
gradient, migration of LM-MEL-45 cells into a central detection zone was decreased by treatment with a miR-29b-3p mimic, and
partially phenocopied by siRNA-mediated knock-down of either LAMC1 or PPIC (data represent mean + SEM relative to controls of
independent triplicates, all treatments at 10nM). b Following reverse transfection with the indicated agents (final concentrations all
10nM), and overnight culture on agarose, LM-MEL-45 spheroids were embedded into a bovine collagen type I matrix and allowed to
invade over 24 h prior to staining with a green-fluorescent viable cell dye and imaging (representative spheroids shown). Treatment
with a miR-29b-3p mimic virtually ablated any invasion of cells into surrounding collagen, whilst siRNA-mediated knockdown of PPIC
led to marked invasion and/or lack of cohesion, seen as a pronounced spheroid halo. c Cross-sectional cellular density measurements
of representative spheroids (see also Figure AF5.6 within Additional file 5) confirm relative lack of invasive cells at the spheroid surface
in miR-29b-3p mimic treated cells (second panel) and, to a lesser extent, in LAMC1 knockdown cells (third panel). PPIC knockdown cells
displayed a broad spheroid cell density profile consistent with extensive cellular egress into surrounding collagen (bottom panel). d Quantitation of the
invasion distance from spheroid edge confirmed significant decrease in collagen invasion following miR-29b-3p overexpression, and increase following
PPIC knockdown. Error bars show mean ± SEM of at least seven spheroids per treatment
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the overall cellular behaviours observed. Future work
will focus on predicting and modelling more complex
transcriptome-wide interactions. Such studies will need to
address synchronous and competitive interactions, as well
as sequential multi-step interactions such as those medi-
ated by transcription factors. Experimentally validating
such networks may be technically challenging, particularly
under conditions simulating physiological levels of miR
and mRNA transcript abundance. Nonetheless, combina-
torial perturbations informed by computational modelling
will enhance our understanding of summative biological
effects relevant to key cell state transitions in cancer, as
typified by EMP.

Methods
Overview
Figure 6 provides an illustrative overview of our ana-
lytical pipeline that integrates various data sources
(Additional file 1), with additional technical detail
given below. For the LM-MEL melanoma cell line
panel [40], published mRNA and novel miR tran-
script data were collected and processed (Fig. 6a-d). Stat-
istical associations were calculated and filtered (Fig. 6e-f),
before integrating the TargetScan [47–49], DIANA-
microT CDS [50, 51] and miRTarBase [91] databases to
identify a list of putative relationships (Fig. 6g-h). We
examine and discuss putative miR-mRNA associations in
Fig. 2 (Fig. 6i), then explore the relative enrichment of
putative relationships for each miR, and the functional an-
notations of putative miR targets (Fig. 6j-k). Phenotypic
invasiveness assays for 24 cell lines were used for func-
tional annotations associated with each putative relation-
ship (Fig. 6l-n), and TCGA melanoma samples were used
to consider the potential for these associations within clin-
ical tumour data (Fig. 6o-q).
Evidence suggested that miR-29b-3p influences

melanoma invasiveness through regulating several
mRNA transcripts (Fig. 6r), thus these putative rela-
tionships were experimentally investigated. All puta-
tive miR-mRNA relationships are listed in Additional
file 3 (Fig. 6s).

Computational scripts
The miR-mRNA interaction pipeline for the LM-MEL
data (Fig. 6d-n, r & s) was developed using MATLAB
(R2015a) and a selection of data-processing scripts were
developed using R (v3.2.3; Fig. 6b, c, o & p) and python
(v3.0; Fig. 6i [TCGA plots], q & r). All computational
scripts developed for this project are freely available under an
MIT license, from: https://github.com/uomsystemsbiology/
LMMEL-miR-miner
To reproduce these results without MATLAB and

extensive system configuration (e.g. installation of py-
thon packages), a Virtual Reference Environment [92]

is available; however, users must accept the MATLAB
Compiler Runtime Libraries License displayed during
installation: https://github.com/uomsystemsbiology/
LMMEL-miR-miner_reference_environment

LM-MEL panel mRNA data
The Ludwig Melbourne melanoma (LM-MEL) panel
comprised of 57 cell lines derived from mostly meta-
static melanoma tumours (Fig. 6a) has previously
undergone mRNA transcript abundance profiling with
the Illumina HT12 beadchip microarray platform, ver-
sion 4 [40]. Data were downloaded from ArrayExpress
(Additional file 1) and underwent background correc-
tion, quantile normalisation and log2-transformation
within R, retaining multiple probes as distinct obser-
vations (Fig. 6b).

