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Abstract

Hepatitis C virus (HCV) affects nearly 200 million people worldwide and is a leading factor for serious chronic liver diseases.
For replicating HCV genome, the membrane-associated replication machinery needs to be formed by both HCV non-
structural proteins including NS5A and human host factors. Recently NS5A has been identified to bind ER-anchored human
VAP proteins and consequently this interaction may serve as a novel target for design of anti-HCV drugs. So far no
biophysical characterization of this interaction has been reported. Here, we dissected the 243-residue VAPB into 4 and 447-
residue NS5A into 10 fragments, followed by CD and NMR characterization of their structural properties. Subsequently,
binding interactions between these fragments have been extensively assessed by NMR HSQC titration which is very
powerful in detecting even very weak binding. The studies lead to three important findings: 1). a ‘‘fuzzy complex’’ is formed
between the intrinsically-unstructured third domain (D3) of NS5A and the well-structured MSP domain of VAPB, with an
average dissociation constant (Kd) of ,5 mM. 2). The binding-important residues on both NS5A-D3 and VAPB-MSP have
been successfully mapped out, which provided experimental constraints for constructing the complex structure. In the
complex, unstructured D3 binds to three surface pockets on one side of the MSP structure. Interestingly, two ALS-causing
mutations T46I and P56S are also located on the D3-MSP interface. Moreover, NS5A-D3, FFAT-containing proteins and
EphA4 appear to have overlapped binding interfaces on the MSP domain. 3). NS5A-D3 has been experimentally confirmed
to competes with EphA4 in binding to the MSP domain, and T46I mutation of MSP dramatically abolishes its binding ability
to D3. Our study not only provides essential foundation for further deciphering structure and function of the HCV
replication machinery, but may also shed light on rationalizing a recent observation that a chronic HCV patient surprisingly
developed ALS-like syndrome.
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Introduction

Hepatitis C virus (HCV), first discovered in 1989, is a member

of the Flaviviridae family of enveloped, positive-strand RNA viruses

[1,2]. It is the major causative agent of non-A, non-B hepatitis and

about 200 million people are infected with HCV worldwide [3].

HCV is a main risk factor for the development of serious chronic

liver diseases including cirrhosis and hepatocellular carcinoma [4].

HCV has a genome approximately 9.6 kb in length, which

encodes a single long polyprotein of about 3,000 amino acids,

which is subsequently processed into 10 individual proteins by

viral and cellular proteases [5–9]. Replication of positive-strand

RNA viruses appears to always involve certain intracellular

membrane structures, such as the endoplasmic reticulum (ER),

Golgi apparatus, endosome, and lysosome [10]. Replication of

HCV initiates immediately after translation and processing of the

viral protein and all of HCV gene products remain associated with

intracellular membranes [11–17]. The membrane-associated

replication machinery copies the genome RNA into a negative-

strand intermediate, which is then used to generate additional

positive-strand RNAs for subsequent rounds of translation and

packaging into virus particles. HCV nonstructural proteins

including NS3, NS4A, NS4B, NS5A, and NS5B appear to be

the key components of the RNA replication machinery but the

exact details are poorly understood, such as the identities of the

host factors and detailed interactions among them.

So far there is no clinically proven vaccine and the most

common therapy is based on with a combination of pegylated

interferon-alpha (PEG-IFNa) and ribavirin (RBV), which only

has a success rate of ,50% as well as severe side effects [18,19].

As a consequence, identification of novel targets for design of

HCV antiviral drugs is urgently demanded [20–23]. At present,

the most popular targets are two enzymes: the NS3/4A serine

protease and the NS5B RNA-dependent RNA polymerase as

they are amenable to the development of biochemical assays for

inhibitor screening [24]. However, they appear also to have a

considerable disadvantage: low genetic barriers to drug resistance

[24,25]. Therefore, it may hold promising potential to develop
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drugs to target non-enzymatic components required for RNA

replication. Indeed, although the underlying mechanism by

which cyclophilins contribute to viral replication remains

unknown, cyclophilin A, a molecular chaperone catalysing the

cis-trans isomerization of proline residues, has been demonstrated

to be an important drug target for therapy of chronic hepatitis C

[26,27].

Recently, inhibitors with a potent clinical effect have also been

identified to target the HCV nonstructural 5 (NS5A) protein,

which has no enzymatic activity [28–31]. NS5A consisting of 447

residues is a critical component of HCV replication [32] and is

additionally involved in modulation of cell signaling pathways,

interferon response, pathogenesis and apoptosis regulation [33].

As shown in Figure S1, it is composed of three domains connected

by flexible linkers, domain 1 (33–202), domain 2 (251–342) and

domain 3 (359–447). The crystal structures of domain 1 has been

determined [34,35] while both domain 2 [36,37] and domain 3

[38,39] have been characterized to be largely disordered by NMR

spectroscopy.

