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Abstract

Pathway analyses of genome-wide association studies aggregate information over sets of related genes, such as genes in
common pathways, to identify gene sets that are enriched for variants associated with disease. We develop a model-based
approach to pathway analysis, and apply this approach to data from the Wellcome Trust Case Control Consortium (WTCCC)
studies. Our method offers several benefits over existing approaches. First, our method not only interrogates pathways for
enrichment of disease associations, but also estimates the level of enrichment, which yields a coherent way to promote
variants in enriched pathways, enhancing discovery of genes underlying disease. Second, our approach allows for multiple
enriched pathways, a feature that leads to novel findings in two diseases where the major histocompatibility complex (MHC)
is a major determinant of disease susceptibility. Third, by modeling disease as the combined effect of multiple markers, our
method automatically accounts for linkage disequilibrium among variants. Interrogation of pathways from eight pathway
databases yields strong support for enriched pathways, indicating links between Crohn’s disease (CD) and cytokine-driven
networks that modulate immune responses; between rheumatoid arthritis (RA) and ‘‘Measles’’ pathway genes involved in
immune responses triggered by measles infection; and between type 1 diabetes (T1D) and IL2-mediated signaling genes.
Prioritizing variants in these enriched pathways yields many additional putative disease associations compared to analyses
without enrichment. For CD and RA, 7 of 8 additional non-MHC associations are corroborated by other studies, providing
validation for our approach. For T1D, prioritization of IL-2 signaling genes yields strong evidence for 7 additional non-MHC
candidate disease loci, as well as suggestive evidence for several more. Of the 7 strongest associations, 4 are validated by
other studies, and 3 (near IL-2 signaling genes RAF1, MAPK14, and FYN) constitute novel putative T1D loci for further study.
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Introduction

By systematically surveying the genome for variants correlated

with disease phenotypes, genome-wide association studies (GWAS)

have led to the discovery of genes and genetic loci underlying

complex diseases [1–4]. Even though disease-correlated variants

tend to have small effects on susceptibility to disease, followup

investigations of the genetic loci implicated by GWAS have

nonetheless advanced our understanding of many complex

diseases. One strategy researchers have taken to translate initial

genetic clues into biological models of disease etiology has been to

identify common features of these genetic loci. For example, the

discovery of disease-correlated variants in GWAS of Crohn’s

disease, a common form of inflammatory bowel disease, has

helped draw links to genes that regulate autophagy and innate

immune responses [5–10].

Recognizing that insights into disease can emerge by exploring

the functional relationships among genes implicated in GWAS,

researchers have attempted to assess these relationships in a

systematic way by developing ‘‘pathway analysis’’ approaches to

GWAS [11–28]. These methods are motivated by the theory that

complex disease arises from the accumulation of genetic effects

acting within common biological pathways [29–32]. The aim is to

identify pathways that are enriched for disease—that is, groups of

related genes that preferentially harbour disease-associated vari-

ants compared to arbitrary regions of the genome. Identifying

enriched pathways is an important aim in itself, but pathway

analysis can also improve power to uncover genetic factors

relevant to disease; a major shortcoming of standard mapping

approaches that test each marker one at a time for association with

disease is that they lack power to map genetic factors of small effect

[33–36]. The intuition is that identifying the accumulation of

genetic effects acting in a common pathway is often easier than

mapping the individual genes within the pathway that contribute

to disease susceptibility.

Despite the considerable potential of pathway analysis ap-

proaches to GWAS, existing methods have an important

limitation: they do not tell us which genes within an enriched
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pathway are most likely relevant to disease. Identifying enriched

pathways is often useful, but many pathways contain genes with

only loosely interrelated functions, so identifying the genes and

variants within the pathway that are driving the enrichment is

likely to yield additional insights into disease. This could be tackled

in a two-stage process: first, identify the enriched pathways;

second, gauge support for associated variants within the enriched

pathways. In the second stage, significance thresholds for

association could be relaxed relative to a genome-wide scan,

reflecting the increased likelihood that variants near genes in the

pathway are associated with disease. This is called prioritizing

variants within the pathway [29,37–45]. The question is how to

implement this in a systematic way: to what extent can we relax

significance thresholds while keeping the rate of false positives at

an acceptable level?

To address this question, we develop a model-based approach

for integrated analysis of pathways and genetic variants, in which

we interpret enrichment as a parameter of the model. We begin

with a large-scale multivariate regression that models disease risk

as the combined effect of multiple markers. Unlike single-marker

disease mapping, the multi-marker approach accounts for

correlations between variants that arise due to linkage disequilib-

rium. Within this framework, we introduce an enrichment

parameter that quantifies the increase in the probability that each

variant in the pathway is associated with disease susceptibility.

This model-based approach not only estimates the level of

enrichment, but also adjusts the evidence for disease associations

in light of predicted pathway enrichments—and, in so doing,

tackles the problem of how to prioritize variants related to groups

of genes or pathways.

Though we focus on incorporating pathways—and, more

broadly, biologically related gene sets—into analysis of GWAS,

our methods could be applied to other types of genome

annotations, such as Gene Ontology categories [46], and DNA

sequences where proteins are recruited to regulate gene transcrip-

tion [47–51]. In this respect, our method is related to other model-

based approaches that leverage prior knowledge about variants to

estimate enrichment of association signals across functionally

related regions or locate causal variants that affect disease risk

[29,52–62]. One distinguishing feature of our approach is that we

have an efficient procedure to evaluate hypotheses about

enrichment, which allows us to interrogate support for enrichment

of thousands of candidate pathways in genome-wide data.

Another feature that distinguishes our analysis is that we use

multiple pathway databases in an attempt to interrogate pathways

as comprehensively as possible—the more pathways we consider,

the greater chance we have of drawing new connections between

pathways, genes within these pathways, and complex disease. We

demonstrate how using our approach to comprehensively inter-

rogate pathways results in increased evidence for enrichment, and

is robust to inclusion of a large number of irrelevant pathways. In

our case studies, we include ,3100 candidate gene sets drawn

from eight pathway databases available on the Web [44,63,64].

We illustrate our approach in a detailed analysis of genome-

wide data from the Wellcome Trust Case-Control Consortium

(WTCCC) studies of 7 complex diseases [65]. These studies

provide an opportunity to gauge the added value of our approach

because genetic associations based on these data have already been

published [65], and pathway analyses of these data have found

evidence for enriched pathways [11,13,16,22,23,66–74]. Our

methods highlight several pathways that have not been identified

in previous pathway-based analyses, but which are known to be

linked to these diseases. And, by prioritizing variants within the

enriched pathways, our methods identify disease-susceptibility

candidates that are not deemed significant in conventional

analyses of the same data. These results demonstrate the potential

for our methods to yield novel biological insights into complex

disease.

Overview of statistical analysis
Our approach builds on previous work that casts simultaneous

analysis of genetic variants as a variable selection problem—the

problem of deciding which variables (the genetic variants) to

include in a multivariate regression of the phenotype. We begin

with a method that assumes each variant is equally likely to be

associated with the phenotype [75,76], then we modify this

assumption to allow for enrichment of associated variants in a

pathway.

The data from the GWAS are the genotypes X~(x1, . . . ,xn)T

and phenotypes y~(y1, . . . ,yn)T from n study participants. We

assume the genetic markers are single nucleotide polymorphisms

(SNPs), and the phenotype is disease status: patients with the

disease (‘‘cases’’) are labeled yi~1, and disease-free individuals

(‘‘controls’’) are labeled yi~0. Entries of the n|p matrix X are

observed minor allele counts xij[f0,1,2g, or expectations of these

counts estimated using genotype imputation [77,78], for each of

the n samples and p SNPs.

We assume an additive model of disease risk, in which the log-

odds for disease is a linear combination of the minor allele counts:

log
p(yi~1)

p(yi~0)

� �
~b0zxi1b1z � � �zxipbp: ð1Þ

Under this additive model, e
bj is the odds ratio, the multiplicative

increase in odds of disease for each copy of the minor allele at

locus j. We do not consider dominant or recessive effects on disease

risk, but it would be straightforward to include them; see [79]. This

method is also easily adapted to quantitative traits by replacing (1)

with a linear regression for y.

Although the log-odds for disease is expressed in (1) as a linear

combination of all SNPs, our framework is guided by the

Author Summary

Genome-wide association studies have helped locate gene
variants that affect our susceptibility to diseases. The
analysis of these studies is typically straightforward: test
each genetic variant whether it is correlated with
predisposition to disease. This approach often works well
for identifying commonly occurring variants with moder-
ate effects on disease risk. However, the effects of many
variants are so small they fail to register statistically
significant correlations. This is a concern because many
diseases are modulated by many genetic factors with small
effects on disease risk. An alternative is to examine groups
of variants, such as variants sharing a common pathway,
and assess whether these groups are ‘‘enriched’’ for
correlations with disease. This can be a more effective
approach to identifying genetic factors relevant to disease.
However, it does not tell us which genes are associated
with disease. To address this limitation, we describe an
approach that integrates enrichment analysis with tests for
disease-variant correlations within a single framework. We
illustrate this approach in genome-wide studies of seven
complex diseases. We show that our approach supports
enriched pathways in several diseases, and uncovers
disease-susceptibility genes in these pathways not identi-
fied in conventional analyses of the same data.

Joint Analysis of Variants and Pathways in Disease
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assumption that most SNPs have no effect on disease risk (bj~0).

While there is some debate over this assumption [80], an

advantage of this choice is that a SNP ‘‘included’’ in the multi-

marker disease model—that is, a SNP j that has a non-zero

coefficient, bj=0—indicates that the SNP is relevant to disease, or

that it is in linkage disequilibrium with other, possibly untyped,

variants that contribute to disease risk. Therefore, the main goal of

the analysis is to identify regions of the genome that contain SNPs

included in the disease model with high posterior probability, or

identify SNPs within these regions that have a high ‘‘posterior

inclusion probability,’’ PIP(j):p(bj=0DX,y). A high PIP is the

analogue of a small p-value in a conventional single-marker

analysis.

