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ABSTRACT

Patients with fulminant liver failure ineligible for transplantation have a high mortality rate. With recent progress in genetic
modifications and clinical achievements, using pig livers as a bridge-to-transplant has regained popularity. Preclinical testing
has been done in small cohorts of nonhuman primates (NHP), and maximum survival is limited to 1-month. We conducted a
systematic review and comparative outcomes analysis of NHP-liver xenotransplantation and gathered 203 pig-to-NHP and NHP-
to-NHP transplants reported in 23 studies. Overall, NHP survival after pig-liver xenotransplantation was limited (1, 3, 4 weeks:
18.0%, 5.6%, 1.1%), compared to NHPs after allotransplantation (1, 3, 4 weeks: 60.6%, 47.4%, 45.4%). A focus on pigs with genetic
modifications evidenced some short-term survival benefits (1, 3, 4 weeks: 29.1%, 9.1%, 1.8%). The use of the auxiliary transplant
technique was also associated with better short-term results (1, 3, 4 weeks: 40.9%, 9.1%, 4.5%). Causes of graft and animal loss were
mostly rejection and liver failure in allotransplants, while bleeding, liver, and respiratory failure predominated in xenotransplants.
Notably, the 1-month survival rate for NHP-allotransplants was significantly lower than the national > 98% rate for human liver
transplants. This data confirms the short-term improvements brought by genetic modifications and auxiliary implantation in the

NHP model, which remains imperfect.

1 | Introduction

Liver disease ranks as the 11th most common cause of death
worldwide, claiming about two million lives every year, which
is roughly 4% of all deaths globally [1]. In the spectrum of liver
diseases, acute liver failure is one of the most life-threatening
conditions, requiring liver transplantation in up to 60% of the
cases depending on the cause [2]. The survival rates following

transplantation are high and far exceed those of conservative
treatment [3, 4]. However, organ shortage results in not all
patients receiving a transplant on time. Of note, approximately
10 000 patients are awaiting a liver transplantation in the
United States [5], and many more could benefit from auxiliary
xenogeneic liver support following extensive liver resections for
otherwise nonresectable tumors (i.e., not leaving enough rem-
nant liver) [6]. In this setting, xenotransplantation has surfaced
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as a promising solution [7-14] with pigs emerging as optimal
donors due to their ease of breeding, organ size match, and the
possibility for genetic manipulation [9-11, 15]. Advancements in
immunosuppressive strategies and genetic modifications have
expanded their feasibility, resulting in longer survival periods,
especially for kidneys and hearts [16, 17], allowing initial clinical
cases to be performed [18-26]. Despite these advancements, liver
xenotransplantation has not achieved comparable success, and
the maximum survival in the pig-to-nonhuman primate (NHP)
model remains limited to 34 days [27]. Although modest, this graft
survival was achieved after decades of work and improvements
such as the use of Gal depletion [28], heterotopic surgical
implantation [29], human CD55 transgene insertion [30], alpha
1,3-galactosyltransferase gene-knockout pigs [31], and the use
of enhanced immunosuppression with co-stimulation blockade
[27, 32, 33]. Failures are due to severe coagulopathy, thrombotic
microangiopathy, and subsequent graft loss due to uncontrolled
activation of the coagulation cascade, and severe thrombocytope-
nia [9]. Major physiological differences in the levels and function
of the numerous proteins produced by the liver explain the greater
difficulty in interchanging the liver between species. Historically,
several attempts have been made using nonmodified pig livers
transplanted in an auxiliary fashion [34] or connected via an ex
vivo circuit [35-37]; however, survival was limited to a few days.
With now improved pigs and in order to prepare potential future
clinical trials, experiments have been conducted in decedents
using ex vivo perfusion [38, 39] and heterotopic implantation
[40], and one involving auxiliary implantation of a xeno-liver in
a living human following an extensive hepatocellular carcinoma
resection [6]. Addressing and resolving the challenges posed
by liver xenotransplantation holds the potential to successfully
develop a bridge to allotransplantation and save numerous lives.