Remarkably, NS5A has been recently identified to bind human

VAP family proteins VAPA/VAPB and this interaction appears to

anchor the RNA replication machinery onto the ER for the

replication of the HCV genome [15–17]. In particular, overex-

pression of VAPB significantly enhanced the expression of NS5A

and NS5B, as well as the replication of HCV RNA [15,17]. On

the other hand, NS5A hyperphosphorylation disrupts its interac-

tion to VAPA thus negatively regulating viral RNA replication

[16]. The human VAP family proteins were initially identified as

homologues of vesicle-associated membrane protein (VAMP)-

associated protein (VAP) with a size of 33 kDa in Aplysia californica,

including VAPA, VAPB, VAPC and several newly-identified

spliced variants [40–42]. VAPA and VAPB are ,60% identical in

sequence and composed of three conserved domains, namely, an

N-terminal immunoglobulin-like b sheet domain that is 22%iden-

tical in sequence to the major spermprotein (MSP), a central

coiled-coil domain, and a C-terminal transmembrane domain

(Figure 1a). VAP proteins are ubiquitously expressed, type II

integral membrane proteins that localize to the endoplasmic

reticulum (ER) and pre-Golgi intermediates [43]. Moreover, VAP

proteins have been shown to target lipid-binding proteins carrying

a short motif containing two phenylalanines in an acidic tract

(FFAT motif) to the ER [44–46]. The FFAT-motif consists of the

consensus amino acid sequence EFFDAxE, which was conserved

in several lipid-binding protein families implicated in the transfer

of lipids between the ER and other organelles, such as the Golgi,

endosomes, and plasma membrane [47,48]. The VAP proteins

also interact with intracellular proteins, including Nir1, Nir2, and

Nir3 via the FFAT motif which differentially affects the

organization of the ER [49]. Most recently, it was also shown

that the VAPB-MSP domain also serves as a ligand for Eph

receptors [50,51]. Strikingly, two point mutations P56S and T46I

in the VAPB MSP domain have been identified to lead to familial

amyotrophic lateral sclerosis with rapid progression or late onset

spinal muscular atrophy [52,53].

So far no detailed structural and binding characterization has

been reported for the NS5A-VAPB interactions. On the other

hand, such knowledge is essential for developing novel strategies to

treat HCV infection [54]. In the present study, we first dissected

both NS5A and VAPB into a large set of domains/fragments,

followed by extensive structural and binding characterizations with

both CD and NMR spectroscopy. The binding residues have been

successfully mapped out by NMR HSQC titrations on both NS5A

and VAPB, thus allowing the construct of the complex structure.

Notably, NS5A binds to the VAPB surfaces carrying ALS-causing

P56S and T46I mutants, which have been previously character-

ized to be also critical for binding FFAT-containing proteins and

Eph receptors [44,46,51].

Results

Cloning, expression and characterization of dissected
domains/fragments of VAPB

To map out the binding regions for the NS5A-VAPB

interaction, in the present study we first dissected the 243-residue

human VAPB into 4 domains/fragments (Figure 1a and Table

S1): VAPB(1–195) only with the transmembrane fragment deleted,

VAPB(1–150), VAPB(1–125) and the coiled-coil domain designat-

ed as VAPB-CC(151–195). Subsequently we succeeded in

subcloning them in His-tagged expression vector, which were

over-expressed in E. coli BL21 cells. The recombinant proteins

were purified by Ni2+-affinity columns and then cleaved by

thrombin, which were further purified by FPLC on a Superdex-

200 gel-filtration column or HPLC on RP (reverse-phase) columns

(Table S1).

As seen in Figure 1b, VAPB(1–195) has a far-UV CD spectrum

for a protein containing both a-helix and b-sheet secondary

structures. On the other hand, VAPB(1–150) has a far-UV CD

spectrum similar to that of VAPB(1–125) which was previously

characterized to adopt a b-dominant MSP fold [46]. This

observation implies that the extra C-terminal 25 residues in

VAPB(1–150) is largely unstructured and its presence does not

alter the MSP-fold. Indeed, in a NMR structure (PDB ID: 2CRI)

of the mouse VAPA(1–140) fragment, residues 125–140 are

predominantly disordered. On the other hand, VAPB-CC has a

far-UV CD spectrum characteristic of a helical conformation

(Figure 1b) which is commonly observed on other coiled coil

domains.

We then 15N-isotople labeled these fragments and acquired

their 1H-15N NMR HSQC spectra. As shown in Figure 1c,

VAPB(1–195) has a well-dispersed HSQC spectrum, indicating

that it contains a well-folded domain. Interestingly, the HSQC

spectrum of VAPB(1–195) appears to be almost the superimpo-

sition of the spectra of isolated VAPB(1–150) and VAPB-CC

(Figure 1c), suggesting that VAPB(1–150) and VAPB-CC have no

significant packing interaction in VAPB(1–195). Furthermore, as

shown in Figure 1d, most HSQC peaks of VAPB(1–125) are also

superimposable to those of VAPB(1–150), indicating that the C-

terminal 25 residues of VAPB(1–150) have no significant packing

with the MSP fold assumed by the N-terminal 125 residues [46].

Taken together, CD and NMR results demonstrate that VAPB(1–

195) is composed two structural domains, namely the well-folded

b-dominant MSP fold and helical VAPB-CC linked by the flexible

loop.

Cloning, expression and characterization of dissected
domains/fragments of NS5A

Based on its domain organization (Figure 2a), we dissected

NS5A of a Singapore HCV isolate [55] (Figure S1) into 10

domains/fragments, including NS5A(33–447) only with the first

32 transmembrane residues removed, which were subcloned in

either His- or GS-tagged expression vector (Table S1). Except for

NS5A-D2-D3 whose expression level was too low to be

characterized, all other recombinant proteins were successfully

purified for further structural and binding characterizations. As

seen in Figure 2c, NS5A(33–447) and NS5A-D1(33–202) have far-

UV CD spectra for proteins with well-formed secondary

structures, consistent with the fact that the NS5A-D1 domain

has a well-formed secondary and tertiary structures [34,35]. By

Binding Interface between NS5A and VAPB
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contrast, the fragments consisting of D2 or/and D3 domains have

far-UV CD spectra typical of proteins of being predominantly

disordered, consistent with previous reports on NS5A D2 and D3

of other HCV isolates [36–39]. We have also assessed the disorder

tendency of NS5A (Figure 2b) by IUPred [56]. Very interestingly,

while D1 has the lowest and D3 has the highest disorder tendency,

D2 appears to be only partially disordered (Figure 2b), thus not a

classic intrinsically-unstructured domain. We recently revealed

that such partially disordered domains are prone to aggregation

or/and undergo large conformational exchanges on the ms-ms

time scale [57]. Indeed, probably due to the existence of the

dynamic aggregation or/and conformational exchanges in D2 on

ms-ms time scale, well-dispersed HSQC spectra could not be

obtained for 15N-labeled NS5A(33–447) and NS5A-D1(33–202)

samples.