To obtain these posterior probabilities, we must first specify a

prior for the coefficients bj . A standard assumption, and the

assumption made in previous approaches [75,76], is that all SNPs

are equally likely to be associated with the phenotype a priori; that

is, pj:p(bj=0) is the same for all SNPs.

To model enrichment of associations within a pathway, we

modify this prior. Precisely, the prior inclusion probability for SNP

j depends on whether or not it is assigned to the enriched pathway:

log10 (
pj

1{pj

)~h0zajh, ð2Þ

where the pathway indicators aj record which SNPs are assigned

to the enriched pathway; aj~1 when SNP j is assigned to the

enriched pathway, otherwise aj~0. (In brief, a SNP is assigned to

a pathway if it is near a gene in the pathway; see Methods.) We

refer to h0 as the genome-wide log-odds, since it reflects the

background proportion of SNPs that are included in the multi-

marker disease model. (More precisely, it is the proportion

corresponding to SNPs not assigned to the pathway, which is

usually most SNPs.) We refer to h as the log-fold enrichment because it

corresponds to the increase in probability, on the log-odds scale,

that a SNP assigned to the pathway is included in the model. For

example, h0~{4 and h~2 indicates that 1 out of every 10,000

SNPs outside the pathway is included in the multi-marker model,

but for SNPs assigned to the pathway, 1 out of every 100 is

included. If h~0, this reduces to the standard prior assumption

made by previous methods. We expect h to be 0, or close to 0, for

most pathways.

We assess enrichment by framing each hypothesis test for

enrichment as a model comparison problem. To weigh the

evidence for the hypothesis that candidate pathway with indicators

a~(a1, . . . ,ap) is enriched for disease associations, we evaluate a

Bayes factor [81,82]:

BF(a)~
p(yDX,a,hw0)

p(yDX,h~0)
: ð3Þ

This Bayes factor (BF) is the ratio of likelihoods under two models,

the model in which the candidate pathway is enriched for SNPs

included in the multi-marker model (hw0), and the null model

with no enrichment (h~0). A larger BF implies stronger evidence

for enrichment. We compute each BF by averaging, or integrating,

over the unknown parameters, and over multi-marker models with

different combinations of SNPs, employing appropriate prior

distributions for h0, h, and the coefficients bj (see Methods).

Note that the Bayes factor (3) does not allow for a negative h—

that is, pathways that are underrepresented for associations with the

phenotype. While it could be useful to investigate negative log-

enrichments in other settings, in most GWAS of complex disease

where there are generally few significant associations to begin

with, reduced rates of disease associations in pathways would be

difficult to find, and would be unlikely to have a useful

interpretation.

We use the same approach to test for joint enrichment of

multiple candidate pathways. We compute BF(a) as before (eq. 3),

except that we set aj to 1 whenever SNP j is assigned to at least one

of the enriched pathways. In this case, h represents the increased

level of associations (on the log-odds scale) among SNPs assigned

to one or more of the pathways. This is equivalent to assuming

that all enriched pathways have the same level of enrichment,

which greatly simplifies the analysis. We allow for different

enrichment levels only when accounting for enrichment of the

MHC in RA and T1D. In that case, we have good reason to treat

the MHC differently, given the predominant contribution of

MHC alleles to RA and T1D risk [83,84].

To assess evidence for association of individual variants with the

phenotype, we compute PIP(j) for each variant j. These posterior

probabilities depend on which pathways are enriched, and on the

log-fold enrichment h, because these factors affect the prior

probabilities pj , which in turn affect the posterior probabilities

PIP(j), following Bayes’ rule. (In practice, we account for

uncertainty in h0 and h when calculating the posterior probabilities

by averaging over h0 and h; see Methods.) Since enrichment leads

to higher prior inclusion probabilities for SNPs in the enriched

pathway, an association that is not identified by a conventional

genome-wide analysis may become a strong candidate in light of

its presence in an enriched pathway. Because we estimate h from

the data, the extent to which we prioritize variants is determined

by the data. In this way, our framework integrates the problem of

identifying enriched pathways with the problem of prioritizing

variants near genes in enriched pathways.

Results

We illustrate our methods in a detailed analysis of genome-wide

marker data from case-control studies of seven common diseases:

bipolar disorder (BD), coronary artery disease (CAD), Crohn’s

disease (CD), hypertension (HT), rheumatoid arthritis (RA), type 1

diabetes (T1D) and type 2 diabetes (T2D) [65]. After steps to

ensure data quality (see Methods), the data for each disease consist

of ,440,000 SNPs genotyped for 1748–1963 cases and 2938

controls (Table S1). Many of the genetic associations based on

these data [65] have been replicated in follow-up studies [85–89].

We compare our results to previously reported associations, and to

existing pathway analyses of these data [11,13,16,22,23,66–74].

We analyze the data in three stages. First, we compute a BF for

each candidate pathway to assess whether it is enriched for disease

associations, and we rank the pathways according to their BFs.

(Throughout, we use ‘‘pathway’’ to refer to a collection of

functionally related genes.) Second, we investigate whether

prioritizing variants within the enriched pathways can help locate

disease associations beyond those identified in analyses that ignore

information about pathways. Finally, for diseases with evidence of

pathway enrichment, we re-examine the data for models in which

two or more pathways are enriched, and investigate whether

prioritizing combinations of enriched pathways yields further

disease associations.

Selection of candidate pathways
We assemble a comprehensive list of candidate pathways to test

for enrichment, drawing from a variety of publicly accessible

collections (see Methods). We do not filter pathway candidates

based on their potential relevance to disease. In total, we

Joint Analysis of Variants and Pathways in Disease
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interrogate 3158 candidate pathways for each disease, plus the

MHC and 6MHC gene sets described below. Most candidate

pathways were curated by domain experts, and others are based

on experimental evidence in non-human organisms and inferred

via gene homology. For full details of pathway databases used, and

steps taken to compile gene sets from pathway data, refer to

Methods, Supplementary Materials, and links to source code

implementing our analyses.

The major histocompatibility complex
In two of the seven diseases, RA and T1D, multiple disease

associations map to the major histocompatibility complex (MHC)

region on chromosome 6. Consequently, pathway analyses for RA

and T1D tend to highlight pathways that involve MHC genes.

When we apply our method to these diseases, the top pathways for

T1D and RA are ‘‘Allograft rejection’’ and ‘‘Asthma,’’ respective-

ly. Both gene sets include multiple MHC genes, and exhibit strong

evidence for enrichment (BF~1:8|1039,6:8|1015). Other path-

ways with the strongest enrichment signals also contain MHC

genes.

Most of the support for enrichment of these pathways is likely

driven by disease associations that map to the MHC. To check

this, we create a ‘‘pathway’’ containing all genes within the MHC

[90], and test this gene set for enrichment. The MHC gene set

shows more support for enrichment than any other pathway by

several orders of magnitude (BF~2:7|1054,2:4|1021 in T1D

and RA, respectively), and it is accompanied by a high enrichment

estimate (hMHC~4:6 and 3.7). Performing a similar enrichment

analysis for all genes within the ‘‘extended’’ MHC (xMHC) [91]

yields smaller BFs (Figure S1), suggesting that the genetic

contribution to RA and T1D risk lies mostly within the class I,

II and III subregions of the MHC.

Our finding that the MHC is enriched for associations with

T1D and RA is unsurprising considering the MHC is estimated to

account for over half the genetic contribution to T1D risk, and at

least a third for RA [83,84,92]. (By contrast, the genetic

contribution of the MHC is estimated to be ,10% for CD [83],

and the BFs for the MHC and 6MHC in CD are 8 and 4,

respectively.) In light of these findings, a reasonable question to ask

is whether pathways show enrichment for disease associations

beyond enrichment of the MHC. A strength of our model-based

approach is that it can address this question by computing a BF for

enrichment of each candidate pathway, conditioned on the

estimated enrichment of the MHC. Thus, in our subsequent

analysis of RA and T1D, we account for enrichment of disease

associations within the MHC in this way. As far as we are aware,

no other pathway-based analyses of these data incorporate

enrichment of the MHC, which may explain why previous studies

have highlighted mostly MHC-related pathways and gene

categories.

Bayes factors for enrichment
To give an initial impression of our enrichment results, we show

the pathway with the largest BF for each disease in Figure 1. The

seven diseases exhibit a wide range of support for the strongest

enrichment signal. For example, the top pathway for T1D, IL-2

signaling, has a BF of 1:2|1012, whereas the largest BF for HT is

only 5.

To address whether these top pathways constitute ‘‘significant’’

evidence for enrichment, the BF for enrichment must be weighed

against the prior probability of the pathway being enriched to

obtain a posterior probability of enrichment (see ‘‘Interpretation of

Bayes factors’’ in Methods). While specification of a prior

probability of enrichment is subjective, this subjectivity is

unavoidable; similar issues arise when specifying significance

thresholds for p-values, though these issues are usually hidden

(0.05 is a common threshold, but it is subjective and not

universally appropriate [93]). If we apply a ‘‘conservative’’ value

of 1/3158 to the prior probability for all candidate pathways, so

that one pathway is expected to be enriched among the 3158

candidates, then CD and T1D show compelling evidence for

enrichment (posterior probability.0.99), and RA shows suggestive

evidence (posterior probability = 0.45). Considering the plausible

connection between Measles pathway genes and RA (discussed

below), we view this as a compelling enrichment as well. The top

pathway for T2D, Incretin regulation, shows only modest evidence

for enrichment if we apply the conservative prior, but it might be

considered ‘‘significant’’ if we adopt a less conservative prior to

account for the known connection of this pathway to insulin

resistance and diabetes. Based on these results, we do not

investigate BD, CAD and HT further, and focus on the four

diseases showing strongest evidence for enrichment, CD, RA, T1D

and T2D.