To aggregate what is known so far and better define the current
limitations of preclinical models, we conducted a literature
review and a comparative outcomes analysis of NHP liver allo-
transplantation and xenotransplantation. We aim to discuss the
achievements of NHP models and advocate for increased clinical
translations, particularly among end-stage liver disease patients
for whom traditional transplant options are not available.

2 | Materials and Methods

2.1 | Study Design and Search Criteria

We conducted a systematic review and a comparative analysis
of individual pig-to-NHP and NHP-to-NHP liver transplanta-
tion experiments, encompassing both allotransplantation and
xenotransplantation, from database inception until January 2024.
Searches were conducted in MEDLINE, PubMed, and Google
Scholar. We included relevant original publications published
in English. Our search criteria included the following key-
words: “Liver” “Xenotransplant”, “Xenotransplantation”, “Ortho-
topic”, “Auxiliary”, “Non-human primate”, “Monkey”, “Baboon”,
“Cynomolgus”, “Rhesus”, “Chimpanzee”, “Pig”, and “Allotrans-
plant”. Reporting followed the recommendations in the pre-
ferred reporting items for systematic reviews and meta-analysis
(PRISMA) statement standard. Results were first exported as
Excel files and then manually evaluated for inclusion and exclu-
sion criteria. This study did not require IACUC or IRB approval

as it utilized publicly available data and did not involve any new
animal subject.

2.2 | Study Selection

R.P.H.M. and K.S. screened all records. Our inclusion criteria
encompassed orthotopic and auxiliary liver xenotransplants and
orthotopic allotransplants. We excluded studies performing ex
vivo organ perfusion, including other organ transplants besides
the liver, performed in different species, studies lacking adequate
information for individual animal survival assessment, reviews,
case reports already reported elsewhere, duplicates, quotations
without published documentation, and cases lacking published
records (study selection flowchart in Figure 1). A total of 23 studies
were selected and subjected to comprehensive analysis.

2.3 | Data Review

We categorized factors such as donor type, recipient, NHP
species and number, transplant type (orthotopic vs. auxiliary),
immunosuppression regimen, animal and graft survival, and
cause of death.

2.4 | Statistical Analysis

We used Kaplan-Meier analyses to plot survival and assess
differences between groups. Cox analyses were used to compute
hazard ratios (HRs). Significance was determined based on P-
values < 0.05. Median survival, confidence intervals (CI), and
HRs were reported.

3 | Results

3.1 | Baseline Animal Characteristics

Our initial search found 1001 articles, and after the removal
of duplicates, nonrelevant articles, and manual screening, 23
studies were selected (Figure 1). These studies include 14 studies
only on xenotransplantation (Table 1) [27, 28, 30, 32, 33, 41-49],
6 studies only on allotransplantation (Table 2) [50-55], and 3
studies combining both xenotransplants and allotransplantations
(Table 3) [29, 31, 56]. Selected articles reported a total of 95 pig-
to-NHP liver xenotransplants and 108 monkey-to-monkey liver
allotransplants.

Among xenotransplant cases, 34 used wild-type (WT) donor
pigs and 61 used genetically modified (GM) donor pigs. Recip-
ients included 57 baboons, 19 cynomolgus monkeys, 9 rhesus
monkeys, 9 Tibetan monkeys, and one chimpanzee. Seventy-
one underwent orthotopic liver xenotransplantation, while 24
underwent auxiliary/heterotopic procedures. The average donor
weight was 7.8 + 2.9 kg, ranging from 1.2 to 19 kg, and the
average recipient weight was 10.1 + 4.5 kg, ranging from 4.5 to
24.5 kg. Animal survival varied from O to 34 days. Details on
pig-to-NHP xenotransplants are presented in Tables 1 and 3. A
breakdown of NHP species and immunosuppression regimens
is shown for WT versus GM pigs and for orthotopic versus
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FIGURE 1 | Identification and selection of studies reporting on liver xenotransplantation in NHPs. NHP, nonhuman primates.