LM-MEL panel miR data
MicroRNA profiling was performed across the LM-
MEL panel of cell lines by small RNA sequencing at
the Australian Genome Research Facility (AGRF) on
the Illumina HiSeq platform using total RNA, includ-
ing small RNAs, purified from cell line pellets using
the Qiagen miRNEasy isolation kit, following the
manufacturer’s recommendations (Qiagen, Chadstone,
Victoria, Australia). Library preparation and 5’-bar-
code multiplexing were performed prior to sequen-
cing; each sample was run in 3–4 sequencing lanes as
required to achieve adequate sequencing depth. Initial
read quality assessment and filtering were performed
by AGRF. De-multiplexed raw read data and quality
scores were provided in fastq format. All reads for
each sample were concatenated using the UNIX com-
mand line and collapsed to single fasta format files
using the FASTX-Toolkit (v. 0.0.13) command-line
tool FASTQ Collapser. Collapsed reads were proc-
essed through the miRanalyzer webserver [93] to map
reads to the genome using the hg18 build of the
UCSC Homo sapiens genome, followed by mapping of
miRs to miRBase [94–99]. Raw and processed miR
abundance data were deposited on the Gene Expres-
sion Omnibus (GEO; dataset GSE89438; Additional
file 1). These data underwent normalisation and a
log2-transformation was performed (Fig. 6c).

LM-MEL phenotypic invasiveness data
Invasiveness through matrigel-coated Boyden cham-
bers (8 μm pore size) was profiled for 24 LM-MEL
cell lines (Fig. 6l); cell lines were subsequently
grouped as high- or low-invasiveness (Additional file 1)
and used for annotation (Fig. 6m) and further analysis
(Fig. 6n).
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Fig. 6 Computational workflow overview. a 57 melanoma cell lines derived (b) underwent mRNA and c miR transcript abundance profiling.
d The data were processed and (e) measures of statistical association were calculated between miR and mRNA transcripts, across the LM-MEL
panel data. f Strong, negative (inverse) associations (Fig. 1a) were filtered and (g) predicted interactions from TargetScan and/or DIANA-microT,
and validated interactions from miRTarBase (h) were matched to provide a list of putative melanoma-relevant associations (Fig. 1b). i A number
of interesting putative relationships were examined in further detail (Fig. 2). Enrichment of (j) miR-target associations within our list, and (k) Gene
Ontology annotations associated with epithelial-mesenchymal plasticity or melanogenesis/pigmentation were calculated (Fig. 3a). l Independent
phenotypic (invasiveness) data were used to (m) annotate results and (n) identify putative miR-mRNA relationships which separated invasiveness
groups. o Samples from the TCGA melanoma data were (p) processed and matched allowing (q) Pearson’s correlation between miRs and mRNAs
in vivo, to be calculated. r miR-29b-3p appeared to have a novel role regulating melanoma invasiveness, and several putative relationships were
validated experimentally (Figs. 3b & 4). s All putative relationships are listed within Additional file 3. Please refer to the main text for details
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TCGA miR and mRNA data
Matched miR and mRNA sequencing data from TCGA
skin cutaneous melanoma samples were downloaded
(Additional file 1), comprised of 368 samples from 366
individual patients (Fig. 6o). R scripts were developed
to use the dataset’s native directory structure for
extracting and compiling normalised mature micro-
RNA isoform read counts (including ‘star’ [*] forms),
and RNAseq normalised read counts from all samples
(Fig. 6p). Samples were matched across the microRNA
and RNA data according to the unique TCGA patient/
sample barcodes.

LM-MEL data pre-processing
To reduce the computational burden of the statistical
analysis, the LM-MEL mRNA and miR abundance data
were pre-processed (Fig. 6d) to remove RNAs with a
very low abundance or dynamic range, as these features
can indicate a poor signal-to-noise ratio for the data.
The 10th-percentiles of mRNA and miR abundance were
identified, and any miRs or mRNAs with less than 25%
of observations (i.e. across the 14/57 cell lines) above their
respective thresholds were excluded. Similarly, miRs
which did not have a range greater than the 90th percentile
of the miR abundance data and mRNA probes which did
not have a range greater than 10% of the total mRNA data
range, were also filtered. This pre-processing retained
198/2592 miRs (note that 916 of the miRs had no reads
across any cell line) and 16482/47231 mRNA probes
within the LM-MEL data.