Figure 2 shows an expanded list of pathways with the strongest

support for enrichment in CD, RA, T1D and T2D, together with

estimated enrichment levels (see Figure S1 for a longer list).

Beyond these top results, the vast majority of candidate pathways

show little or no evidence for enrichment (Figure S2), demon-

strating that the method is robust to inclusion of many pathways

that are most likely irrelevant to the disease.

Before discussing the biological relevance of these pathways, we

point out three general features of Figure 2. First, some of the

estimated enrichments are extremely large; for example, IL-2

signaling genes show more than a 10,000-fold enrichment of T1D

risk factors. In contrast, the top pathway for CD, ‘‘Cytokine

signaling in immune system,’’ has roughly a 100-fold enrichment.

(Enrichment of this pathway nonetheless yields a large BF, partly

because it implicates over 6700 SNPs; the BFs depend not only on

the level of enrichment, but also on the number of SNPs assigned

to the pathway.) Second, some of the top pathways overlap or are

subsets of one another. For example, ‘‘Cytokine signaling in

immune system’’ is a subset of ‘‘Immune system.’’ Also, the

Immune system pathway from NCBI BioSystems (BS) overlaps

with the Pathway Commons (PC) version of the same pathway

(510 genes are common to both gene sets). This raises the question

whether enrichment of just one pathway would suffice to explain

the genome-wide association signal; we use our methods to

investigate this question below. Third, 5 different pathway

databases are represented in Figure 1, and all 8 pathway databases

included in our analysis appear among the top pathways (Figure 2),

illustrating the benefits of interrogating pathways from multiple

sources.

Biological relevance of enriched pathways
The top-ranked pathway for CD (‘‘Cytokine signaling’’) is a

collection of cytokine-driven networks that exhibit a complex

relationship to autoimmunity—they promote inflammatory and

immune responses, while also playing an important role in

suppressing immunity [94]. Cytokine signaling implicates a broad

class of 225 genes, suggesting that a collection of related gene

networks explains the pattern of genetic associations better than

any one signal transduction pathway. Enrichment of cytokine

signaling is consistent with the accumulating evidence that points

to cytokines, and the signaling cascades initiated by these

cytokines, in a range of autoimmune disorders, including

inflammatory bowel disease [9,95,96].

Joint Analysis of Variants and Pathways in Disease
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Previous findings from GWAS have linked autophagy genes

ATG16L1 and IRGM to CD [65,97,98]. Our pathway analysis

does not provide additional support for autophagy in CD because

pathways reflecting current models of autophagy [9,99] have not

yet been incorporated, as far as we are aware, into any of the

publicly available pathway databases.

Once we account for enrichment of the MHC, the top pathway

for T1D is IL-2 signaling. Cytokine IL-2 and its interacting

partners are indispensable to activation, development and

maintenance of T regulatory cells, and disruption of IL2-mediated

pathways promotes progression of autoimmune disorders [100–

102]. T1D treatments targeting the IL-2 signaling pathway are

currently undergoing clinical trials [103]. Additionally, studies in

non-obese diabetic (NOD) mice suggest that defects in IL-2

signaling induce susceptibility to T1D [102,104,105]. Our findings

support this hypothesis.

The top pathway for RA, the KEGG ‘‘Measles’’ pathway,

contains genes involved in immune response cascades triggered by

infection of measles virus, including the cellular receptors

expressed for measles virus such as SLAM and CD46 [106–108].

Figure 1. Diseases show a wide range of support for enrichment of disease associations in pathways. Each row shows the pathway with
the largest BF for enrichment of disease associations among 3158 candidate gene sets. Columns left to right: (1) disease; (2) enriched pathway; (3)
pathway database, and repository where pathway is retrieved if different from database; (4) BF for hypothesis that disease associations are enriched
among SNPs assigned to pathway; (5) posterior probability of enrichment hypothesis; (6) number of genes assigned to pathway; (7) number of SNPs
near these genes. Abbreviations used in figure: PID = NCI Nature Pathway Interaction Database [163], BS = NCBI BioSystems [164], PC = Pathway
Commons [165]. Databases and database identifiers for pathways listed here: ‘‘Transport of connexons to the plasma membrane’’ (Reactome 11050,
PC); ‘‘Tumor suppressor Arf inhibits ribosomal biogenesis’’ (BioCarta); ‘‘Cytokine signaling in immune system’’ (Reactome 75790, BS 366171); ‘‘Alanine
biosynthesis’’ (PANTHER P02724); ‘‘Measles’’ (KEGG hsa05162, BS 213306); ‘‘IL2-mediated signaling events’’ (PID il2_1pathway, BS 137976); ‘‘Incretin
synthesis, secretion, and inactivation’’ (Reactome 23974, PC). *Null and enrichment hypotheses for RA and T1D include enrichment of disease
associations in MHC, in which SNPs within MHC are enriched at a different level than non-MHC SNPs in pathway; hMHC~3:7 and 4.6 for RA and T1D,
respectively. Number of genes/SNPs for RA and T1D count only non-MHC genes assigned to pathway. **Illustrative posterior probability assuming a
‘‘conservative’’ prior (see text).
doi:10.1371/journal.pgen.1003770.g001

Figure 2. Top-ranked candidate pathways for enrichment of disease associations in CD, RA, T1D and T2D. Refer to Figure 1 for legend,
abbreviations, and meaning of asterisk (*). Two right-most columns show posterior mean and 95% credible interval of genome-wide log-odds (h0)
and log-fold enrichment (h) given that pathway is enriched (hw0). Note that enrichment level is defined on log-scale (eq. 2), so hw0 indicates
enrichment. Credible interval is smallest interval about mean that contains parameter with 95% posterior probability, calculated to nearest 0.1 using a
numerical approximation. Database identifiers for pathways not previously mentioned: ‘‘IL23-mediated signaling events’’ (PID il23pathway, PC); ‘‘IL12-
mediated signaling events’’ (PID il12_2pathway, PC); ‘‘Immune system’’ (Reactome 6900, BS 106386); ‘‘Release of eIF4E’’ (Reactome 6836, PC);
‘‘Synthesis, secretion, and inactivation of glucagon-like peptide-1’’ (Reactome 24019, PC); ‘‘Id signaling pathway’’ (WikiPathways WP53 [166], BS
198871). See Figure S1 for more gene set enrichment results.
doi:10.1371/journal.pgen.1003770.g002

Joint Analysis of Variants and Pathways in Disease
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(This result is again conditioned on enrichment of the MHC.)

While studies have associated the measles virus with RA [109],

other viral and bacterial infections have also been linked to

incidence of RA [110,111], and enrichment of the Measles

pathway could reflect a larger class of genes involved in regulation

of immune function during infection, rather than the measles virus

specifically. The large BF for this pathway in both RA and T1D

supports previous indications of a shared genetic basis [96,112],

and is consistent with observations that RA and T1D, along with

other autoimmune diseases, recur in the same families [113].

All CD, RA and T1D pathways in Figure 2 implicate key actors

in responses to pro-inflammatory stimuli and in regulation of

innate and adaptive immunity. These include members of the NF-

kB/Rel family, T-cell receptors (TCRs), members of the protein

tyrosine phosphatase family (PTPs), mitogen-activated protein

(MAP) kinases such as c-Jun NH2-terminal kinases (JNKs), and

chemokine receptors (CXCRs) [114–117].

Comparison with previous pathway analyses
None of the top-ranked pathways for CD, RA and T1D in our

analysis have been identified in previous pathway-based analyses

of these diseases [11,13,16,23,66–70,73,118–121]. An important

difference between our methods and previous pathway analyses

of RA and T1D is that we incorporate enrichment of the MHC

into models of enrichment. A previous analysis of RA [67]

highlighted pathways ‘‘Bystander B cell activation’’ (BioCarta,

their p-value = 10{371) and ‘‘Type 1 diabetes mellitus’’ (KEGG, p-

value = 10{349). However, both these pathways contain MHC

genes, and our results suggest that enrichment of the MHC offers

a better explanation of the association signal; in our analysis,

support for enrichment of these pathways is several orders of

magnitude less than support for enrichment of the MHC

(BF~1:6|107,3:4|1013 versus 2:4|1021), and the support

vanishes once we account for enrichment of the MHC (BF = 0.69,

0.57). Similarly, previous analyses of T1D [16,121] have

highlighted the same ‘‘Type 1 diabetes mellitus’’ pathway, but

again support for enrichment is driven mostly by the associa-

tion signal in the MHC, as our methods yield only modest

support for this pathway after accounting for MHC enrichment

(BF = 43).

It is also notable that the top-ranked pathways for RA and T1D,

Measles and IL-2 signaling, show strong support in our analysis

only after accounting for enrichment of disease associations within the MHC;

the BFs without MHC enrichment are 104 and 11, whereas the

BFs are 2:6|103 and 1:2|1012 after conditioning on enrichment

of the MHC. This may explain why these pathways have not been

identified in previous pathway analyses of these diseases. These

results illustrate the benefits of estimating enrichment conditioned

on the MHC and, more generally, quantifying support for models

with multiple enriched pathways.

Another aspect that differs between our results and previous

studies is that we interrogate a more comprehensive set of pathway

databases. This may explain in part why the BF for the top

pathway in CD, ‘‘Cytokine signaling in immune system’’ from

Reactome, eclipses the BFs corresponding to previously reported

pathways. For example, Wang et al [73] interrogated BioCarta,

KEGG and Gene Ontology [46] (and not Reactome) gene sets for

enrichment of CD associations, and reported the smallest p-value

for BioCarta pathway ‘‘IL12 and Stat4 dependent signaling in

Th1 development’’ (p-value = 8|10{5, FDR = 0.045). This path-

way showed little evidence for enrichment in our analysis (BF = 20)

compared to cytokine signaling (BF~9:0|105). (Below, when we

combine this pathway with cytokine signaling genes, we obtain

stronger evidence for enrichment in CD; the BF is 81% the size of

the largest BF for 2 enriched pathways.)