auxiliary/heterotopic cases (Table S1). NHP recipients who under-
went liver xenotransplantation from WT versus GM pigs had
comparable utilization rates of baboons (58.8% vs. 60.6%) and
cynomolgus monkeys (11.8% vs. 24.6%), but different utilization
rates of rhesus monkeys (26.5% vs. 0%). Orthotopic cases had
a higher proportion of baboons (69.0% vs. 33.3%) and Tibetans
(0% vs. 37.5%) compared to auxiliary/heterotopic. More intense
immunosuppression was more commonly used in the GM pig
group and the auxiliary/heterotopic groups.

Among allotransplant cases, recipients included 42 cynomolgus
monkeys, 41 baboons, and 25 rhesus monkeys. All underwent
orthotopic liver allotransplantation. The average donor weight
was 6.2 + 2.5 kg, ranging from 2.7 to 13 kg, and the average
recipient weight was 8.9 + 5.7 kg, ranging from 2.6 to 23 kg. Ani-
mal survival varied from 0 to 1035 days. Details on NHP-to-NHP
allotransplants are presented in Tables 2 and 3.

A comparison of baseline characteristics between the xeno and
allotransplant groups is provided in Table S2. The xenotransplant
group included more recipient baboons (60.0% vs. 38.0%) but

fewer cynomolgus (20.0% vs. 38.9%) and rhesus (9.5% vs. 23.2%),
respectively (p < 0.05). Tibetan monkeys were used as recipients
in two studies and chimpanzees in one xeno-group study, but
none in the allotransplant group. In xenotransplant cases, anti-
thymocyte globulin (63.2% vs. 20.4%), corticosteroid (70.5% vs.
50.0%), cobra venom factor (46.3% vs. 0.9%), and tacrolimus
(41.1% vs. 19.4%) were used significantly more than in allotrans-
plant cases (p < 0.001). Similar cyclophosphamide usage was
found between xeno and allotransplant groups (20.0% vs. 20.4%).

3.2 | Liver Graft and Animal Survival

Despite a steady increase in the maximum animal survival of
pig-to-NHP xenotransplants over the past 50 years (Figure 2),
the survival rate remains significantly lower than that of
allotransplantation. The median survival of pig-to-NHP liver
xenotransplantation was 3 days (ranging from 0 to 34 days),
significantly lower than the median survival of NHP-to-NHP liver
allotransplantation, which was 20 days (ranging from 0 to 1035
days, p < 0.001) (Table 4, Figure 3A). Overall, xenogeneic liver
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FIGURE 2 | Evolution of survival rates of pig-to-NHP liver xeno-
transplant recipients. AHLXT, auxiliary/heterotopic liver xenotransplan-
tation; NHP, nonhuman primates; OLXT, orthotopic liver xenotransplan-
tation.

transplants had an approximately five times higher chance of
failing compared to allogeneic ones. The median survival time
exhibited an expected difference between WT pigs (0.2 days)
and GM pigs (6 days; p < 0.001) (Table 4, Figure 3B). Using
WT pigs also thirtyfold the risk of failure in the xenogeneic
group. When comparing implantation techniques, orthotopic
implantations remained more challenging with inferior survival
compared to auxiliary implantations (median survival: 1 day vs. 6
days; p < 0.001) (Table 4, Figure 3C). The orthotopic transplant
had doubled the chance of failure compared to the use of an
auxiliary technique transplant. Additionally, transplants without
co-stimulation or complement blockade, or without B and/or T-
cell depletion, had 2.5, 3.8, and 7.2 times higher chances of failure,
respectively (Table 4, Figure 4).

Survival analysis of allotransplants stratified for species types
revealed some disparities in survival rates (Figure S1).