Identification of the VAPB domain binding NS5A
To identify the human VAPB domain for binding with the

viral NS5A, we first titrated the 15N-labeled VAPB(1–195)

sample with the unlabeled NS5A(33–447) protein. As seen in

Figure 2c, addition of NS5A(33–447) triggered the disappearance

of a subset of HSQC peaks of VAPB(1–195), confirming that

NS5A does indeed interact with VAPB. Based on our NMR

sequential assignments for both VAPB(1–150) and VAPB(1–125)

[46,51], a close examination reveals that the disappeared and

significantly shifted peaks are all from the N-terminal 125

residues which adopt the MSP fold [46]. We also titrated the
15N-labeled VAPB-CC sample by NS5A(33–447) but detected no

significant change of the HSQC spectra (Figure 2d), indicating

that the VAPB coiled coil domain is not physically interacting

with NS5A, or the binding is very weak. Taken together, the

results suggest that the human VAPB binds to NS5A via its N-

terminal MSP domain.

Identification of NS5A domain binding VAPB
To identify the NS5A domain for binding VAPB, we first

titrated 15N-labeled VAPB(1–195) and VAPB-CC proteins with

the unlabeled NS5A-D1(33–202) proteins with amino acid

sequences derived from both Singapore and Con1 isolates (Figure

S1), but found no significant change of their HSQC spectra (data

not shown), suggesting that D1 is not directly involved in binding

with VAPB, or the binding is very weak. Subsequently, we titrated
15N-labeled VAPB(1–195) and VAPB-CC proteins with unlabeled

NS5A(251–380) and NS5A(313–366) proteins, and again found no

significant changes of the HSQC spectra of VAPB(1–195) and

VAPB-CC, indicating that D2 as well as the liker between D2 and

D3 of NS5A do not physically interact with NS5A, or the binding

is too weak to be detected by NMR.

Figure 1. CD and NMR characterization of VAPB domains. (a). Domain organization of the 243-residue human VAPB protein consisting of the
major sperm protein (MSP), coiled coil (CC) and transmembrane (TM) domains. (b). Far UV CD spectra of VAPB(1–195) (blue); VAPB(1–150) (green);
VAPB(1–125) (brown) and VAPB-CC(151–195) (red). (c). Superimposition of 1H-15N NMR HSQC spectra of VAPB(1–195) (black); VAPB(1–150) (red) and
VAPB-CC(151–195) (green). (d). Superimposition of 1H-15N NMR HSQC spectra of VAPB(1–150) (red); VAPB(1–125) (blue).
doi:10.1371/journal.pone.0039261.g001
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However, once we titrated 15N-labeled VAPB(1–195) with

NS5A(300–447) which contains both D3 and the linker between

D2 and D3, many HSQC peaks of VAPB(1–195) disappeared or

shifted, with a perturbation pattern very similar to that induced by

NS5A(33–447) (spectra not shown), implying that NS5A(33–447)

and NS5A(300–447) use the similar regions to bind with VAPB. In

other words, NS5A-D3 contains at least the majority of the

residues critical for binding to VAPB. As such, we titrated the 15N-

labeled VAPB-MSP(1–125) by the unlabeled NS5A(300–447) and

found that the disappeared or shifted HSQC peaks are almost

identical to those trigged by NS5A(33–447) (Figure 3a). By

contrast, addition of unlabeled NS5A(300–447) caused no

significant perturbation on the VAPB-CC HSQC peaks

(Figure 3b), again indicating that the VAPB-CC is not physically

involved in binding NS5A.

Since NS5A(300–447) protein containing D2 residues has a

relatively low solubility and is not suitable for collecting high-

quality NMR data for sequential assignment, we further titrated

the 15N-labeled VAPB(1–125) by NS5A(359–447) containing only

VAPB-D3. Remarkably, as shown in Figure 3c, addition of D3

sample not only induced the disappearance of almost the same set

of HSQC peaks as induced by NS5A(300–447), but also triggered

significant shifts of many extra residues. This implies that the

majority of the NS5A residues critical for binding VAPB are

located on NS5A-D3. As a consequence, after deleting the D2 and

linker residues 300–358 which is not significantly involved in

binding, NS5A-D3(359–447) would be expected to have a tighter

binding ability to VAPB.

Structural and binding properties of D3 and its fragments
The recombinant 89-residue NS5A-D3 protein has a far-UV

CD spectrum (Figure 4a) typical of highly-unstructured proteins,

consistent with previous reports on NS5A-D3 of other HCV

isolates [38,39]. This conclusion is further evident from the very

narrow 1H-(1.8 ppm) and 15N-(19.5 ppm) spectral dispersions of

its HSQC spectrum (Figure 4b), which also indicate the absence of

a tight tertiary packing in D3. Nevertheless, its relatively high

solubility allowed the preparation of a 15N-/13C-double labeled

D3 NMR sample at a protein concentration of 300 mM for

collecting triple-resonance NMR data. By analyzing the data, we

succeeded in achieving the sequential assignment of NS5A-D3 and

obtaining its Ca conformational shifts (Figure 4c). It has been well-

established that Ca chemical shift deviations from their random-

coil values are very sensitive indicators of protein secondary

structures, thus representing a powerful probe for detecting

residual secondary structures in unfolded or partially folded

proteins [58,59]. As judged from small but positive Ca confor-

mational shifts over most D3 residues, it can be concluded that the

helical conformations are weakly populated over several segments

of the sequence (Figure 4c).

