
1SCIeNTIFIC ReporTs |  (2018) 8:11120  | DOI:10.1038/s41598-018-29509-0

www.nature.com/scientificreports

The Impact of Ageing on 
11C-Hydroxyephedrine Uptake in 
the Rat Heart
Rudolf A. Werner1,2,3, Xinyu Chen1,3, Yoshifumi Maya4, Christoph Eissler1, Mitsuru Hirano1,3, 
Naoko Nose5, Hiroshi Wakabayashi1,3, Constantin Lapa1, Mehrbod S. Javadi2 & 
Takahiro Higuchi1,3,5

We aimed to explore the impact of ageing on 11C-hydroxyephedrine (11C-HED) uptake in the healthy 
rat heart in a longitudinal setting. To investigate a potential cold mass effect, the influence of specific 
activity on cardiac 11C-HED uptake was evaluated: 11C-HED was synthesized by N-methylation of 
(−)-metaraminol as the free base (radiochemical purity >95%) and a wide range of specific activities 
(0.2–141.9 GBq/μmol) were prepared. 11C-HED (48.7 ± 9.7MBq, ranged 0.2–60.4 μg/kg cold mass) 
was injected in healthy Wistar Rats. Dynamic 23-frame PET images were obtained over 30 min. Time 
activity curves were generated for the blood input function and myocardial tissue. Cardiac 11C-HED 
retention index (%/min) was calculated as myocardial tissue activity at 20–30 min divided by the integral 
of the blood activity curves. Additionally, the impact of ageing on myocardial 11C-HED uptake was 
investigated longitudinally by PET studies at different ages of healthy Wistar Rats. A dose-dependent 
reduction of cardiac 11C-HED uptake was observed: The estimated retention index as a marker of 
norepinephrine function decreased at a lower specific activity (higher amount of cold mass). This 
observed high affinity of 11C-HED to the neural norepinephrine transporter triggered a subsequent 
study: In a longitudinal setting, the 11C-HED retention index decreased with increasing age. An age-
related decline of cardiac sympathetic innervation could be demonstrated. The herein observed cold 
mass effect might increase in succeeding scans and therefore, 11C-HED microPET studies should be 
planned with extreme caution if one single radiosynthesis is scheduled for multiple animals.

As the predominant disorder of the ageing population, heart failure (HF) is the major cause of death in both the 
United States and Europe1,2. In this regard, HF can be understood as the result of cardiovascular ageing, repre-
senting the convergence of age-related alterations in both cardiovascular structure and function3.

Increasing interest in the age-dependent alterations in myocardial sympathetic nerve integrity has been 
aroused in particular from recognition that neurohumoral mechanisms may be the cause for the age-related 
increase in cardiovascular morbidity and mortality4–7. Deterioration in cardiac innervation in the elderly popu-
lation is characterized by an elevated plasma concentration of the neurotransmitter norepinephrine (NE)8,9, an 
increased firing rate in the postganglionic fibers to the skeletal muscle10,11, impaired function of the NE trans-
porter (uptake-1 mechanism)4,5 and reduced plasma clearance of NE in the synaptic cleft12,13.

The diagnostic use of cardiac radionuclide imaging probes such as 123I-metaiodobenzylguanidine 
(123I-mIBG) for Single Photon Emission Computed Tomography (SPECT) or 11C-hydroxyephedrine 
(11C-HED) for Positron Emission Tomography (PET) is currently expanding14–17. Both radiotracers are con-
sidered to reflect sympathetic presynaptic function, as they share NE pathways and therefore interact with 
uptake-1 mechanism, which recovers exocitotically released NE from the synaptic cleft18–21. An extensive body 
of evidence has been reported on the utility for risk stratification among severe HF patients using both imaging 
agents22–24: In the prospective Prediction of ARrhythmic Events with Positron Emission Tomography (PAREPET) 
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trial, sympathetic neuronal impairment assessed by 11C-HED predicted sudden cardiac arrest independently 
of left ventricular ejection fraction25. Apart from that, the impact of ageing on cardiac innervation assessed by 
123I-mIBG has also been reported previously, e.g. in healthy subjects26–29 or in patients suffering from systolic 
HF30. Of note, Rengo et al. even suggested an age-dependent adjustment of the well-established 123I-mIBG 
heart-to-mediastinum ratios, which are frequently used for stratifying the risk of cardiac events30.

Hence, given the expected broadened use of 11C-HED outside of controlled clinical trials as well as the altera-
tions of myocardial sympathetic nerve function in the elderly, we aimed to explore the potential impact of ageing 
on cardiac 11C-HED uptake in healthy rats in a longitudinal setting.