We further stratified NHP causes of death with a subsequent
differentiation based on donor/recipient types and implantation
types (Table S3). Across all cases, the main causes of death
were bleeding (25.1%), liver failure (16.2%), and rejection (15.8%).
In the NHP-to-NHP group, the predominant causes of death
included rejection (22.3%), liver failure (17.7%), bleeding (14.9%),
infection (12.9%), thrombosis (4.6%), respiratory problems (2.7%),
multi-organ failure (1.8%), and other reasons (12.0%), including
weakness, cerebral embolus, and adverse drug effects. Notably,
12.0% of all NHP-to-NHP cases were alive until the end of the
experiment or euthanized electively. In the pig-to-NHP groups,
causes of death were attributed to bleeding (36.8%), liver failure
(14.7%), respiratory issues (14.7%), rejection (8.4%), multiple organ
failure (7.4%), thrombosis (6.3%), and infection (4.3%), and other
reasons (7.4%). As anticipated, animals receiving WT pig livers
exhibited a significantly higher mortality rate due to rejection
(23.5% vs. 0%) and bleeding (50.0% vs. 29.5%), albeit with a
lower incidence of mortality attributed to thrombosis (0% vs.
9.8%). Furthermore, the auxiliary/heterotopic surgical approach
was associated with a heightened risk of mortality from respi-
ratory complications compared to the orthotopic implantation
(45.8% vs. 4.2%). However, bleeding was substantially lower with
the auxiliary/heterotopic implantation (16.7% vs. 43.7%). None
of the monkeys in the xenotransplant group were electively
euthanatized.

4 | Discussion

The advent of gene-editing technology [16, 17] and the advance-
ment in immunosuppression therapies [57] have allowed several
teams to reach extended xenograft survival duration. For instance,
heterotopic pig-to-NHP heart transplants have shown survival
periods of up to 945 days, life-supporting heart transplants
have reached 264 days [17], and kidney xenotransplantation has
extended survival to 758 days [16]. This progress has pushed some
groups to move forward with clinical xenotransplantation [18-21,
23-26]. GM pig hearts have been transplanted in two patients
at the University of Maryland [18, 19], and GM pig kidneys have
been transplanted in patients with end-stage kidney disease at
MGH [58] and New York University (NYU) [59]. Prior to that,
pig organs were transplanted in decedents at NYU (hearts and
kidneys) [20-22] and the University of Alabama Birmingham

TABLE 4 | NHP median survival time and hazard ratio compared among different organ type and immunosuppression groups.
Median survival time Hazard

Groups (days) ratio 95% CI p-value
Overall comparison

Xenotransplants versus allotransplants 3 versus 20 5.1 3.5-7.5 < 0.001
Xenotransplants

Wild-type versus genetically modified pig donors 0.2 versus 6 30.5 14.6-63.8 < 0.001
Orthotopic versus auxiliary implantation 1versus 6 21 1.3-3.3 < 0.001
Without versus with co-stimulation blockade 0.8 versus 7 2.5 1.6-4.0 < 0.001
Without versus with B/T Cell depletion 0.3 versus 5 3.8 2.0-7.1 < 0.001
Without versus with complement blockade 0.5 versus 6 7.2 4.2-12.3 < 0.001

Abbreviation: CI, confidence interval; NHP, nonhuman primates.

14 of 19

Xenotransplantation, 2025



1.07 1.0

== Allo, NHP-to-NHP (MST: 20 days)
== Xeno, Pig-to-NHP (MST: 3 days)

=i Allo, NHP-to-NHP (MST: 20 days)
= Xeno GM-Pig-to-NHP (MST: 6 days)

== Allo, NHP-to-NHP (MST: 20 days)
== Xeno aux/hetero, Pig-to-NHP (MST: 6 days)