Despite being highly disordered, addition of the unlabeled

VAPB(1–125) did lead to significant shifts and disappearance of

many D3 HSQC peaks (Figure 4b). Based on the sequential

assignment, the perturbed and disappeared residues were identi-

fied to be located on the C-terminal half of D3 (Figures 4c and 5a).

Therefore, NS5A-D3 is a member of intrinsically-unstructured

proteins which is highly-disordered but still functionally-active

[60–69]. Notably, the binding with VAPB-MSP leads to no

significant increase of the spectral dispersion of the D3 HSQC

spectra, implying that D3 still remains largely unstructured even

upon complexing with VAPB-MSP.

Since the significantly-perturbed residues are located over the

C-terminal half of D3 (Figures 4c and 5a), we then subcloned and

expressed three further truncated D3 fragments including D3A,

D3B and D3C (Figure 5a). As seen in Figure 5b, the 54-residue

D3A, 41-residue D3B and 21-residue D3C are all highly

disordered in solution as evident from their far-UV CD spectra

(Figure 5b). The lacking of a tight tertiary packing of D3A is

clearly evident from its narrow HSQC spectral dispersion

(Figure 5c). To gain detailed insights into the solution conforma-

tion of D3A, we collected a pair of three-dimensional hetero-

nuclear NMR spectra, namely 15N-edited HSQC-TOCSY and

HSQC-NOESY and subsequently achieved the sequential assign-

ment. As judged from its negative Ha conformational shifts for

most residues (Figure 5d), D3A appears to have helical confor-

mations weakly-populated over two segments: Ser401-Ser412 and

Asp427-Val445, consistent with Ca conformational shifts of the

corresponding residues in D3 (Figure 4c). The existence of two

helical segments is further supported by characteristic NOEs

(Figure 5e) over the two regions defining the helical conformation,

including dNN(i, i+1), dNN(i, i+2), daN(i, i+2), daN(i, i+3) and daN(i, i+4).

However, as only two daN(i, i+4) NOEs are observed, the helical

conformations in D3A appear to be mainly dynamic 310-helix,

rather than a-helix, consistent with the CD result [56,57].

D3A is able to bind to the MSP fold as demonstrated by

significant shifts of its HSQC peaks upon titrating with the

unlabeled VAPB(1–125) (Figure 5c). Based on the sequential

assignment, significantly perturbed and disappeared residues has

been identified to be mostly located on the second helical segment,

while only Ser414 and Met416 are located on the first one

(Figure 5d). Strikingly, the binding with the MSP fold again results

in no significant increase of the HSQC spectral dispersion,

implying that the D3A still remains largely unstructured even

upon complexing with VAPB-MSP.

MSP residues critical for binding NS5A
To map out the MSP residues critical for binding NS5A, we

titrated the 15N-labeled VAPB(1–125) with all four D3 fragments

including D3, D3A, D3B and D3C (Figure 5a). Figures 6a–6c

present the chemical shift differences (CSD) of the MSP domain

upon adding unlabeled D3, D3A and D3B proteins at a molar

ratio of 1:4 (MSP/D3 peptide). Interestingly three peptides trigger

almost the same shifting pattern and similar amplitude for the

MSP125 residues, suggesting that 41-residue D3B carries almost

all residues key for binding the MSP domain. Upon titration,

HSQC peaks of the MSP residues Val44-Ala48 and Arg51-Asn57

were found to completely disappear even at a molar ratio of 1:1

(MSP/D3 peptide). Interestingly, these peaks were also found to

disappear in the HSQC spectra of VAPB(1–195) upon titration by

NS5A(33–447). On the other hand, upon titration by D3, D3A,

D3B, additional HSQC peaks undergo gradual but significant

Figure 2. Identification of VAPB domain binding with NS5A. (a). Domain organization of the 447-residue HCV NS5A protein consisting of
three domains. (b). Prediction of disorder tendency of the full-length NS5A with IUPred server (http://iupred.enzim.hu/). (c). Far UV CD spectra of
NS5A(33–447) (blue); NS5A-D1(33–202) (green); long NS5A-D2(251–380) (red) and long NS5A-D3(300–447) (brown). (d). Superimposition of 1H-15N
NMR HSQC spectra of VAPB(1–195) in the absence of (black) and in the presence of unlabeled NS5A(33–447) (red) at a molar ratio of 1:2.5 (VAPB/
NS5A). (e). Superimposition of 1H-15N NMR HSQC spectra of VAPB-CC(151–195) in the absence of (black) and in the presence of unlabeled NS5A(33–
447) (red) at a molar ratio of 1:2.5 (VAPB-CC/NS5A).
doi:10.1371/journal.pone.0039261.g002
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shifts, which include Gln6, Met89-Val90-Gln91, Asp116, Leu119

and Val122.

If the disappeared and significantly shifted residues are mapped

back to the VAPB-MSP structure we previously determined [46],

they are all located on one side of the b-barrel fold (Figure 6e).

Interestingly, the residues with disappeared HSQC peaks upon

binding to D3 fragments constitute the interfaces for binding to

FFAT-motif containing ORP1 (Figure 6f), and Nir2 peptides

[44,51]. However, additional binding pockets on the MSP fold

appear to be involved for binding with NS5A (Figures 6e and 6f).