Statistical associations
Pearson’s correlation and mutual information were
calculated between miR and mRNA abundance, across
all pairwise combinations of miRs and mRNAs which
passed pre-processing (Fig. 6e). The intrinsic ‘corr’
function within MATLAB (R2015a; Statistics and Machine
Learning Toolbox) was used to calculate the Pearson’s
correlation.
As noted earlier, mutual information is a measure

of statistical association which is formulated such
that it will tend towards zero in the case of statis-
tical independence between the miR and mRNA
abundance. Mutual information was calculated using
the Java Information Dynamics Toolkit (JIDT) [43]
with the ‘multivariate Kraskov 2 estimator’ (i.e. miR
and mRNA transcript abundance data were treated
as continuous variables and the Kraskov-Stoegbauer-
Grassberger estimator was used to calculate the MI),
implemented within the MATLAB Network Analysis
and Inference Libraries [42]. Note that the JIDT corrects
for mutual information over-estimation [46], and this sub-
traction can lead to negative mutual information values
(Fig. 1a & b).

For the TCGA data analysed within python, correla-
tions were calculated (Fig. 6q) using the numpy package
[100] and plots (Figs. 6I & 7r) were produced using the
matplotlib package [101].
Under the hypothesis that miR-mediated degrad-

ation of target mRNA transcripts would manifest as
a negative association, we filtered for the top 10% of
associations when ranked by mutual information
(mutual information > 0.259), and the most negative
2.5% of associations when ranked by Pearson’s correlation
(Pearson’s correlation < −0.330; Figs. 1a & 7f).

Databases
Ensembl BioMart [102] was used to match identifiers
between different databases as necessary. To reduce
the search domain of putative interactions and filter
indirect associations which may arise through the
modulation of an intermediate regulatory component
(e.g. a transcription factor), we filtered for predicted
miR-mRNA relationships with a relatively high confi-
dence. Specifically, we took the top 15th percentile
of TargetScan v7.0 (context + score < −0.286) [47–49],
and/or the top 30th percentile of DIANA-microT
CDS (miTG-score > 0.634) [50, 51] (Fig. 6g). The
miR-mRNA relationships which had been experimentally
validated with ‘strong evidence’ on miRTarBase [91]
(‘Luciferase reporter assay’; 'qRT-PCR' or 'Western
blot') were also extracted (Fig. 6g) and used to annotate
the selected statistical associations. This allowed us to
identify a set of putative miR-mRNA relationships
(Figs. 1b & 7 h) which may show graded levels of activ-
ity across different melanoma samples, contributing to
differences in cell phenotype.
Micro-RNAs can regulate large phenotypic changes

through distributed regulation of targets with a related
function [27]. Annotations were downloaded from the
Gene Ontology [103] database [104] (Fig. 6k) and
mRNAs were matched to GO annotations using strings
related to epithelial-mesenchymal plasticity (‘epith’,’me-
sench’) or pigmentation/melanogenesis (‘pigment’,
‘melan’; Fig. 6j, at bottom). GO categories were excluded
if they had less than 5, or more than 500, gene members,
and all categories are listed in Additional file 6.

Invasiveness-separation metric
A metric was created to quantify the relative separ-
ation of low- and high-invasive cell line groups over
the miR abundance ([miR]) versus mRNA abundance
([mRNA]) association (Fig. 6n). Calculating the cen-

troid/geometric mean of the low- μ̂miR;low; μ̂mRNA;low

� �

and high-invasive μ̂miR;high; μ̂mRNA;high

� �
groups from

mRNA and miR abundances, we defined:
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The percentile rank of dSep,norm was calculated for all
miR-mRNA associations, where the miR and mRNA asso-
ciation passed the data pre-processing, and is listed with
corresponding relationships within Additional file 3.