© . & 5
é 0.8 E 0.8 - Xeno WT-Pig-to-NHP (MST: 0.2 days) = == Xeno ortho, Pig-to-NHP (MST: 1 day)
3 =1 =]
w (2] w
5 5 0.6 5
> > e Z s _..._._‘_‘_H_‘
3 ' 504 3 ? : bovalue <0.001
H : -value <0.
38 i P-value <0.001 3 E;?gu;;?C?SQ%: 14.6-63.8) 38 : : HR: 2.1 (C195%: 1.3-3.3)
o 0.2 i HR:5.1 (CI95%: 3.5 - 7.5) T 02 a
: H
0.0 . . : T T : ) 0.0 : —— . — .
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
NHP Survival (days) NHP Survival (days) NHP Survival (days)
FIGURE 3 | Survival following liver transplantation in NHPs stratified for (A) allo- versus xenotransplantation, (B) wild-type pigs versus

genetically modified pigs versus allotransplantation, and (C) surgical method (orthotopic versus auxiliary/heterotopic) versus allotransplantation. Allo,
allotransplantation; Aux/hetero, auxiliary/heterotopic; GM, genetically modified; NHP, nonhuman primate; Xeno, xenotransplantation.
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cobra venom factor). CI, confidence interval; HR, hazard ratio, MST, median survival time; NHP, nonhuman primate.

(kidneys) [23-26]. With regards to the liver, a historical initial
attempt was reported in a patient in the 90s, with an auxiliary pig
liver graft implanted in a patient with fulminant hepatic failure.
The graft function for 36 h, bile production, and lactate clearance
were observed, but no neurological improvements were noted
[34]. Despite preemptive plasmapheresis and ex vivo perfusion
of pig kidneys that removed 90% of the xeno-antibodies, the graft
sustained profound antibody-mediated rejection. Ex vivo WT
pig liver perfusion via extracorporeal machine perfusion devices
was attempted at Duke [36] and Nebraska [35] in 1994, involving

4 and 8 patients, respectively. Some were successfully bridged
to transplantation. In 2000, Levy et al. successfully bridged
two patients using CD55/CD59 modified livers [37]. However, it
became evident at that time that more preclinical work needed
to be done, and various groups continued NHP experiments.

Since then, and over the last few decades, a significant amount
of preclinical data and achievements have been accumulated
(Tables 1 and 3). Although improvement has been observed in
the recent decade (Figure 4A), allowed by a more comprehensive
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immunosuppression regimen (Figures 4B,C and D) and advanced
gene editing in donors, the maximum survival is limited to about
1-month.

We summarize here “all” pig-to-NPH liver xenotransplants
performed to date and provide a comparative analysis of the
results to guide further experiments and potential further clinical
attempts. We report aggregated survival rates, causes of death, and
immunosuppressive protocols, exploring variations across donor
types and implantation approaches. We highlight the advances
provided by (i) genetic modifications (30 times less NHP death),
(ii) enhanced immunosuppression (e.g., 2.5-fold less NHP death
with co-stimulation blockade), and (iii) auxiliary/heterotopic
liver xenotransplantation implantation (2 times less NHP death).
The profound impact of genetic modifications was achieved by
simple, double, and triple alpha 1,3-galactosyltransferase gene-
knockouts and key addition of human transgenes, resulting in
a near complete disappearance of hyperacute rejections [27, 31-
33, 43-49]. Co-stimulation and complement blockade further
prolonged the survival of xenografts [27, 31-33, 44-47, 49]. The
improved survival allowed by auxiliary and heterotopic surgical
implantations is attributed to the persistence of the native liver,
which remains functional alongside the transplanted xenograft,
providing relief in performing essential detoxification and syn-
thetic tasks and potentially playing a role in modulating the
immune response [60, 61].

The auxiliary/heterotopic approach reduces bleeding risk by
preserving native liver hemostatic functions and mitigating coag-
ulopathy and thrombocytopenia. However, increased abdominal
pressure from the additional graft may impair diaphragmatic
excursion, exacerbating respiratory complications, especially
under inflammatory and fluid-shift conditions.