Also it is worthwhile to point out that two ALS-causing mutations,

T46I and P56S, are all located over two b-strands with HSQC

peaks of most residues disappeared.

On the other hand, unlike D3, D3A and D3B, the 21-residue

D3C peptide is no longer able to induce the disappearance of any

MSP residues. Instead, as seen in Figure 6d, it is only able to

induce peak shifts of some MSP residues of small amplitudes even

at a molar ratio of 1:5 (MSP/D3C). Although the overall

perturbation pattern by D3C shares some similarity with those

by D3, D3A and D3B, D3C appears to have no significant

perturbation on Gln8. These results imply that D3C has a

dramatically-reduced binding affinity, as well as smaller contact

regions on the MSP fold. This result supports the above conclusion

that NS5A-D3 residues Ser414, Met416 and Asp425 are indeed

critical for binding VAPB-MSP (Figure 5a).

Table S2 summarizes NMR titrations in this study. Further-

more, to quantitatively assess the binding, we subsequently fitted

the shift tracings of the MSP HSQC peaks to obtain dissociation

constants (Kd) as we previously conducted on other systems

[70,71]. The fitting is exemplified in Figure 7 and Kd values are

summarized in Table 1. Overall, residue-specific Kd vales titrated

by D3, D3A and D3B are very similar, with average Kd values of

4.5, 8.0 and 4.7 mM respectively. For CSDs titrated by D3C, they

are very small (Figure 6d) as well as remained largely unsaturated

(Figures 7b and 7c) even at a molar ratio of 1:5 (MSP/D3C).

Unfortunately further increase of the molar ratio was not possible

due to the low solubility of the D3C peptide. As such, precise Kd

values could not be obtained for binding with D3C. This suggests

that the residues deleted in D3C also play a key role in binding

with MSP.

We also attempted to perform the ITC measurements on the

binding of the VAPB(1–125) with different D3C peptides but

failed to obtain high-quality data, probably due to the complex

binding mode, or/and the fact that many NS5A-D3 residues still

remain largely flexible even in the complex.

Docking model of the D3-MSP complex
We have attempted to co-crystallize VAPB(1–125) with D3

peptides several times but only obtained the crystal of VAPB(1–

125) alone, probably due to the relative weak binding affinity, or/

and complex binding mode. On the other hand, the extensive

disappearance of NMR resonances upon binding with D3 peptides

prevented from determining the complex structure by NMR

spectroscopy. In this regard, to better capture the binding

properties, by using the well-established HADDOCK docking

procedure with the NMR titration results, we constructed the

models of the MSP-D3B complex, as we previously conducted on

other systems [51,72,73].

Figure 8a shows the superimposition of the three models with

the lowest energies in which both MSP and D3B peptides are

highly similar. Interestingly, although the initial D3B structure

used for docking is an extended conformation without any

preferred secondary structures, in all three complex models the

D3B peptide acquires helical conformations over two segments:

Figure 3. Identification of NS5A domain binding with VAPB. (a).
Superimposition of 1H-15N NMR HSQC spectra of VAPB(1–125) in the
absence of (black) and in the presence of unlabeled long NS5A-D3(300–
447) at molar ratios of 1:1.5 (green) and 1:2.5 (red) (VAPB/NS5A). (b).
Superimposition of 1H-15N NMR HSQC spectra of VAPB-CC(151–195) in
the absence of (black) and in the presence of unlabeled long NS5A-
D3(300–447) at a molar ratio of 1:4 (red) (VAPB/NS5A). (c). Superimpo-
sition of 1H-15N NMR HSQC spectra of VAPB(1–125) in the absence of
(black) and in the presence of unlabeled NS5A-D3(359–447) at molar
ratio of 1:1 (green) and 1:2 (red) (VAPB/NS5A).
doi:10.1371/journal.pone.0039261.g003
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Pro418-Glu420 and Ser429-Trp433. Indeed, these two segments

were experimentally characterized to have populated helical

conformations, as clearly evident from their conformational shifts

(Figure 5d) and NOE connectivities (Figure 5e). As seen in

Figure 8b, the significantly-perturbed D3B residues have extensive

contacts with the MSP surface where two ALS-causing mutations

P56S and T46I are located. In particular, Thr46 appears to have

many close contacts with D3B residues Val436 and Ser437.

Moreover, three D3B regions (Figure 5a) appear to bind to three

distinctive MSP surface patches (Figure 8c): the D3B region over

Ser414-Met416 contacts relatively electrostatically neutral pocket

of MSP (designated as P3), while other two regions over Asp425-

Ser432 and Val436-Ser441 interact with other two electrostati-

cally-positive pockets (designated as P2 and P1 respectively,

Figure 8d). As such, there are many hydrogen bonds established

between MSP-P1/P2 and D3B residues (Figure 8e). More

specifically, over P1 pocket, there are hydrogen bonds between

backbone O of NS5A-Glu438 and sidechain NH of MSP-Gln57;

between sidechain O of NS5A-Glu438 and sidechain NH of MSP-

Arg55; between sidechain O of NS5A-Ser437 and sidechain NH

of MSP-Thr46; between sidechain OH of NS5A-Ser437 and

backbone O of MSP-Val45; between backbone N of NS5A-

Ser437 with sidechain OH of MSP-Thr46; between backbone NH

of NS5A-Val436 with sidechain O of MSP-Thr46. For P2 pocket,

there are hydrogen bonds between sidechain O of NS5A-Asp425

and sidechain NH of MSP-Arg120; between sidechain O of

NS5A-Asp425 and sidechain NH of MSP-Lys87; between side-

chain O of NS5A-Asp425 and sidechain NH of MSP-Arg120;

between sidechain O of NS5A-Asp427 and sidechain NH of MSP-

Lys118; between sidechain O of NS5A-Asp427 and sidechain NH

of MSP-Lys85.