Materials and Methods
Animal protocols were approved by the local Animal Care and Use Committee (National Cardiovascular and 
Cerebral Research Center, Suita, Japan) and conducted according to the Guide for the Care and Use of Laboratory 
Animals (NIH Publication No. 85-23, revised 1996)31.

Study Design.  The first study was performed to explore a potential cold mass effect on myocardial 11C-HED 
uptake. Thereafter, the impact of ageing on cardiac 11C-HED uptake was examined in a longitudinal setting.

Imaging Protocols.  All animals were maintained under anesthesia throughout the imaging procedure 
with 2% isoflurane. 11C-HED imaging was performed using a micro PET system (Inveon; Siemens Healthcare, 
Erlangen, Germany). Its characteristics have been described in32. Prior to a bolus tracer injection of 11C-HED 
(50 MBq) via the tail vein, a list mode 30 min image acquisition was started. The list mode data was reconstructed 
into a dynamic sequence (23 frames: 15 × 8 s, 3 × 60 s, 5 × 300 s) using ordered-subset expectation maximization 
with 16 subsets and 4 iterations33. For the second study (impact of ageing on myocardial 11C-HED uptake), a 
reference scan with 18F-fluorodeoxyglucose (18F-FDG) was performed after more than four half lives of 11C 
decay. One hour after i.v. administration of 37 MBq 18F-FDG, PET images were acquired over 7 min. List-mode 
data were reconstructed using ordered-subset expectation maximization with 16 subsets and 4 iterations. The 
cardiac 18F-FDG uptake was visualized as the percentage of the injected dose per tissue cubic ml (%ID/ml) and 
an imaging-processing application (AMIDE-bin 1.0.2) was used34.

Effect of specific activity on myocardial 11C-HED uptake.  11C-HED was synthesized by N-methylation  
of (−)-metaraminol as the free base (radiochemical purity >95%) and a wide range of specific activities (0.2–
141.9 GBq/μmol) were prepared. Under isoflurane anesthesia, 11C-HED (48.7 ± 9.7 MBq, ranged 0.2–60.4 μg/kg 
cold mass) was injected via the tail vein in 14 healthy female Wistar rats (Charles River Laboratories, 350–440 g) 
and dynamic PET images were obtained over 30 min. All animals received approximately the same mass dose of 
metaraminol (1.5 ± 1.4 μg/kg), the precursor of 11C-HED.

Regions of Interest (ROI) were drawn at the mid-ventricular level in all 14 animals for assessment of uptake in 
myocardial tissue and at the left atrial cavity* for obtaining blood activity. Cardiac 11C-HED retention index (%/min)  
was calculated as myocardial tissue activity at 20–30 min divided by the integral of the blood activity curves. The 
washout rate (%/min) was calculated as follows: (mean cardiac counts7.5min − mean cardiac counts27.5min)/(mean 
cardiac counts7.5min) × 100/20 (min). The effect of cold mass on the retention index was evaluated by fitting the 
data to a dose-response model with variable slope (Equation 1):

= + + ∗Y Bottom (Top Bottom)/(1 10 ((LogEC50 X) HillSlope)), (1)‐ ˄ ‐

where Y is the Retention index, X is the log of dose, and EC50 is the median effective concentration. Bottom value 
was estimated from the blood activity at 20–30 min.

The relationship between cold mass and washout rate was assessed by fitting the data to a Michaelis-Menten 
kinetics (Equation 2):

= × +Y X X(rate )/(K ), (2)max dis

where Y is the washout rate, X is the dose, ratemax is the maximum rate of radioactivity loss, and Kdis is the 
half-saturation dose.

Impact of ageing on myocardial 11C-HED uptake.  Serial 11C-HED PET imaging was conducted in 
7 healthy male Wistar Rats (Charles River Laboratories) at different ages (month (M) 2, 5, 11 and 15). 11C-HED 
was synthesized as previously described35. Obtained specific radioactivity was 370–740 GBq/μmol and radi-
ochemical purity was >95%. 18F-FDG was synthesized in an in-house cyclotron according to the manufacturer’s 
instructions.

Statistical Analysis.  All results are displayed as mean ± standard deviation. Statistical analysis was per-
formed using StatMate III (ATMS Co., Ltd., Tokyo, Japan). Statistical significance between the groups was deter-
mined by one-way ANOVA followed by post hoc Tukey multiple comparison analysis. A P-value of less than 0.05 
was assumed to be statistically significant.