We report median and maximal survival times for the different
groups and note that only a small proportion of liver xenotrans-
plants reach 1-month of survival. We also emphasize the inherent
limitations of NHP models, as exemplified by the results obtained
in the NHP-to-NHP allotransplant model, which we used as a
comparative group. The survival of this latter group remains
largely inferior to allotransplantation in humans (i.e., > 98% graft
survival at 1-month), further highlighting that experimental liver
allo and xenotransplantation in NHPs is only an approximate
surrogate for clinical studies, prompting cautious evaluation of
results and conclusions. Despite significant strides in donor gene
editing and immunosuppressive regimens, liver xenotransplant
survival rates still lag far behind those of allotransplants. Notably,
we highlighted that bleeding remains the predominant cause
of failure, underscoring coagulation dysregulation as a critical
barrier.

The fact that the liver is the only organ for which the physiology
cannot be artificially replaced to sustain life makes it both
essential and difficult to replace [62]. Xenotransplantation seems
to be the most promising approach to support deficient liver
function in patients [33]. However, the physiological differences
between human and pig liver make this undertaking difficult
to achieve compared to other organs, such as the heart or the
kidneys. The liver produces most of the circulating proteins (e.g.,
albumin, cholesterol transport proteins), the complement (e.g.,
C3), and coagulation proteins (prothrombin), and it is not yet fully

understood if those function correctly in humans. Detoxification
of drugs, conversion of ammonia, and metabolic functions (e.g.,
conversion of T4) are also essential functions for which it is still
not clear if those adequately translate between species. Given all
these differences, it is not surprising to see that the survival of
liver xenografts is limited to 1-month [63, 64]. In our analysis,
the primary barrier restricting liver xenotransplant survival was
uncontrolled bleeding provoked by severe thrombocytopenia and
coagulation dysregulation in more than one-third of the NHPs, as
initially suggested by Calne et al. [41, 56]. Postxenotransplantation
thrombocytopenia has multifactorial causes. It could occur
due to excessive platelet activation and aggregation and/or
aberrant platelet sequestration and phagocytosis. Porcine von
Willebrand factors (VWF), liver sinusoidal endothelial cells
(LSECs), and porcine Kupffer cells play key roles in that
process. Porcine VWF binds tighter to the human platelet’s
Gplb receptor because of increased O-linked glycosylation,
which leads to platelet degranulation, formatting platelet plugs,
and platelet consumption, respectively [65]. A solution could
be the interruption of the platelet activation and aggregation
pathway by using either an anti-GpIb antibody in combination
with desmopressin [66], an anti-GpIIb/IIla antibody [67], or
expression of human vWF in the porcine liver [68]. Another
target could be LSECs scavenger receptors, such as ASGR-1.
These receptors mediate phagocytosis by binding to platelet
B1-4-N-acetylglucosamine glycoprotein on human platelets [69].
Eliminating this glycoprotein by using asialofetuin could reduce
species-discordant platelet consumption [70]. Similarly, blocking
actions (e.g., siRNA, antibodies, genetic modifications) could
target CD18, CD40, and SIRP-a/CD47 receptors on Kupffer cells,
thereby reducing platelet phagocytosis and sequestration [71-73].
The other critical barrier is coagulation dysregulation, which
results in the constitutive activation of the extrinsic station
cascade, even in the absence of immunological evidence of
hyperacute rejection. This coagulation dysregulation originates
from incompatibilities between the donor’s tissue factor pathway
inhibitor (TFPI) and the recipient’s tissue factor (TF) [46] and/or
thrombin-thrombomodulin complex [74]. To address this issue,
GM pigs expressing human TFPI and thrombomodulin have been
designed, and supplementation with human concentrate can be
done [63]. Overall, it appears that GM pig livers are appropriate
to support at least part of the function of a human native liver,
such as bile detoxification and part of protein production. Some
critical functions linked to coagulation seem to be difficult to
replace yet. Considering the latter, some patients with extensive
liver resection (leaving less than 20% remnant liver) could
benefit from partial auxiliary support with a GM pig liver and
adequate immunosuppression. This approach was taken in
the 71-year-old patient who received an auxiliary liver graft in
China and who, to our knowledge, > 1-month posttransplant
[6]. To enhance survival outcomes and improve the translational
relevance of liver xenotransplantation studies, several steps
can be taken. Future studies should integrate further genetic
modifications in donor pigs, such as modifications involving
Gal or non-Gal deletions, complement regulation, cellular
immune response, anticoagulation, anti-inflammatory/anti-
apoptotic response, infection control, and organ growth.
Advanced immunosuppressive protocols will need to be tested,
including those utilizing new generations of anti-CD154 mAb
and anti-CD40 mAb, new anti-complement therapies, and
other multimodal approaches to block the antibody response.
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Addressing key challenges, such as coagulation dysregulation
and platelet function, through incorporating human-compatible
coagulation factors may further enhance graft survival and better
approximate clinical applications in human liver transplant
recipients. Our analysis highlights the significant survival
benefits of auxiliary/heterotopic liver transplant techniques
compared to orthotopic approaches, likely due to the retained
functionality of the native liver. These techniques could
serve as an effective interim solution for bridging patients
to allotransplantation when immediate donor organs are
unavailable, reducing the risk of immediate graft failure.
Additionally, survival data suggest that cynomolgus monkeys
exhibit better outcomes than rhesus monkeys, potentially
due to minor MHC compatibility or procedural differences.
Consequently, future liver xenotransplant studies may benefit
from prioritizing cynomolgus monkeys to improve consistency
and translatability, particularly when evaluating GM donor
models.