Cell line culture
Melanoma cell lines were obtained from institu-
tional stocks, as previously described [40]. LM-
MEL-7, −9, −42, −45 and −77 were used for in vitro
experiments; identity was confirmed by STR profil-
ing and HLA-matching to the documented patient
of origin. All cell lines were maintained in adherent
culture incubated in 5% atmospheric CO2 at 37°C in RPMI
1640 media (Gibco®, Life Technologies™, Mulgrave VIC,
Australia) supplemented with 10% fetal bovine serum
(Sigma, St Louis MO, USA), 1% glutamine (glutaMAX™)
and 1% penicillin/streptomycin (both from Gibco®, Life
Technologies™).

Transient transfections with miR inhibitor/mimic or siRNA
Cells were seeded into 6, 12 or 96 well plates as required
for planned downstream assays. Transfections were
performed when cells were approximately 70% conflu-
ent, using the Lipofectamine® RNAiMAX transfection
reagent (Invitrogen™, Life Technologies™) at 0.3, 2 or
3 μL per well of 96, 12 or 6 well plates, respectively, di-
luted in OptiMEM® reduced serum medium (Gibco®, Life
Technologies™) and mixed 1:1 with microRNA/siRNA
construct (also in OptiMEM®) to a final volume producing
a 1:5 final dilution into growth media. For microRNA
transfections, cells were forward transfected with mir-
Vana™ miRNA inhibitor negative control #1 or miRNA-
29b-3p inhibitor, miRNA mimic negative control #1 or
miRNA-29b-3p mimic (all Ambion™, Life Technologies™,
Cat. Nos. 4464076, 4464084, 4464058, 4464066) at final
concentrations as indicated in results. For gene target
knockdown studies, cells were transfected with siRNA
scrambled control or specific siRNAs targeting LAMC1,
LASP1 or PPIC (all OriGene Trilencer-27 Human siRNA,
Cat. Nos. SR30004, SR302649, SR302655, SR303664;
Rockville, MD, USA), at doses indicated in results. For

spheroid assays, cells were reverse transfected using iden-
tical reagent mixtures at the time of seeding onto agar.

Real time-PCR
Total RNA was collected from treated/untreated cell
pellets using RNeasy (standard gene qPCR only) or miR-
Neasy (total RNA including small RNA) kits (Qiagen,
Melbourne, Victoria, Australia) and cDNA formed using
the high-capacity cDNA reverse transcription kit (Applied
Biosystems™, Life Technologies™, Cat. No. 4368814) or
TaqMan® microRNA reverse transcription kit (Cat. No.
4366596), respectively, according to the manufacturer’s
protocol. MicroRNA qPCR was performed using TaqMan®
Universal PCR Master Mix, no AmpErase® UNG (Cat. No.
4324018) and TaqMan® microRNA assays (all Cat. No.
4427975) specific for hsa-miR-211 (ID 000514), hsa-miR-
125b-1* (ID 002378), hsa-miR-221* (ID 002096), hsa-miR-
9 (ID 000583), hsa-miR-23b (ID 000400), hsa-miR-29b (ID
000413), hsa-miR-222 (ID 002276), hsa-let-7a (ID
000377), or controls RNU44 (ID 001094) and RNU24 (ID
001001). Target gene qPCR was performed using Sensi-
FAST™ SYBR® Lo-ROX mastermix (Bioline, Alexandria,
NSW, Australia) with PCR primers designed as per Table
AF5.1 in Additional file 5.
Data were collected as ΔΔCT with melt curve inspection

using the ViiA™ 7 Real-Time PCR System and accompany-
ing software (Applied Biosystems™, Life Technologies™)
based on technical triplicates. Mean CT from 2 to 3 bio-
logical replicates was expressed as copies per 10,000 copies
of a reference gene (β-actin, RNU24 or RNU44).

In vitro proliferation assays
Cells were seeded at 5000 cells per well in flat-bottomed
96-well tissue culture plates prior to transfection with
microRNA or siRNA agents as described above. Cellular
proliferation was measured at baseline (i.e. pre-transfection)
and at 24 and 72 h following transfection by incubation for
1.5 h in MTS reagent (CellTiter 96® AQueous One Solution
Cell Proliferation Assay, Promega, Madison WI, USA)
diluted 1 in 6 in culture media, followed by measure-
ment of the absorbance at 490 nm and background cor-
rection using a no-cell control.

dSep;max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max mRNA½ �ð Þ−min mRNA½ �ð Þð Þ2 þ max miR½ �ð Þ−min miR½ �ð Þð Þ2

q

dSep;norm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̂nRNA;high−μ̂mRNA;low