Results
In-vivo blocking study.  11C-HED dynamic PET with different tracer specific activities showed rapid blood 
clearance and clear delineation of the myocardium in all animals. A dose-dependent reduction of cardiac 11C-
HED uptake with different specific activities was observed (Fig. 1A, representative axial PET images): With 
a low dose of 0.2 μg/kg, uptake in the left ventricular myocardium could be clearly visualized, while a slight 
decrease could be observed at a dose of 1 μg/kg. A further notable decline could be observed with 10 μg/kg, while 
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myocardial uptake almost vanished with 34 μg/kg. Time-activity curves presented in Fig. 1B demonstrated that 
with the highest cold dose (34 μg/kg), the washout considerably increased, while both the low-dose time-activity 
curves (0.2 μg/kg and 1 μg/kg) remained stable. The middle-dose time-activity curve (10 μg/kg) demonstrated a 
moderate increase in washout.

The estimated retention index as a marker of norepinephrine re-uptake function decreased with lower specific 
activity (higher amount of cold mass, Fig. 2A). The data were well fitted by a dose–response model (R2 = 0.91, 
P < 0.001) and the EC50 value (95% confidence intervals) was 46.3 (34.6–62) μg/kg. Notably, at a dose of 1 log μg/kg,  
the retention index decreased at lower specific activity (Fig. 2A). Similar findings were also observed for the 
washout rate: at a cold dose of 10 μg/kg HED, the washout rate increased markedly as loaded cold mass increased 
(Fig. 2B). The parameters calculated were ratemax = 2.71% min−1 and Kdis = 48.7 μg/kg.

Longitudinal 11C-HED imaging.  In a longitudinal setting, serial 11C-HED imaging was conducted at 
different ages of Wistar Rats. 11C-HED PET images demonstrated clear visualization of the left ventricular wall 
indicating high and homogeneous tracer activity throughout the left ventricular myocardium for all animals 
at M2. However, the homogenous cardiac uptake pattern reduced subsequently from M5 to M11 and a further 
decline could be detected at M15. 18F-FDG uptake remained stable throughout the ventricle at different ages, 
indicating preserved myocardial viability (Fig. 3A). 11C-HED retention indices (%/min) decreased with increas-
ing age (M2: 8.9 ± 2.2, M5: 9.2 ± 1.09, M11: 8 ± 1.64, M15: 6.3 ± 1.1; M2 vs. M15, p < 0.03 and M5 vs. M15, 
p < 0.02, Fig. 3B).

Figure 1.  Uptake of radioactivity in the rat heart of 4 different animals (at an age of 2 months) after injection 
of 11C-HED with different specific activities. (A) Representative axial PET images 25–30 min post-injection of 
11C-HED. (B) Time-activity curves for the myocardium with different amount of cold doses. A dose-dependent 
reduction of cardiac 11C-HED uptake can be observed.

Figure 2.  Dose-effect relationships for myocardial uptake of 11C-HED. (A) Retention index. The estimated 
retention indices as a marker of norepinephrine re-uptake function decreased at lower specific activity (i.e. 
higher amount of cold mass). (B) Washout Rate. The washout rate increased as loaded cold mass increased. 
Every dot represents one investigated animal, dotted lines show 95% inclusion limits and solid lines indicate 
dose-effect curves.
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Discussion
Cardiac sympathetic nerve PET tracers such as 11C-HED rely on the “uptake-1” recycling pathway18,19,36 and the 
present study demonstrated a high affinity of 11C-HED to the neuronal NE transporter: The estimated retention 
index as a marker of NE re-uptake function decreased at lower specific activity (i.e. higher amount of cold mass), 
while the washout rate increased. This observed effect triggered a subsequent investigation: The impact of ageing 
on 11C-HED uptake was investigated by a longitudinal imaging study in healthy rats and an age-related decline 
of cardiac sympathetic innervation could be demonstrated.

The high affinity of 11C-HED for neuronal uptake-1 has also been proven previously. However, species- and 
tracer-dependent variations have to be considered36,37: In an in-vivo rabbit study, cardiac washout was enhanced 
by a desipramine chase protocol (i.e. addition of the uptake-1 blocker desipramine immediately after initial tracer 
accumulation), which suggests a continuous cyclical release (diffusion out) and reuptake of 11C-HED via neural 
NE transporter in the rabbit heart33. Rischpler et al. investigated the same species like in the present study (Wistar 
Rats) and also demonstrated that desipramine led to a reduction of 11C-HED accumulation in the rat myocar-
dium (while 123I-mIBG showed a high contribution to non-neuronal uptake-2)37. DeGrado et al. further corrob-
orated these observations by using 11C-HED in isolated perfused rat hearts38. Hence, given the high affinity of 
11C-HED to the neuronal NE transporter as demonstrated in the present study, the rat heart seems to serve as a 
suitable platform for 11C-HED sympathetic nerve imaging.