Associations informed by enriched pathways
An important feature of our model-based approach is that

pathway enrichments can help to map additional disease

associations by prioritizing variants within enriched pathways.

This is particularly useful for broad groups of enriched genes such

as ‘‘Cytokine signaling in immune system,’’ which contains 225

genes, as only a small portion of these genes may actually harbour

genetic variants that affect CD risk. Prioritization occurs

automatically within our statistical framework; the enrichment

parameter affects the prior probability of association for SNPs in

the pathway, which in turn increases the posterior probability of

association for these SNPs.

We therefore examine how re-interrogation of SNPs for

association in light of inferred enrichments in CD, RA, T1D

and T2D can reveal additional associations across the genome. We

assess evidence for associations across genomic regions, rather

than individual SNPs. The rationale is that genome-wide mapping

using a multi-marker disease model sometimes spreads the

association signal across nearby SNPs when they are correlated

with one another, thereby diluting the signal at any given SNP

[76]. We divide the genome into overlapping segments of 50

SNPs, with an overlap of 25 SNPs between neighbouring

segments. For each segment, we compute P1, the posterior

probability that at least one SNP in the segment is included in the

multi-marker disease model. (Pn denotes the posterior probability

that at least n SNPs are included.) We use segments with an equal

number of SNPs so that, under the null hypothesis of no

enrichment, the prior probability that at least one SNP is included

is the same for each segment. A segment spans, on average, 307 kb

(98% of the segments are between 100 kb and 1 Mb long), so

calculating P1 for these segments provides only a low-resolution

map of genetic risk factors for disease. Still, this resolution suffices

for our study.

Table 1 summarizes the regions of the genome showing

strongest evidence for association after pathway prioritization,

and Figure 3 compares support for disease associations under the

null hypothesis of no enrichment with support under the model in

which the pathway with the largest BF is enriched.

Overall, prioritization of SNPs in enriched pathways increases

support for disease risk factors in many regions, often substantially;

these regions correspond to points above the diagonal in the

scatterplots (Figure 3). In CD and RA, 8 disease susceptibility loci

with P1§0:5, not including segments overlapping the MHC, are

revealed only after prioritizing SNPs in enriched pathways. In

T1D, prioritization of SNPs in the IL-2 pathway yields a total of

37 associated regions outside the MHC with P1§0:5. This

dramatic result reflects the high estimated enrichment for IL-2

signaling genes. The majority of the additional disease regions with

the strongest support, including many of the loci with weaker

association signals, are validated by other studies; in CD and RA,

7 of the 8 additional disease susceptibility loci with P1§0:5 are

corroborated by other GWAS and large-scale meta-analyses, and

in T1D, 4 of the 7 additional disease regions with P1§0:8 are

similarly corroborated (see Table 1 for references).

Prioritization yields many new candidate disease susceptibility

loci not previously implicated by GWAS. These loci will require

followup studies to be validated. Three unconfirmed T1D

susceptibility loci with strong support (P1§0:8) are regions

containing IL-2 signaling genes RAF1, MAPK14 and FYN: gene

RAF1 is a critical target of insulin in primary b-cells, and variants

of this gene may modulate loss of b-cell mass in forms of diabetes

Joint Analysis of Variants and Pathways in Disease
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[122]; MAPK14 (p38) encodes at least 4 distinct isoforms, and

deficiencies in one isoform have been shown in mice knockout

studies to improve glucose tolerance and protect against insulin

resistance, pointing to a role in development of T1D [123]; FYN

interacts with PTPN22 to regulate T cell receptor signaling, and

PTPN22 alleles are strongly associated with predisposition to T1D

[124]. The one novel candidate region for RA contains Measles

pathway gene TP73, whose homolog, TP53, is suspected to impair

regulation of inflammation in RA patients [125,126]. Finally,

conditioning on enrichment of top pathways in T2D yields a single

novel candidate region at 7q32 with moderate probability of

containing a disease association (P1~0:48). This region contains

GPR120 (also OSFAR1), a gene assigned to both the Incretin

regulation and GLP-1 pathways. It was recently shown that

GPR120-deficient mice develop obesity and reduced insulin

signaling, and GPR120 expression is significantly higher in obese

humans [127], so the effect of this gene may be similar to the

reported T2D association with FTO, in which variants near FTO

increase T2D risk through an effect on body weight [128,129].

In addition to these associated regions, several promoted regions

also lie within the MHC. (In the scatterplots for RA and T1D,

these regions correspond to open circles above the diagonal.)

Given the complexity of this region, which contains a high density

of genes, and long-range correlations between SNPs, disentangling

the association signal in the MHC will likely require higher density

SNP data, and lies beyond the capacities of our current

implementation (see Discussion).

Figure 4 compares the effect sizes of variants in regions selected

only after accounting for pathway enrichment to the effect sizes

from regions identified without the benefit of feedback from

pathway enrichment. As expected, pathway prioritization uncov-

ers many disease-associated variants with smaller effects than we

would otherwise be able to map reliably. This could explain, at

least in part, why many of the putative T1D associations

uncovered in our analysis are not yet confirmed; the largest

meta-analysis of T1D to date, with a combined sample of size

,16,000 [130], still has limited power to detect associations within

this range of effect sizes and minor allele frequencies. (In contrast,

much larger meta-analyses exist for CD and RA, with 30,000 and

47,000 samples, respectively [131,132].)

Finally, Figure 3 offers the opportunity to remark on four other

features of our results. First, the strongest association signals

without feedback from pathways stay strong whether or not

they are related to the enriched pathway—these associations

correspond to the points in the top-right corner of each scatterplot.

(Note that the segments in the top-right corner recapitulate the

strongest associations reported for CD, RA, T1D and T2D in the

original study [65]. See Supplementary Materials for a detailed

comparison to single-marker p-values in all 7 diseases.) Second,

many segments show slightly decreased support for association

under the enrichment hypothesis (points below the diagonal in the

scatterplots). This occurs because the estimated prior inclusion

probability for SNPs outside the pathway is reduced to reflect the

fact that pathway enrichment helps to explain an appreciable

portion of the genome-wide association signal. Third, although not

evident from the figure due to over-plotting, most segments show

little or no evidence for associations under either hypothesis; in

each scatterplot, 98–99.7% of segments lie near the bottom-left

corner. Fourth, associations with strong support under the null are

not necessary for establishing evidence for enriched pathways;

none of the RA associations in the top-right corner of the

scatterplot contribute to evidence for enrichment of the Measles

pathway.

Assessing combinations of pathways for enrichment
Above, we obtained evidence for enriched pathways in CD, RA

and T1D. The question remains whether a combination of several

enriched pathways offers a better fit to the data. A benefit of our

approach is that we can compare support for enrichment of

different combinations of pathways by comparing their BFs

(assuming the same prior for these enrichment hypotheses).

We assess support for combinations of pathways in CD, RA and

T1D by computing BFs for models in which 2 and 3 pathways are

enriched. Since it is impractical to consider all combinations of 2

and 3 pathways, we tackle this in a ‘‘greedy’’ fashion by selecting

combinations of pathways based on the initial ranking (see

Methods). Figure 5 gives the combinations of 2 and 3 pathways

that yield the largest BFs for these diseases. Again, to properly

interpret these results we must weigh these BF gains against the

relative prior plausibility of the models. Using a ‘‘conservative’’

prior for any pair of pathways being enriched (see ‘‘Interpretation

of Bayes factors’’ in Methods), we interpret Figure 5 as providing

considerable, if short of compelling, support for the hypothesis that

2 pathways are enriched for disease associations in CD, RA and

T1D. For example, in CD the BF for enrichment of both cytokine

signaling and IL-23 signaling genes is 377 times greater than the BF

for enrichment of cytokine signaling genes alone. The BFs for

Table 1. Cont.

For all CD and RA loci in this table, there is at least a 0.5 probability that one or more SNPs in the region are included in the multi-marker disease model (P1§0:5); for all
T1D loci, P1§0:8. Support for disease associations is conditioned on enrichment of pathways in Figure 1. Rows marked with * are selected only after accounting for
pathway enrichment, or show substantial increase in support due to feedback from enrichment. Right-most column cites published GWAS findings that corroborate
majority of * rows. In this column, ** indicates that validation is not required as disease association is already strongly supported without pathways; these rows
recapitulate the strongest associations reported in the original study [65] (see Supplementary Materials). Genes in enriched pathways are written in bold. Table columns
from left to right are: (1) disease; (2) chromosomal locus; (3) region most likely containing the risk-conferring variant(s), in Megabases (Mb); (4) posterior probability that
one or more SNPs in region are included in model under null, and (5) under enrichment hypothesis; (6) posterior probability that two or more SNPs are included under
null, and (7) under enrichment hypothesis; (8) smallest trend p-value in region from original analysis [65], when available (some of these p-values are derived from
imputed SNPs, and are not available in our data); (9) established genes in disease pathogenesis, or most credible genes of interest based on prior studies, corresponding
to locus (when the most credible gene differs from gene assigned to pathway, pathway gene is shown in parentheses); (10) refSNP identifier of SNP in critical region
with largest PIP (this SNP is likely in linkage disequilibrium with the causal variant rather than being causal itself, and may not match SNP reported in [65] with smallest
p-value); (11) the PIP of this SNP; (12) posterior mean of log-odds ratio bj (additive effect of minor allele count on log-odds of disease) given SNP that is included in

multi-marker disease model; (13) 95% credible interval of effect size, Dbj D; (14) frequency of minor allele for SNP in controls, and (15) in cases. Bold numbers in P1 and P2

columns highlight appreciable increase in support for disease associations within region after feedback from enriched pathway. Credible interval is smallest interval
about posterior mean that contains bj with 95% posterior probability. The ‘‘critical region’’ at each locus is estimated by inspecting single-SNP BFs [79], and bounding

the region by areas of high recombination rate, inferred using data from Phase I, release 16a of the HapMap study [185], and visualized in UCSC Genome Browser [186].
Note that P1 statistic for critical region may be slightly different than P1 for overlapping segment shown in Figure 3 due to different numbers of SNPs in segments and
critical regions. All SNP information and genomic positions are based on Human Genome Assembly 17 (NCBI build 35).
doi:10.1371/journal.pgen.1003770.t001
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models in which 3 pathways show further increases, but not enough

to constitute strong evidence for enrichment of 3 pathways.