� �2
þ μ̂miR;high−μ̂miR;low

� �2
r

dSep;max
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Low-density seeding assays
Transfected cells were re-harvested and plated in 6-well
tissue-culture treated plates at a density of 2000 cells per
well, in 2 mL culture medium. Cells were monitored
visually each day and allowed to grow for 21 days prior
to fixation in 2% paraformaldehyde (Electron Microscopy
Sciences, Hatfield, PA, USA) and staining with 0.01%
crystal violet/10% ethanol. Plates were imaged in the
680 nm infrared channel using the Odyssey scanner
(LI-COR® Biosciences, Lincoln, NE, USA) prior to subse-
quent quantitation of cellular outgrowth using the Colony
Area plugin for ImageJ (version 1.47) [105, 106].

Western blotting
Protein was harvested from cells 96 h following transi-
ent transfection with miR-29b agents or specific siR-
NAs against LAMC1, LASP1 or PPIC. Cell lysates were
prepared in 100 μL of RIPA buffer (Thermo Scientific™
Pierce™, Cat. No. 89900) containing the manufacturer’s
recommended concentrations of PhosSTOP™ phosphat-
ase inhibitor and cOmplete™ ULTRA EDTA-free prote-
ase inhibitor (Roche Diagnostics GmbH, Mannheim,
Germany), incubated for 30 min at 4°C prior to manual
scraping of cells/lysates. Protein concentrations were
estimated using the BCA method (Thermo Scientific™
Pierce™ BCATM Protein Assay Kit, Cat#23225) as per
the manufacturer’s directions. Samples were immedi-
ately adjusted to uniform final concentrations by the
addition of extra lysis buffer as required, prior to the
addition of NuPAGE® LDS Sample Buffer (4×) and
NuPAGE® sample reducing agent (10×) (both from
Novex®, Life Technologies, Cat#NP008 and Cat#NP009).
Samples were electrophoresed on NuPAGE® Novex® Bis-
Tris 4–12% pre-cast gels prior to transfer to nitrocellulose
membrane using the iBlot® Dry Blotting System (Invitro-
gen™, Life Technologies, Mulgrave, Victoria, Australia).
Membranes were blocked in Odyssey Blocking Buffer (LI-
COR® Biosciences) for 1 h at room temperature before
probing for LAMC1 (apparent MW 178 kDa) using the
rabbit anti-laminin gamma 1 monoclonal antibody RabMab
[EPR8217] (Abcam, Cat. No. ab134059; Melbourne,
Victoria, Australia) at 1:1000, for LASP1 (apparent MW
30 kDa) using the rabbit polyclonal anti-LASP1 – N-
terminal antibody (Abcam, Cat. No. ab191022) at 1:1000,
or for PPIC using the rabbit monoclonal anti-PPIC – C-
terminal antibody RabMab [EPR15355] (Abcam, Cat. No.
ab184552) at 1:10,000. Loading was controlled to β-Actin
(apparent MW 45 kDa) using the mouse monoclonal anti-
β-Actin (8H10D10) antibody (Cell Signaling Technology,
Cat. No. 3700; Danvers, MA, USA) at 1:3000. Membranes
were incubated with primary antibodies for 2 h at room
temperature in a 1:1 mixture of PBS containing 0.05%
tween-20 (PBST) and Odyssey Blocking Buffer. Bands were
visualised by staining with IRDye® 680RD goat anti-mouse

IgG and IRDye® 800CW goat anti-rabbit IgG secondaries at
1:40,000 and 1:20,000 respectively (LI-COR®, Prod. Nos.
926–68070 and 926–32211) for 1 h at room temperature.
Air-dried membranes were scanned on the LI-COR®
ODYSSEY® Infrared Imaging System and densitometry
performed in the Image Studio™ Lite Version 5.0 software
(LI-COR®). Densitometry results were normalized to β-
Actin and expressed relative to the appropriate control
treatment.

Undirected radial migration assays
Transfected cells were re-harvested, counted and delivered
at 40,000 cells per well of 96 well optical-bottom plates
(Nunc, ThermoFisher Scientific) fitted with Oris™ Cell
Migration Assay stoppers (Platypus Technologies, Madison,
WI, USA). Cells were allowed to adhere overnight prior to
removal of stoppers, leaving a 2 mm diameter detection
zone in the centre of each well. After changing to fresh
growth media, cells were allowed to migrate for 24–48 h
prior to fixation in 2% paraformaldehyde and staining with
0.01% crystal violet/10% ethanol.