Considering the rapid radioactive decay of 11C labeled compounds (20.4 min) compared to 18F (110 min), 
lower specific activity (higher amount of cold mass) might hamper the diagnostic accuracy of 11C-HED stud-
ies. However, this problem can be neglected in a clinical setting, as normally one 11C-HED radiosynthesis is 
scheduled for one single patient injection. Nevertheless, the herein presented cold mass effect might be of utmost 
importance in planning small animal PET studies using 11C-HED39,40: Analogous to patient care, only one radi-
otracer production should be considered for one animal, otherwise the cold mass might increase dramatically 
for the second, succeeding PET study. However, scanning one single animal per radiosynthesis might also lead 
to a significant cost expansion. Consequently, the findings of the present study should be at least taken into 
account if one 11C-HED radiosynthesis is scheduled for multiple animals. At a dose of 1 log μg/kg, the retention 
index decreased at lower specific activity (Fig. 2A). In a similar vein, at a cold dose of 10 μg/kg, the washout rate 

Figure 3.  (A) In-vivo serial PET imaging with 11C-HED and 18F-FDG in healthy Wistar Rats at different 
ages (Month 2, 5, 11 and 15). An age-related decline of 11C-HED uptake can be observed, whereas 18F-FDG 
uptake remained stable at different ages. (B) Retention indices of rats at different ages (Month 2, 5, 11 and 15). 
Retention Indices decreased with increasing age (Month 2 and Month 5 vs. Month 15, p < 0.03 and p < 0.02, 
respectively).
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increased markedly as loaded cold mass increased (Fig. 2B). Thus, those upper limits may serve as practical rec-
ommendations for conducting micro PET studies with 11C-HED.

An extensive body of evidence has reported on the general age-related changes in autonomic nervous sys-
tem function41,42. In particular, age-dependent alterations in myocardial sympathetic innervation have attracted 
interest because of the potential association between cardiac neurohumoral impairment and age-related increase 
in cardiovascular diseases4–7,43. Apart from that, a more frequent use of the cardiac sympathetic nerve tracer 
11C-HED can be envisaged in the near future, mainly due to its favourable properties for risk stratification among 
severe HF patients21,25. Therefore, we also aimed to explore the impact of ageing on cardiac 11C-HED uptake 
in healthy Wistar rats and a decline of myocardial innervation with increasing age could be observed (Fig. 3). 
However, the concept of assessing an age-related effect on cardiac uptake-1 with neurohumoral PET or SPECT 
probes is not entirely novel: Tsuchimochi and coworkers demonstrated a decreasing inferior wall uptake in elder, 
healthy men using 123I-mIBG27. In patients suffering from systolic HF, a paralleled decrease in both early and 
late heart-to-mediastinum ratios with increasing age has been reported30. Li et al. investigated the F18-labelled 
neuronal imaging agent fluorodopamine in healthy volunteers and not surprisingly, an uptake reduction in the 
myocardium along with physiological human ageing could be observed44. However, the investigation of a poten-
tial age-related impact among different cardiac sympathetic nerve tracers is of utmost importance, as all of these 
investigated PET or SPECT probes significantly differ in their kinetic properties (e.g., 11C-HED is resistant to 
degrading enzymes36, whereas 6–18F-fluorodopamine shares similar metabolic pathways to physiological NE44).

Of note, Bernacki et al. recently compared a younger patient cohort (18–33 y) vs. an older cohort (65–80 y) and 
reported on a decline in cardiac sympathetic nerve function assessed by 11C-HED PET. Although extrapolations 
from preclinical observations to humans must be done with extreme caution, the herein presented age-related 
decrease of sympathetic nerve function in the rat myocardium corroborates these previously reported findings45. 
However, due to the preclinical setting of the present study, the same rat could be imaged at different time points 
of its life, which might be comparable to different stages in a human life cycle46: M2 in a rat life corresponds 
approximately to early/middle childhood (human age, 6 y), M5 to adolescence (12–20 y), M11 to early adulthood/ 
midlife (35–50 y) and M15 to mature adulthood (50–70 y). Hence, in contrast to Bernacki et al. selecting two 
extremes (adolescence vs. late adulthood)45, the present study not only reports on significant differences in car-
diac nerve function between young and old (M2 vs. M15 group), but also on an age-dependent loss of myocardial 
innervation over the life span of a healthy rat.

Conclusions
In a longitudinal 11C-HED imaging study in healthy rats, an age-related decline on myocardial sympathetic nerve 
activity could be demonstrated, which is consistent with the generalized decrease of peripheral somatic nerve 
function in the elderly. However, the herein reported cold mass effect might be of utmost importance in planning 
micro PET studies: only one production should be considered for one animal, as the cold mass might increase in 
succeeding scans for multiple animals.
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