We also examine whether enrichment of multiple pathways can

lead to identification of additional loci affecting susceptibility to

disease. Figure S3 shows that allowing for 2 enriched pathways in

CD, RA and T1D does not yield strong support for associations

beyond what is already revealed by enrichment of the single top

pathway. We do, however, find that a segment near IL12B shows a

substantial gain in support for association with CD (P1 increases

from 0.03 to 0.44), and this association is confirmed by other

GWAS [6,7,132,133].

Discussion

Motivated by the observation that it is easier, at least in

principle, to identify associations within an enriched pathway, we

Figure 3. Scatterplots showing P1, posterior probability that region contains disease risk variants, given different enrichment
hypotheses. Each point corresponds to a small region of the genome containing 50 SNPs. Posterior probabilities on vertical axis for CD, RA and T1D
are conditioned on enrichment of pathway with largest BF (Figure 1). For T2D, since no single pathway stands out in ranking (Figures 2 and S1), P1

along vertical axis is obtained by averaging over top 5 pathways (see Methods). Points highlighted in red correspond to segments overlapping SNPs
assigned to the enriched pathway (for T2D, at least 1 out of 5 top pathways). In RA and T1D, 50-SNP segments overlapping the MHC are drawn as
open circles (SNPs in these segments are not assigned to the pathway). Overlapping segments sharing the same association signal are not shown.
Some segments are labeled by gene(s) in pathway and/or most credible gene of interest based on prior studies (most credible gene is shown in
parentheses if different from pathway gene). Asterisk (*) indicates an appreciable increase in the probability of a disease association, and this
association is validated by other GWAS for same disease (see Table 1).
doi:10.1371/journal.pgen.1003770.g003
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developed a data-driven approach to simultaneously assess support

for enrichment of disease associations in pathways, and prioritize

variants in enriched pathways. We investigated the merits and

limitations of this approach in a detailed analysis of data sets for

seven complex diseases. We interrogated thousands of candidate

pathways from multiple pathway databases, finding strong

evidence linking pathways to pathogenesis of several diseases. By

promoting variants within the enriched pathways identified in our

analysis, we mapped disease susceptibility loci beyond those

identified by a conventional analysis.

The CD and RA results provided some validation for our

methods, as all but one of the additional disease associations

identified by pathway prioritization are corroborated by other

studies. The T1D results also provided some validation for our

methods, as several of the strongest associations informed by

enrichment of the IL-2 signaling pathway are confirmed in other

GWAS for T1D. Prioritizing IL-2 signaling genes revealed other

regions relevant to T1D that could not be corroborated by other

GWAS, and this may be because the largest GWAS for T1D to

date does not match the scale of the largest studies for CD and RA.

All the disease associations informed by enriched pathways had

smaller effects on disease susceptibility, illustrating how pathway

prioritization can help overcome some of the constraints on our

ability to reliably detect disease-conferring variants with small

effects in GWAS.

Our approach builds on methods that use multi-marker models

to simultaneously map associated variants in GWAS

[61,75,76,134–142]. In contrast to single-marker regression

approaches, these methods model susceptibility to disease by the

combined effect of multiple variants, and use sparse multivariate

regression techniques to fit multi-marker (i.e. polygenic) models to

the data. Within a multi-marker model of disease, estimating

enrichment of a candidate pathway effectively reduces to counting,

inside and outside the pathway, variants associated with disease

(more precisely, variants included in the multi-marker model). Our

approach to combining multi-marker modeling with pathway

analysis offers several benefits. First, unlike many pathway analysis

methods that test for enrichment of significant SNPs or genes

within a pathway [24,25], we have no need to select a threshold to

Figure 5. Enrichment hypotheses with multiple enriched pathways show increased support from data. Each row gives pathway, or
combination of 2 or 3 pathways, with largest BF for enrichment of disease associations. See Figure 1 for legend and abbreviations used. All
enrichment hypotheses for RA and T1D shown here also include enrichment of the MHC, allowing for a different level of enrichment within the MHC.
Unlike the BFs in Figures 1 and 2, BFs here are all defined relative to null hypothesis of no enrichment, so that they can be easily compared. Counts of
genes and SNPs only include those that are not already assigned to other enriched pathways; for example, 37 genes belong to the IL-23 pathway, and
of those 15 are already cytokine signaling genes, so inclusion of IL-23 signaling adds 22 more genes. Databases and database identifiers for pathways
in this figure: ‘‘IL2-mediated signaling events’’ (PID il2_1pathway, BS 137976); ‘‘ErbB receptor signaling network’’ (PID erbb_network_pathway, BS
138016); ‘‘Inositol pyrophosphates biosynthesis’’ (HumanCyc 6369, PC); ‘‘Measles’’ (KEGG hsa05162, BS 213306); ‘‘Wnt’’ (Cancer Cell Map, PC);
‘‘Cytokine signaling in immune system’’ (Reactome 75790, BS 366171); ‘‘IL23-mediated signaling events’’ (PID il23pathway, BS 138000); ‘‘Methionine
salvage pathway’’ (Reactome 75881, BS 366245).
doi:10.1371/journal.pgen.1003770.g005

Figure 4. Variants in non-MHC disease regions revealed by
enriched pathways have smaller effects on disease risk. Each
point in scatterplot corresponds to a 50-SNP segment outside the MHC
for which P1§0:5. Filled circles correspond to selected regions
containing disease risk factors without feedback from enriched
pathways (P1§0:5 D h~0); open circles correspond to selected regions
conditioned on enrichment (P1§0:5 D hw0 and P1v0:5 D h~0). For
each segment, minor allele frequency and posterior mean additive
effect of minor allele count on log-odds of disease (‘‘log-odds ratio’’) are
taken from SNP in segment with highest probability of being included
in multi-marker model.
doi:10.1371/journal.pgen.1003770.g004
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determine which p-values are significant; instead, we use the

association signal from all variants to assess enrichment. Second,

by analyzing variants simultaneously, we avoid exaggerating

evidence for enrichment from disease-associated variants that are

correlated with each other (i.e. in linkage disequilibrium), while still

allowing multiple independent association signals near a gene to

contribute evidence for enrichment. Third, and most importantly,

quantifying enrichment within this framework gives us feedback

about associations within enriched pathways, potentially leading to

discovery of novel genetic loci underlying disease.

In contrast to many pathway analysis methods, we modeled

enrichment of disease associations at the level of variants, rather

than genes. While there are arguments for both approaches, a

feature of the variant-based approach is that, when there are

multiple variants near a gene that affect disease susceptibility, all

these signals contribute to the evidence for enrichment of

pathways containing this gene.

Another important feature of our approach is that it can be used

to assess models in which multiple pathways are enriched.

Examining combinations of pathways for enrichment may

highlight pathways that would otherwise not be highly ranked.

The results on RA and T1D provided vivid examples of this;

evidence for enrichment of the Measles and IL-2 pathways only

became compelling once we assessed support for enrichment of

these pathways together with enrichment of the MHC.

Our results focused on the regions showing the strongest

evidence for association with disease. However, the large number

of points approaching the middle of the vertical axes in Figure 3

suggests that many other gene variants in the enriched pathways

may contribute to risk of CD, RA and T1D; from our estimates of

h0 and h (Figure 2), approximately 38, 45 and 59 independent risk

variants are, in expectation, hidden among Measles, cytokine

signaling and IL-2 signaling genes, respectively. This suggests that

more disease associations in these pathways remain to be

discovered.

Several selected disease susceptibility regions (Table 1) contain

multiple candidate genes, including cases in which the gene in the

enriched pathway is not the same as the most credible gene

suggested in prior studies. It is possible that pathway annotations

would be useful to help pinpoint, or fine-map, the genes or variants

relevant to disease within these regions. However, investigating

this would require advances to our current methodology, as the

approximations we made to improve the efficiency of our

approach, building on earlier work [75], are less appropriate for

refining the location of association signals, and these approxima-

tions will need to be modified to accommodate this aim.

Nonetheless, we note that some of these regions may contain

multiple variants that disrupt or regulate genes relevant to disease,

and our methods can help assess this possibility. For example, we

calculate that multiple independent risk variants reside at the

16p13 locus with probability P2~0:75 (Table 1). So it is possible

that both C1QTNF6 and IL2RB at this locus are associated with

T1D risk variants.

A limitation of our current approach is that the prior variance of

additive effects on disease risk must be chosen beforehand. We

based our choice on the distribution of odds ratios reported in

published genome-wide association studies, and checked that the

ranking of enriched pathways was robust to different prior choices

(see Methods). One problem with this prior is that published

associations typically have the largest effects on disease risk, as

these are the associations we usually have adequate power to

identify. This results in a prior that places too much weight on

larger additive effects. It would be preferable to estimate this prior

from the data instead, but we found that this worked poorly in

practice. The likely cause of this problem is that the non-zero

effects on disease are not normally distributed, contrary to our

assumptions. One possible solution would be to use a more flexible

prior that is better able to capture the distribution of additive

effects, such as a mixture of two or more normals [80].