NS3A competes with EphA4 in binding VAPB
NMR titration and docking results all reveal that the D3B

peptide is able to occupy the MSP surface regions which are also

critical for binding to EphA4 receptor as we previously charac-

terized [51]. To confirm this, we first saturated the VAPB-MSP(1–

125) by D3B at a molar ratio of 1:4 (MSP/D3B). Subsequently the

EphA4 ligand-binding domain (LBD) was gradually titrated into

this sample. Unlike the previous observation that addition of

EphA4 LBD to VAPB-MSP even at a molar ratio of 1:2 started to

trigger peak shift and disappearance of the MSP residues [51], in

the pre-existence of D3B peptide, only several MSP peaks were

observed to shift slightly when the molar ratio reached 1:10

(MSP:EphA4) (Figure 9a). Interestingly, the shifted residues are all

located on the MSP surface perturbed by both D3B and EphA4

(Figure 9b). These results thus suggest that in the pre-existence of

D3B, EphA4 at low concentration is not able to bind to VAPB-

MSP but at high concentrations, EphA4 will start to displace the

D3B peptide from binding with the MSP fold. Therefore, NS5A

does compete with EphA4 in binding with VAPB-MSP.

Figure 4. Conformational and binding properties of NS5A-D3. (a). Far UV CD spectrum of NS5A-D3(359–447). (b). Superimposition of 1H-15N
NMR HSQC spectra of NS5A-D3(359–447) in the absence of (blue) and in the presence of unlabeled VAPB-MSP(1–125) at molar ratios of 1:1 (green)
and 1:2 (red) (D3/MSP). (c). Residue-specific 13Ca conformational shift of NS5A-D3(359–447) derived from analysis of triple-resonance heteronuclear
NMR spectra including HNCACB and CBCA(CO)NH. Red bars are used to indicate residues undergoing significant shift or disappearance of their HSQC
peaks in the presence of unlabeled VAPB-MSP(1–125) at a molar ratio of 1:2 (D3/MSP).
doi:10.1371/journal.pone.0039261.g004
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We also assessed the binding of D3B to the ALS-causing T46I

mutant, which we previously demonstrated to have a reduced

affinity to EphA4. Remarkably, as shown in Figure 9b, even at a

molar ratio up to 1:6 (T46I/D3B), only a small set of T46I

HSQC peaks were found to shift slightly of very small amplitude.

As the shift tracings remain highly unsaturated, it is impossible to

fit out the CSD tracings to obtain Kd values. Nevertheless, the

results clearly indicate that T46 does play an important role in

binding to NS5A-D3 as also reflected by the docking model.

Discussion

Formation of the host membrane associated replication

complexes appears to be a common property for RNA viruses

such as HCV [74,75]. Although currently little is known about the

structure of the complexes, it is anticipated that studies of RNA

virus replication machineries will have a critical impact on

antiviral drug development due to their specific roles in virus

replication [74,75]. On the other hand, despite being reported 8

years ago, there has been no in vitro structural and binding

characterization on the NS5A-VAP interactions to date. There-

Figure 5. Conformational and binding properties of NS5A-D3 fragments. (a). Amino acid sequence of NS5A-D3A, D3B and D3C. (b). Far-UV
CD spectra of NS5A-D3 (blue), D3A (red), D3B (brown) and D3C (green). (c). Superimposition of 1H-15N NMR HSQC spectra of NS5A-D3A(394–447) in
the absence of (black) and in the presence of unlabeled VAPB-MSP(1–125) at molar ratios of 1:1 (green) and 1:2 (red) (D3A/MSP). (d). Residue-specific
Ha conformational shift of NS5A-D3A(394–447) derived from analysis of three-dimensional 15N-edited HSQC-TOCSY spectrum. Red bars are used to
indicate residues undergoing significant shift or disappearance of their HSQC peaks in the presence of unlabeled VAPB-MSP(1–125) at a molar ratio of
1:2 (D3A/MSP). (e). Characteristic NOE connectivities of NS5A-D3A(394–447) defining secondary structures derived from analysis of three-dimensional
15N-edited HSQC-NOESY spectrum.
doi:10.1371/journal.pone.0039261.g005
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fore, to bridge the gap, we initiated a systematic investigation on

the NS5A-VAPB interactions by first dissecting both VAPB and

NS5A proteins into 14 domains/fragments, followed by extensive

structural and binding characterizations with heteronuclear NMR

spectroscopy which is powerful in detecting even very weak

binding. Our study reveals that the C-terminal half of NS5A-D3 is

indeed capable of binding to VAPB-MSP, with an average

dissociation constant (Kd) of ,5 mM.

CD and NMR characterizations demonstrate that NS5A-D3 of

the Singapore HCV isolate is also highly disordered without any

tight tertiary packing and stable secondary structure. Nevertheless,

it is active in binding to the VAPB-MSP domain, thus

demonstrating that it is an intrinsically unstructured domain. On

the other hand, by analyzing triple-resonance heteronuclear NMR

spectra, NMR assignments have been achieved, which allows

identification of helical conformations weakly populated over

NS5A-D3. Importantly, the NS5A-D3 residues critical for binding

to VAPB-MSP have been mapped out to be clustered over three

relatively discrete regions, which is further confirmed by three

truncated fragments. Remarkably, finally we obtain a 41-residue

fragment D3B, which has N-terminal 48 residues deleted but

retains almost the same binding affinity and mode as the 89-

residue D3.