Our study had limitations. The first limitation is the inevitable
heterogeneity present across the different studies and the long
inclusion period. Investigators used different species/genetic
backgrounds for both donors and recipients, different immuno-
suppression protocols, and different implantation techniques.
We accounted for the main differences and performed sub-
group analyses; however, we acknowledge the impossibility of
reconciling all variables. Nevertheless, the effect of major differ-
ences, such as the absence or presence of genetic modification,
implantation techniques, allo versus xenotransplant models, and
co-stimulation/complement blockade, as well as B and/or T-cell
depletion, showed differences as expected. Second, our com-
parison group with NHP allotransplant is suboptimal because
those studies were performed with various interventions and
not with the intent to serve as ‘optimal’ allotransplant controls.
Again, it is still reassuring to see that the differences between
the xenotransplant group are as expected. Also, it confirms that
the NHP allotransplant model is not perfect, with only 12% of
the animals (13 out of 108 cases) reaching the study termination
time point, suggesting that enhanced donor modifications and
improved immunosuppressive strategies are necessary to increase
survival rates and relevance in liver xenograft studies. Another
potential issue is animal duplication, which is not infrequent;
even though we took great care to avoid duplicated reports on
the same animal in different publications by the same group,
the occurrence of this possibility cannot be completely ruled out.
Another point to consider, which is valid for nearly all large
animal preclinical studies, is that animal recipients are healthy
to start with, which does not fully mimic the situation of a
chronically or acutely ill patient. Only studies performed in a
clinical setting will be able to adequately address these questions.
Again, the rational and risk/benefit ratio of performing those
seems justified for dying patients with no other options.

In conclusion, while challenges such as liver protein compatibil-
ity with the host, thrombocytopenia, and coagulopathy persist,
our study highlights the progressive enhancement of preclini-
cal liver xenotransplantation outcomes. Genetic modifications,
such as the incorporation of human-compatible coagulation
regulators like thrombomodulin and TFPI, have been pivotal in
addressing coagulopathy and improving graft function. Advances
in immunosuppressive strategies, including next-generation co-

stimulation blockade agents like nonthrombogenic anti-CD40L
monoclonal antibodies, and procedural refinements in auxiliary
implantation techniques have significantly extended survival,
with animal models achieving survival beyond 1-month. Machine
perfusion systems have become valuable platforms for testing
genetic modifications and immune compatibility, facilitating
rapid translational advancements [75, 76,]. Initial clinical com-
passionate studies are underway and will face unique challenges.
However, they are expected to address critical unanswered sci-
entific questions and pave the way for xenotransplantation as a
viable bridge to allotransplantation or recovery.
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