Spheroid collagen invasion assays
Collagen-implanted spheroid invasion was performed
based on previously-described methods [107]. Spheroids
were prepared by seeding 150,000 cells in 2 mL of growth
medium (with required transfection reagents) into wells of
six well plates on top of pre-formed 0.8% agarose base-
layers (Sigma, Cat. No. A9539) diluted from sterilised 3.2%
agarose stock with growth medium. After 48 h incubation,
spheroids were harvested by gentle aspiration, transferred
to sterile collection tubes and allowed to settle by gravity
for 30 min prior to manual aspiration of overlying media.
Neutralised collagen was prepared from 5 mg/mL bovine
collagen type I stock (Trevigen Cultrex®, Cat. No. 3442-
050-01, Gaithersberg, MD, USA) by dilution 1:1 with 2×
growth medium (2× RPMI 1640, 20% FBS) and pH ad-
justed by dropwise addition of sterile 1 M NaOH. Acellular
collagen base layers were prepared by aliquoting 300 μL of
neutralised collagen into wells of a 24 well plate and
allowed to gel at room temperature for 30 min. Spheroids
were then gently resuspended in 500 μL of neutralised col-
lagen diluted 2:1 with 1× growth medium (final collagen
concentration 1.67 mg/mL) and overlaid onto base layers
and allowed to gel for 10 min at room temperature before
returning to the incubator. Once completely gelled, colla-
gen was overlaid with a further 500 μL of growth media.
Spheroids were allowed to invade for 24 h prior to fluores-
cent viability staining with calcein-AM (live) and EthD-III
(dead) using the Live/Dead Cell Staining Kit II (PromoKine,
Cat. No. PK-CA707-30002, PromoCell GmbH, Heidelberg,
Germany) before imaging.

Andrews et al. Molecular Cancer  (2016) 15:72 Page 16 of 20



Additional files

Additional file 1: Data and Computational Tools (.docx) – Contains
Table AF1.1, which lists detailed information on the data and
computational tools used in this study. (DOCX 14 kb)

Additional file 2: Table (.csv) of matrigel invasiveness (classified as
invasive/non-invasive) for LM-MEL cell lines which is read into the
computational scripts. For details on the experimental protocol please
refer to Methods/LM-MEL phenotypic invasiveness data. (CSV 273 bytes)

Additional file 3: Table (.csv) output from the computational scripts
containing (1041) putative relationships with a strong negative statistical
association and support from TargetScan and/or DIANA-microT, or
mirTarBase (i.e. the full list of associations from Fig. 1b). mRNA Transcripts
which have been annotated with a role in pigmentation or EMP via their
GO category (from Fig. 1c) are labelled. mRNA transcripts which have been
previously implicated in phenotypic switching in melanoma are labelled [3].
(CSV 77 kb)

Additional file 4: miRNA-mRNA Interactions of Interest (.docx) –
Contains: Table AF4.1, which lists miRNA-mRNA interactions identified
from our analysis that have been previously validated in human cellular
contexts. Table AF4.2, which lists novel putative miRNA-mRNA interactions
that involve mRNA transcripts implicated in melanoma EMP behaviours
and/or invasiveness. (DOCX 86 kb)

Additional file 5: Supporting Experimental Data (.pdf) – Contains: Table
AF5.1, which lists the PCR primers used. Figure AF5.1 which displays
baseline expression for genes of interest in a subset of LM-MEL melanoma
cell lines using qPCR. Figure AF5.2, which displays siRNA transfection
efficiency; Figure AF5.3, which displays additional qPCR results showing
the effects of miR-29b mimic/inhibitor transfection. Figure AF5.4 & AF5.5,
which display the effects of miR-29b mimic/inhibitor transfection on
LM-MEL-77 cell proliferation and outgrowth. Figure AF5.6, which
displays information to aid the reader’s interpretation of melanoma
spheroid data. (PDF 3182 kb)

Additional file 6: Table (.csv) of Gene Ontology (GO) database terms
used for the enrichment analysis of ‘epithelial-mesenchymal plasticity’
(EMP) and pigmentation processes in Fig. 3a, together with the number
of genes within each category. As detailed in Methods/Databases, terms
were identified by string matching and GO terms were excluded if they
had less than five or more than 500 member genes. (CSV 5 kb)
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