Very surprisingly, even upon binding to the VAPB-MSP

domain, D3 peptides are still lacking of very tight tertiary

packing required to manifest large spectral dispersions of the

HSQC spectrum. In fact, several years ago, we have found a

similar phenomenon on a transcriptional activator ApLLP for

long-term memory formation, which is not only highly

disordered in the free state, but intriguingly remains largely

unstructured even upon forming a complex with DNA [67].

Similarly, no high-quality ITC profile could be obtained on the

ApLLP-DNA interaction. Now it is starting to be recognized that

this phenomenon in fact exists in a large number of protein-

protein, protein-DNA complexes involved in intrinsically un-

structured proteins, thus being designated as ‘‘Fuzzy Complex’’

[68,69]. The fuzzy or dynamic property for the NS5A-VAPB

complex is most likely to result from the fact that even in D3B,

many residues are not significantly engaged in binding to VAPB-

MSP and thus remain flexible (Figure 5a). Here it is tempted to

speculate that the dynamic feature for the NS5A-VAPB

interaction may in fact facilitate the functional actions of the

HCV RNA replication machinery which is expected to undergo

dynamic assembly and disassembly.

Previously we have determined the crystal structure of the

human VAPB-MSP domain but in the present study, we failed to

obtain the co-crystal of the MSP-D3B complex, probably due to

the relatively-weak binding affinity or/and dynamic nature of

this fuzzy complex. The crystallization may be significantly

interfered by the presence of large regions that remain disordered

in the fuzzy complexes. Nevertheless, by use of NMR spectros-

copy, we have successfully mapped out both NS5A and VAPB

residues key for forming the NS5A-VAPB complex, which thus

allow the construct of a complex model by use of a well-

established NMR constraint-based docking procedure. In the

complex, the NS5A-D3 binds to one side of the MSP fold which

was also characterized to interact with FFAT-containing peptides

and Eph receptor [44,46,51]. More precisely, three D3 regions

appear to bind three MSP surface pockets respectively. Pockets 1

and 2 are electrostatically positive while pocket 3 is relatively

Figure 6. NMR identification of VAPB-MSP residues binding to NS5A-D3 fragments. Residue-specific changes of integrated 1H and 15N
chemical shifts of VAPB-MSP(1–125) in the presence of unlabeled NS5A-D3 (a), D3A (b), D3B (c) and D3C (d) at a molar ratio of 1:4 (MSP/D3
fragments). Significantly-shifted residues with CSD (chemical shift difference) .1 standard deviations are colored in red and labeled while two
regions with disappeared HSQC peaks are indicated by red arrows. (e). Crystal structure of the human VAPB-MSP(1–125) we previously determined
(ref. 46) with disappeared (red) and significantly-shifted (yellow) residues mapped out. Two ALS-causing mutants T46I and P56S are displayed in
spheres. (f). the FFAT-motif containing ORP1 peptide is further displayed in the structure (ref. 44).
doi:10.1371/journal.pone.0039261.g006

Figure 7. Fitting of chemical shift tracings to obtain dissociation constants (Kd). Experimental (dots) and fitted (lines) values are shown for
the integrated 1H and 15N chemical shift changes of three representative residues: Gln6 (a), Val90 (b) and Asp116 (c) of VAPB-MSP(1–125) induced by
gradual addition of NS5A-D3 (red), D3A (green), D3B (purple) and D3C (blue).
doi:10.1371/journal.pone.0039261.g007
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electrostatically neutral. Interestingly, ALS-causing mutation

P56S is located in the pocket 1 while T46I sites in between

pocket 1 and pocket 2.

We experimentally demonstrated that the NS5A-D3 indeed has

overlapped binding regions with EphA4 on VAPB-MSP, and

ALS-causing mutation T46I dramatically abolishes the binding

affinity of the MSP domain to NS3A-D3. This observation may

rationalize a recent report that a chronic HCV patient surprisingly

developed an ALS-like syndrome [76,77]. We speculate here that

in some chronic HCV patients, the NS5A protein may abnormally

accumulate which consequently perturbs the physiological func-

tions of the VAP proteins, in a similar way as the T46I mutation,

which does not severely disrupt the MSP structure but consider-

ably reduces the binding affinity to EphA4 [51]. As such, our

present results strengthen our previous speculation that the VAPB-

MSP domain might be a key convergent point for signaling

pathways important for ALS pathogenesis [51]. In the future, it

would be of significant interest to explore the design of peptides/

small molecules to target the intrinsically unstructured NS5A-D3

or/and its well-folded binding partner, VAPB-MSP as previously

demonstrated on other systems [78,79].

Materials and Methods

Cloning, expression and purification of VAPB/NS5A
domains/fragments

As summarized in Table S1, in the present study we have

cloned four human VAPB and 10 HCV NS5A dpmains/

fragments. Briefly the DNA fragment encoding the human

VAPB(1–195) was amplified from HeLa cell cDNA library by

using two designed primers, which was subsequently cloned into a

modified pET32a vector (Novagen). Subsequently the VAPB-

MSP(1–125), VAPB(1–150) and VAPB-CC(151–195) were ampli-

fied by using designed primers and sub-cloned in modified

pET32a vector. Similarly DNA fragments encoding different

NS5A domains/fragments were amplified from cDNA for HCV

genotype 1b strain S1 and strain Con1, which were sub-cloned in

expression vectors (Table S1).