In summary, our results on a range of complex diseases illustrate

how an integrated approach to identification of enriched

pathways, and prioritization of variants within enriched pathways,

can identify additional disease associations beyond standard

statistical procedures based on single-marker regression. Our

results point to the potential for applying our methods to other

common diseases, and larger studies, to uncover genetic loci that

have not yet been identified as risk factors for disease.

Methods

Samples
Results on all seven diseases are based on genome-wide marker

data from the case-control studies described in the original

WTCCC study [65]. For all diseases, the control samples come

from two groups: 1480 individuals from the 1958 Birth Cohort

(58BC), and 1458 individuals from the UK Blood Services (UKBS)

cohort. All subjects are from Great Britain, and are of self-

described European descent. Genetic associations from these

studies were first reported in [65].

All study subjects were genotyped for roughly 500,000 SNPs on

autosomal chromosomes using a commercial version of the

Affymetrix GeneChip 500K platform. We estimate missing

genotypes at the SNPs using the mean posterior minor allele

count from BIMBAM [79,143], with SNP data from Phase II of

the International HapMap Consortium project [144]. To be

consistent with the original analysis, refSNP identifiers and

locations of SNPs are based on Human Genome Reference

Assembly 17 (NCBI build 35).

We apply quality control filters as described in [65], and remove

SNPs that exhibit no variation in the sample. For all diseases, we

include an additional quality control measure to filter out

potentially problematic SNPs. Some SNPs with high minor allele

frequencies (MAFs) show moderate evidence for association based

on our calculations—‘‘single-SNP’’ BFs [79] in which the prior

standard deviation of the log-odds ratios is set to 0.1—but because

they do not appear to be supported by nearby SNPs upon

inspecting their single-SNP BFs, we cannot rule out the possibility

of genotyping errors. Based on this criterion, we discard 2

additional SNPs in CD, rs1914328 on chromosome 8 at 69.45 Mb

(BF~6:6|103, MAF = 0.43), and rs6601764 on chromosome 10

at 3.85 Mb (BF~4:3|103, MAF = 0.43). In each case, no nearby

SNPs have single-SNP BFs greater than 46. For CAD, we discard

SNP rs6553488 on chromosome 4 at 171.4 Mb (BF~1:4|103,

MAF = 0.46). No nearby SNPs have a single-SNP BF greater than

11. Following the same quality control criterion, we do not filter

out SNPs in the other data sets. Table S1 summarizes the data

used in our analysis after following these quality control steps.

Pathways, and assignment of SNPs to genes in pathways
We aim for a comprehensive evaluation of pathways accessible

on the Web in standard, computer-readable formats [63,64,145].

Since the results hinge on the quality of the pathways used in the

analysis, we restrict the analysis to curated, peer-reviewed

pathways based on experimental evidence, and pathways inferred

via gene homology. We draw candidate pathways from the

collections listed in Figure 6 (see also Supplementary Materials).

KEGG [146] and HumanCyc [147] are primarily databases of

metabolic pathways, and are unlikely to be relevant to some

Joint Analysis of Variants and Pathways in Disease
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autoimmune diseases, but for completeness we include them in the

analysis of all diseases. We create 2 additional gene sets to assess

support for enrichment of disease associations within the MHC

and ‘‘extended’’ MHC (xMHC) [90,91]. We treat each candidate

pathway as a set of genes, ignoring details such as molecules

involved in biochemical reactions, and cellular locations of these

reactions.

Many pathways are arranged hierarchically in the databases; we

include all elements of the hierarchy in our analysis. Elements in

upper levels of the hierarchy refer to groups of pathways with

shared attributes, or a common function. Some gene groups have

a broad definition, such as ‘‘Immune system’’ in Reactome (ID

6900), which includes pathways involved in adaptive and innate

immune response. Enrichment of a large gene set is unlikely to

provide much insight into disease pathogenesis. However, a key

step in our analysis is to re-interrogate SNPs for association in light

of inferred enrichments. Thus, enrichment of a broad physiolog-

ical target such as ‘‘Immune system’’ can be useful if subsequent

re-interrogation reveals associations that were not significant in a

conventional analysis.

Since we combine pathways from different sources, we

encounter pathways with inconsistent definitions [148,149]; see

Supplementary Materials. There is no single explanation for this

lack of consensus, and we have no reason to prefer one definition

over another, so we include all versions of pathways in our

analysis.

Based on findings that the majority of variants modulating gene

expression lie within 100 kb of the gene’s transcribed region [150–

152], we assign a SNP to a gene if it is within 100 kb of the

transcribed region. Others have opted for a 20 kb window [69,73]

based on findings that cis-acting expression QTLs are rarely more

than 20 kb from the gene [62]. We choose a broader region since

the benefit of including potentially relevant SNPs in a pathway

when the association signal is sparse seems likely to outweigh the

cost of including a larger number of irrelevant markers.

Selection of combinations of pathways

In our case studies on CD, RA and T1D, we compute BFs to

assess support for models in which 2 and 3 pathways are enriched

for disease associations. Since it is impractical to consider all

combinations of 2 and 3 pathways, we tackle this in a ‘‘greedy’’

fashion by selecting combinations of pathways based on the initial

ranking. Our strategy is to select the pathway with the largest BF

(Figure 1), and assess support for this pathway in combination with

pathways from a larger set of candidates (we take all pathways with

BF.10). This heuristic makes it feasible to evaluate many

combinations of pathways that could plausibly be jointly enriched,

though it does not consider all combinations, so we may miss a

Figure 6. Summary of pathways used in the analysis. Chart on left shows number of unique gene sets obtained from the following pathway
databases, included in this order: Reactome [167], Kyoto Encyclopedia of Genes and Genomes (KEGG) [146], BioCarta (www.biocarta.com), HumanCyc
[147,168], NCI Nature Pathway Interaction Database (PID) [163], WikiPathways [169,170], PANTHER [171] and Cancer Cell Map (cancer.cellmap.org).
The majority of these pathways are retrieved from the Pathway Commons (PC) [165] and NCBI BioSystems [164] repositories. We include gene sets
from both repositories when gene sets from same pathway differ (see Supplementary Materials). We include two additional gene sets for ‘‘classical’’
and ‘‘extended’’ MHC [90,91]. Right-hand chart shows gains in gene coverage by including additional databases in the analysis, where ‘‘gene
coverage’’ is defined as any genes in reference sequence that are assigned to at least one pathway. From the total of 3160 gene sets (including MHC
and 6MHC), we achieve coverage of 39% of genes in reference sequence (see Figure S6).
doi:10.1371/journal.pgen.1003770.g006
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combination with stronger evidence for enrichment. In total, we

compute BFs for 85, 24 and 408 pairs of pathways in CD, RA and

T1D, respectively. (Note that models for RA and T1D also include

enrichment of the MHC.) For completeness, we extend the

analysis to models with 3 enriched pathways. Following the same

greedy strategy, we take the top pair of pathways (Figure 5) and

combine it with individual pathways with BF.10.

Statistical analysis

The Bayesian variable selection approach to simultaneous

interrogation of SNPs involves fitting a multi-marker disease

model to the data with different combinations of SNPs. By

accounting for correlations between markers, fitting all markers

simultaneously allows us to identify those that are independently

associated—that is, markers that individually signal a variant

contributing to disease risk independently of other risk-conferring

variants.

Likelihood. The likelihood specifies the probability of

observing disease (case-control) status y given the genotypes X,

the intercept b0, and the regression coefficients b~(b1, . . . ,bp).

From the additive model for the log-odds of disease (eq. 1),

pi~w(b0z
Pp

j~1 xijbj) is the probability that yi~1, in which

w(x)~1=(1ze{x) is the sigmoid function. Assuming indepen-

dence of the observations yi, the likelihood is

p(yDX,b0,b)~ P
n

i~1
p

yi
i (1{pi)

1{yi : ð4Þ

Priors. Next we specify prior distributions for the following

model parameters: the genome-wide log-odds h0, the log-fold

enrichment h, the intercept b0, and the coefficients bj of included

SNPs.

Since inferences strongly depend on h0, and since h0 is unknown

and will be different for each setting, we estimate this parameter

from the data. Following [75,76], we assign a uniform prior to h0.

We restrict h0 to ½{6,{2�, so as few as 0 and as many as ,4400

SNPs are expected to be included a priori. We assign a uniform

prior to h on interval ½0,5�. This allows for a wide range of

enrichments.

For the prior on the non-zero coefficients bj , we follow standard

practice that assumes they are i.i.d. normal with zero mean and

standard deviation sa [153]. Ordinarily, to combat sensitivity of

the results to the choice of sa, we would place a prior on sa and

integrate over this parameter to let the data drive selection of sa.

This approach is taken in [75,76]. But in our case we find that the

heterogeneity of the odds ratios in complex diseases presents a

problem: although we expect most odds ratios for a common

disease—and specifically odds ratios in a pathway relevant to

disease pathogenesis—to be close to 1, the odds ratios corre-

sponding to the strongest disease associations drive estimates of sa

toward larger values, and a normal distribution that puts too little

weight on modest odds ratios. One possible strategy would be to

redo the analysis after removing associated regions with the largest

odds ratios, but this is an unattractive solution because SNPs with

large odds ratios would not contribute to the evidence for

enrichment. Instead, we fix sa, grounding the choice on typical

odds ratios reported in published GWAS, and we assess the

robustness of our findings to this choice. Our choice is sa~0:1,

which favours odds ratios close to 1 (95% of the odds ratios lie

between 0.82 and 1.22 a priori), while being large enough to

capture a significant fraction of the odds ratios for common alleles

reported in genome-wide association studies of complex disease

traits. According to a recent review [154], approximately 40% of

estimated odds ratios are between 1.1 and 1.2, and an additional

10% of odds ratios are smaller than 1.1. This prior also closely

corresponds to a survey of odds ratios reported in genetic

association studies of common diseases [155]. Since there may

be justification for a slightly smaller or slightly larger sa, we also

try different values for sa, and examine how these choices affect

the ranking of enriched pathways in the CD data set (see below).

To complete the probability model, we assign an improper

uniform prior to the intercept, b0. In general, one must be careful

with use of improper priors in Bayesian variable selection because

they can result in improper posteriors. A sufficient condition for a

proper posterior, and a well-defined BF, with logistic regression

(eq. 1) is that the maximum likelihood estimator of b conditioned

on which variables are included in the model, and on the other

model parameters, is unique and finite [156]. This condition is

difficult to check exhaustively in Bayesian variable selection, but

we can at least guarantee that the posterior is proper under the

variational approximation (see Supplementary Materials) so long

as the coordinate ascent steps converge to a unique solution.

Sensitivity of pathway ranking to prior distribution of

odds ratios. A concern with our choice of prior for b is that

slightly smaller or slightly larger settings of sa could also be

justified, and these choices could produce different results.

Associations are unlikely to accumulate at a greater rate in

pathways that are not related to the disease, even associations with

small effects on disease risk, so we predict that the ranking of

enriched pathways is largely robust to sa. Here we verify this claim

on the CD data set. We assess the sensitivity to sa by recomputing

the BFs for all candidate pathways with prior choices that favor

slightly smaller (sa~0:06,0:08) and slightly larger coefficients

(sa~0:15,0:2). Figure 7 shows that smaller settings of sa yield

substantially more support for enrichment of CD-related path-

ways, as expected. But the pathways with the largest BFs remain

IL-23, IL-12 and cytokine signaling regardless of the choice of sa.

In Supplementary Materials, we show that the BFs for most other

candidate pathways do not change noticeably at different settings

of sa.

Bayes factors. We adopt the Bayesian model averaging strategy

[82,135,157] to account for possible uncertainty in h0 and h when

evaluating the BFs (eq. 3). The likelihood under the enrichment

Figure 7. Top four BFs in CD for each setting of sa. In each case,
the 3 largest BFs correspond, in order, to Cytokine signaling in immune
system, IL23-mediated signaling events, and IL12-mediated signaling
events (these are the top 3 pathways for CD in Figure 2). Pathway with
fourth largest BF differs across settings of sa .
doi:10.1371/journal.pgen.1003770.g007
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hypothesis (hw0) and the likelihood under the null (h~0) are each

expressed as an average over possible assignments to h0 and h:

BF(a)~

ÐÐ
p(y D X,a,h0,h)p(h0)p(h)dhdh0Ð
p(y D X,a,h0,h~0)p(h0)dh0

: ð5Þ

Each instance of p(yDX,a,h0,h) in (5) expands as an average over

possible assignments to the intercept b0 and regression coefficients

b:

p(yDX,a,h0,h)~

ðð
p(yDX,b0,b)p(b0) P

p

j~1
p(bj Daj ,h0,h)db0db: ð6Þ

The factors in this equation are all determined by the model and

priors specified above. Factor p(bj Daj ,h0,h)~pjN(0,s2
a)z(1{pj)d0

is the ‘‘spike and slab’’ prior [153,158], in which pj~p(bj=0) is

given by eq. 2. Here, d0 denotes the delta mass, or ‘‘spike’’, at zero,

and N(m,s2) is the normal density with mean m and variance s2.

Factor p(b0) is the (improper) uniform prior, and p(y D X,b0,b) is the

logistic regression likelihood (4). Computation of the BFs is described

in the Supplementary Materials.

Interpretation of Bayes factors. Given that enrichment

analyses typically proceed by computing p-values and assessing

‘‘significance,’’ one may reasonably ask whether a given BF

represents ‘‘significant’’ evidence for enrichment. Specifying an

appropriate threshold for a BF to be considered significant,

however, is context-dependent, and subjective. This is because the

posterior odds for a pathway being enriched, relative to the null

hypothesis that no pathways are enriched, is equal to the BF times

the prior odds for enrichment, and the prior odds for each

pathway depends on how plausible it is, a priori, that the pathway is

relevant to the disease. (Similar issues arise when specifying

significance thresholds for p-values; for example, the false

discovery rate at a given p-value threshold depends on the prior

probability of enrichment [159,160]. But in practice significance

thresholds of 0.01 or 0.05 are often used without attending to this

concern.) Nonetheless, we can make the following observations.

First, if we are willing to assume the pathways in Figures 1 and 2

are all equally plausible candidates for enrichment a priori, then the

ratio of BFs indicates the relative support for the enrichment

hypotheses; for example, if we must choose between enrichment of

cytokine signaling genes and the IL-23 signaling pathway, the data

overwhelmingly favour the former by a factor of 9:0|105

1:4|104 &64

(Figure 2). Second, even under a ‘‘conservative’’ prior for

enrichment in which we expect 1 pathway to be enriched among

the 3158 candidates, corresponding to a prior odds of 1/3158, the

top pathways in CD and T1D are large enough to strongly support

enrichment (the BFs are all much greater than 3158). Weighing

this prior against the BF for the top pathway in RA does not yield

strong support for this pathway, but given its plausible connection

to RA, we view this enrichment result as compelling.

We can apply similar reasoning to weigh the evidence for

hypotheses in which 2 or more pathways are enriched. For

example, the model in which both cytokine signaling and IL-23

pathway genes are enriched for CD associations has a BF that is

,400 times greater than the BF for enrichment of cytokine

signaling genes alone. This indicates that the best model with 2

enriched pathways provides a much better fit to the CD data than

the best model with any one enriched pathway. However, to

properly interpret this result we must weigh this increase in the BF

against the relative prior plausibility of the models. A naive

argument using a ‘‘conservative’’ prior for any pair of pathways

being enriched might suggest a prior odds of 1=(3157|3158).

This prior would make a 400-fold increase in the BF appear to be

relatively insignificant. However, this argument not only depends

on the earlier prior, which may be overly conservative, but also

assumes independence of enriched pathways, which seems unwise

considering many pathways mentioned in the results have related

roles in immunity; a priori, one might expect that a pathway is

more likely to be enriched when a related pathway is enriched.

Posterior inclusion probabilities and other posterior

quantities. In this section, we define posterior inclusion

probabilities (PIPs) and other posterior quantities used in the

results. In all cases, posterior statistics under the null hypothesis are

obtained by setting h~0.

Like the BFs, the PIPs are obtained by averaging over h0 and h.

Taking D~fX,y,ag as shorthand for the GWAS data, we have

PIP(j):p(bj=0DD)~

ðð
p(bj=0 DD,h0,h)p(h0,h D D)dh0dh, ð7Þ

where p(bj=0 DD,h0,h) is the PIP for marker j given hyperpara-

meter setting (h0,h), and p(h0,h DD) is the posterior probability of

hyperparameter setting (h0,h). Computation of these posterior

probabilities is described in Supplementary Materials.

To identify regions of the genome associated with disease risk,

for each region we calculate the posterior probability that at least 1

SNP in the region is included in the multi-marker disease model.

Let S~n represent the event that exactly n SNPs in a given region

are included in the multi-marker disease model, so that

Pn:p(S§n DD). These posterior probabilities are easily calculat-

ed from the PIPs (7) using the variational approximation; see

Supplementary Materials.

Since no single pathway stands out in Figure 2 as having

greatest support for enrichment of T2D associations, we compute

posterior quantities by averaging over different enrichment models

with the largest BFs, weighting these models by their BFs. We do

the same for models in which 2 or 3 pathways are enriched.

(Implicitly, this assumes all models are equally plausible a priori.)

The ability to average across models in this way is an advantage

the Bayesian model comparison approach, because it allows us to

assess associations in light of the enrichment evidence without

having to choose a single enrichment model. Suppose we have m

enrichment models, specified by their SNP annotations

a(1), . . . ,a(m), with corresponding BFs, BF(a(1)), . . . ,BF(a(m)).
Then Pn is given by

Pn~
p(S§n DD,a(1))BF(a(1))z� � �zp(S§n DD,a(m))BF(a(m))

BF(a(1))z � � �zBF(a(m))
: ð8Þ

See Supplementary Materials for further details about computa-

tion of relevant posterior quantities.

Population stratification. Pathway enrichment analysis

should be robust to population stratification because spurious

associations that arise from population structure are unlikely to

accumulate at a greater rate in the pathway. Further, the original

report [65] and subsequent analyses [6,161] affirm that cryptic

population structure does not have a substantive impact in these

data. Thus we did not correct for population structure in our

analysis.

Modifications to analysis to account for large

contributions of MHC alleles to RA and T1D risk. Recent

work by Pirinen et al [162] has shown that when analyzing a case-

control study with a prospective model, as we do here, controlling

for non-confounding covariates, particularly those with large

effects, can reduce power to detect associations. Their work
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implies that joint modeling of the effects of multiple SNPs on

disease risk could actually reduce power to detect associations

compared with single-marker tests, particularly for diseases such as

RA and T1D in which MHC variants are known to have large

effects on disease risk. Here we briefly explain how we modify our

approach to address this issue.

Pirinen et al [162] recommend omitting non-confounding

covariates when the goal is to discover new loci associated with

disease. SNPs in the MHC associated with disease are non-

confounding covariates of large effect, so we could adhere to their

advice simply by ignoring all MHC SNPs when analyzing the

non-MHC SNPs. However, omitting the MHC would prevent us

from effectively interrogating pathways that contain MHC genes.

Instead, we develop the following two-stage procedure: first, we

fit our model using only SNPs outside the extended MHC to

estimate their effects, b
xMHC

; second, fixing b
xMHC

to the

estimates obtained from the first step, we fit the multi-marker

model to the full data to estimate bxMHC, the effects of SNPs

within the 6MHC. This procedure is equivalent to assuming that

p(b
xMHC

DD,h0,h,bxMHC)&p(b
xMHC

DD,h0,h). (See Supplementa-

ry Materials for details on how this assumption is incorporated

into the variational approximation to efficiently compute BFs and

posterior statistics.) Thus, in the first stage we ignore the MHC

when deciding which non-MHC SNPs to include in the multi-

marker model, following the advice from [162], but in the second

stage we allow that the MHC may contribute evidence toward

pathway enrichment when the pathway includes MHC genes.

We found that addressing these issues was important for

analyzing the RA and T1D data. With these modifications, our

results more closely replicate the original single-marker association

analysis (Figures S4 and S5), and our methods yield more support

for enrichment of pathways that overlap the MHC.

Analyses conditional on MHC enrichment. Once we

establish that the MHC has far greater support for enrichment

of disease associations in RA and T1D than any other candidate

pathway, we condition on enrichment of the MHC, and search

for gene sets with evidence for enrichment beyond the MHC.

To speed up computation, we fix the MHC enrichment

parameter, hMHC, to its maximum a posteriori estimate, and we

additionally assume that the posterior distribution of bxMHC is

unaffected by enrichment of the candidate pathway; that is,

p(b DD,h0,hMHC,h)&p(bxMHC DD,h0,hMHC,h~0)p(b
xMHC

DD,h0,h).

(Note that we make a similar approximation to improve efficiency of

computation for all pathways. We assume that coefficients bj for all

SNPs j outside the enriched pathway are unaffected by pathway

enrichment a posteriori; see Supplementary Materials.) To assess

support for enrichment of a candidate pathway in RA and T1D, we

compare the likelihood given the model in which the candidate

pathway and the MHC are enriched to the likelihood given the

model in which only the MHC is enriched. Thus, unless otherwise

specified, all BFs for enrichment of pathways in RA and T1D are

defined relative to the ‘‘null’’ that the MHC is enriched, rather than

the null of no enrichment.

Software availability
MATLAB implementations of the statistical methods described

here, and the MATLAB scripts used to implement the steps in our

analysis, are available for download at http://github.com/pcarbo/

bmapathway.

Supporting Information

Figure S1 More pathways and their BFs for enrichment of

disease associations. Columns left to right: (1) enriched pathway;

(2) BF for hypothesis that disease associations are enriched among

SNPs assigned to pathway; (3) number of genes assigned to

pathway; (4) number of SNPs near these genes; (5,6) posterior

mean and 95% credible interval of genome-wide log-odds (h0) and

log-fold enrichment (h) given that pathway is enriched (hw0). BFs

for pathways marked by * are conditioned on enrichment of

disease associations in MHC, in which SNPs within MHC are

enriched at a different level than non-MHC SNPs in pathway;

hMHC~3:7 and 4.6 for RA and T1D, respectively. Number of

genes and SNPs for RA and T1D show counts within MHC, and

outside the MHC that are assigned to pathway. The BFs for these

pathways are defined relative to null with no enrichment so that

the BFs are directly comparable. Enrichment results for RA and

T1D that do not condition on enrichment of MHC are indicated

by {. Database identifiers for pathways not previously mentioned:

‘‘Asthma’’ (KEGG hsa05310, BS 83120); ‘‘Allograft rejection’’

(KEGG hsa05330, BS 83123); ‘‘Cyclin D associated events in G1’’

(Reactome 821, BS 105767); ‘‘Signaling by interleukins’’ (Re-

actome 22232, BS 160140); ‘‘Interferon gamma signaling’’

(Reactome 25078, BS 187106); ‘‘S6K1-mediated signaling’’

(Reactome 6754, BS 106433); ‘‘Calcineurin-regulated NFAT-

dependent transcription in lymphocytes’’ (PID nfat_tfpathway, BS

137993); ‘‘Validated transcriptional targets of AP1 family

members Fra1 and Fra2’’ (PID fra_pathway, PC); ‘‘p38 MAPK

signaling pathway’’ (PID p38_mkk3_6pathway, PC); ‘‘Regulation

of p38-alpha and p38-beta’’ (PID p38alphabetapathway, PC);

‘‘Cell cycle: G1/S check point’’ (BioCarta); ‘‘Incretin synthesis,

secretion, and inactivation’’ (Reactome, BS 187170); ‘‘Synthesis,

secretion, and inactivation of glucagon-like Peptide-1’’ (Reactome,

BS 187171). **Note that several pathways not shown in this figure

have larger BFs in CD than the MHC and 6MHC.

(EPS)

Figure S2 Distribution of BFs for enrichment in seven diseases.

Panels with blue bars give the distribution of BFs compiled across

all 3160 candidate pathways, including the MHC and 6MHC.

The two lower-right panels with orange bars (*) each give the

distribution of BFs for all candidate gene sets except the MHC and

6MHC, after conditioning on enrichment of the MHC.

(EPS)

Figure S3 Scatterplots showing P1 conditioned on enrichment

hypotheses with 1, 2 and 3 enriched pathways in CD, RA and

T1D. Each point corresponds to a contiguous segment of the

genome containing 50 SNPs. Since no single combination of

pathways stands out in BF-based rankings of 2 or 3 enriched

pathways (results not shown), P1 conditioned on enrichment of 2

or 3 pathways is obtained by averaging over different enrichment

models with the largest BFs. Points highlighted in red correspond

to segments overlapping SNPs assigned to at least one of the

enriched pathways included the top enrichment hypotheses,

excluding pathways that are already enriched in hypotheses

shown in horizontal axis. For example, in top-left panel, a segment

is highlighted in red if it overlaps SNPs assigned to pathways

included in enrichment hypotheses with the largest BFs, excluding

SNPs assigned to cytokine signaling genes. In RA and T1D, 50-

SNP segments overlapping the MHC are shown as open circles

(SNPs in these segments are not assigned to the pathways). Asterisk

(*) indicates an appreciable increase in the probability of disease

association, and this association is validated by other GWAS for

same disease.

(EPS)

Figure S4 Comparison of single-marker and multi-marker

mapping of disease associations without pathways. Each point

corresponds to a region of the genome that shows moderate to
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strong support for disease risk factors based on our analysis using a

multi-marker disease model, or based on testing each SNP

separately for correlation with disease risk, following [65].

Precisely, points correspond to regions for which P1§0:1 or for

which smallest trend p-value in [65] is less than 10{5. All regions

to the right of 5|10{7 in the left-hand plot are listed in Table 3 of

[65]. Horizontal axis in right-hand plot shows the logarithm of the

‘‘additive’’ Bayes factor from the single-marker analysis in [65],

which correlates well with the trend p-value. All p-values less than

10{10 are shown as 10{10, and all p-values greater than 10{4 are

shown as 10{4. Similarly, Bayes factors are projected onto interval

½103,109�. Points furthest away from diagonal are labeled by their

location on the chromosome.

(EPS)

Figure S5 Comparison of multi-marker mapping in RA and

T1D with and without MHC-related modifications. Horizontal

axis shows P1 when all SNPs across the genome are analyzed

jointly, and vertical axis shows P1 when SNPs outside the MHC

are analyzed separately in the first step (see Methods). Each point

corresponds to a segment of the genome containing 50 SNPs.

Segments overlapping the extended MHC are shown in light blue.

Points furthest away from diagonal are labeled by their location on

the chromosome unless they overlap with the MHC. In RA and

T1D, we obtain strong support for multiple disease risk variants

mapping to the MHC.

(EPS)

Figure S6 Pathway database statistics. Panel A: gene set sizes.

Panel B: sizes of SNP annotations corresponding to gene sets. Panel

C: number of pathways assigned to each gene. Panel D: number of

pathway annotations for each SNP. SNP counts are based on CD

data set. Pathway counts include multiple versions of the same

pathway drawn from Pathway Commons and NCBI BioSystems

repositories.

(EPS)

Figure S7 Posterior estimates of h0 under null. Mean and 95%

credible interval of h0 for each disease under null hypothesis that

no pathways are enriched. Filled circles show posterior means.

Error bars depict 95% credible intervals.

(EPS)

Figure S8 Genome-wide scans without pathways for BD, CAD,

CD and HT. Each point corresponds to a 50-SNP segment of the

genome. Height of each point gives P1, the posterior probability

that at least one SNP in the segment is included in the multi-

marker disease model. Segments are ordered by chromosome,

then by position along chromosome. Autosomal chromosomes 1–

22 are shown in alternating shades of blue. Non-overlapping

segments with P1§0:5 are listed in Table S2.

(EPS)

Figure S9 Genome-wide scans without pathways for RA, T1D

and T2D. See Figure S8 for an explanation of this figure.

(EPS)

Figure S10 Comparison of BFs for enrichment using coarse and

finely spaced grids. Scatterplot shows numerical estimates of BFs for

enrichment of disease associations using an grid with wide intervals

for h0 and h (horizontal axis), and numerical estimates of the same

BFs using a grid spaced at intervals of 0.1. BFs for RA and T1D

include enrichment of the MHC. Omitted from this plot are BFs for

RA and T1D that do not include enrichment of the MHC.

(EPS)

Figure S11 Posterior mean of h0 estimated from CD data given

different settings of sa. Error bars depict 95% credible intervals.

(EPS)

Figure S12 Distribution of BFs in CD given different settings of

sa. The top 4 BFs for each setting of sa are shown in Figure 7.

(EPS)

Table S1 Summary of data from WTCCC studies.

(PDF)

Table S2 Regions of the genome with moderate to strong

evidence for disease risk factors under null.

(PDF)

Text S1 Supplementary text containing more results and

additional details about methods.

(PDF)
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