All the expression vectors were transformed into Escherichia coli

BL21 (DE3) Star (invitrogen) cells. For expression of recombinant

proteins, cells were grown in Luria-Bertani (LB) medium in the

presence of ampicillin (100 mg/ml) at 37uC to reach the

absorbance of 0.6 at 600 nm and subsequently induced with

respective optimized IPTG concentrations. Harvested cells were

resuspended and lysed by sonication in lysis buffer (50 mM Tris,

500 mM NaCl, 10% glycerol, 20 mM imidazole, 10 mM 2-

mercaptoethanol, pH 7.5) containing protease inhibitor cocktail

(Roche). His-tagged proteins were purified by Ni2+-affinity

chromatography (Qiagen) while GST-fused proteins were purified

by affinity chromatography with glutathione-Sepharose 4B beads

(Pharmacia Biotech) under native conditions. The VAPB and

NS5A proteins were released from the fused tags by in-gel

thrombin cleavage, which were further purified either by FPLC on

Superdex 75/Superdex 200 columns (Pharmacia Biotech), or by

HPLC on a RP (reverse phase) C18 column (Vydac) (Table S1).

The production of the isotope-labeled VAPB and NS5A

domain/fragment proteins for NMR studies followed a similar

procedure except that the bacteria were grown in M9 medium

with the addition of (15NH4)2SO4 for 15N labeling and

(15NH4)2SO4/(13C)-glucose for 15N-/13C double labeling (67–

70). The purity of all protein samples was checked by the SDS-

PAGE gel and their molecular weights were verified by a Voyager

STR matrix-assisted laser desorption ionization time-of-flight-mass

spectrometer (Applied Biosystems). The identities of NS5A-D3/

Table 1. Residue-specific Dissociation Constants (Kd) for
Binding of Three D3 Fragments to MSP125 as derived from
Fitting NMR Titration Results.

D3 D3A D3B

Residues Kd (mM) Error Kd (mM) Error Kd (mM) Error

Gln6 6.8 0.6 11.5 1.7 5.5 0.8

Met89 5.2 0.6 9.9 0.9 5.3 0.7

Val90 4.6 0.7 7.2 0.6 5.0 0.5

Gln91 2.4 0.5 7.1 0.9 5.5 0.3

Asp116 6.2 0.5 10.2 0.8 5.3 0.6

Ser117

Leu119 4.5 0.6 7.7 0.9 4.6 0.6

Val122 1.7 0.4 2.4 0.3 1.6 0.6

Average 4.5 8.0 4.7

doi:10.1371/journal.pone.0039261.t001

Figure 8. Docking model of MSP-D3C complex. (a). Superimposition of three lowest energy docking models of the MSP-D3C complex. MSP
structures are colored in blue and D3C structures in pink. (b). The lowest energy docking model of the MSP-D3C complex, with disappeared and
significantly-shifted MSP residues colored in red. Three D3 regions critical for binding with MSP are displayed in spheres. (c). The lowest energy
docking model of the MSP-D3C complex, with MSP structure displayed in surface and three discrete D3 regions critical for binding with MSP are
displayed in spheres of different colors. Three MSP surface pockets are labeled as P1, P2 and P3 respectively. (d). The lowest energy docking model of
the MSP-D3C complex, with the MSP electrostatic potential displayed, with blue, red and grey corresponding to positive, negative and neutral
potential values. (e). Hydrogen bonds between D3C and MSP in the complex. Only the residues having the interfacial hydrogen bonds are displayed
in sticks and the hydrogen bonds are indicated by the red dashed lines.
doi:10.1371/journal.pone.0039261.g008
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D3A and VAPB(1–125)/(1–150) were further confirmed by NMR

assignments. The concentration of protein samples was deter-

mined by the spectroscopic method in the presence of denaturant

[70–73,80].

Circular dichroism (CD) and NMR experiments
All CD experiments were carried out in a Jasco J-810

spectropolarimeter (Jasco Corporation, Tokyo, Japan) as previ-

ously described at 25uC [70–73]. The protein concentration is

20 mM in 2 mM phosphate buffer (pH 6.8) for all far-UV CD

experiments.

NMR samples were prepared in 10 mM phosphate buffer in the

presence of 10 mM DTT (pH 6.8). All NMR data were collected

at 25uC on an 800-MHz Bruker Avance spectrometer equipped

with a shielded cryoprobe as described before [70–73]. For HSQC

characterization, samples were prepared at a protein concentra-

tion of 100 mM. For sequential assignments of NS5A-D3, triple-

resonance NMR experiments including HNCACB and CBCA(-

CO)NH were acquired on a double-labeled sample at a protein

concentration of ,300 mM while for sequential assignments of

NS5A-D3A, three-dimensional heteronuclear NMR experiments

including HSQC-TOCSY and HSQC-NOESY were acquired on

a 15N-labeled sample at a protein concentration of ,500 mM.

NMR data were processed with NMRpipe [81] and analyzed with

NMRview [82].

ITC and NMR characterization of binding interactions
ITC experiments were performed using a Microcal VP ITC

machine as we previously conducted [72,73]. Titrations of NS5A

peptides to the VAPB-MSP domain were conducted in 10 mM

phosphate buffer at pH 7.5. Usually the VAPB-MSP samples were

placed in the cell while the NS5A peptides were taken in syringe.

The samples were degassed for 15 min to remove bubbles before

titrations were initiated.

For NMR HSQC characterization of the binding interactions

between NS5A and VAPB fragments/domains, two-dimensional
1H-15N HSQC spectra of the 15N-labeled proteins were acquired

at a protein concentration of 50 mM in the absence or presence

of the unlabeled binding partners at different molar ratios. By

superimposing the HSQC spectra at different molar ratios, the

shifted or disappeared HSQC peaks could be identified and

further assigned to the corresponding residues as we previously

described [51,67–70]. The degree of perturbation was reflected

by an integrated chemical shift difference (CSD) calculated by

the formula ((D1H)2+(D15N)2/5)1/2 [73]. The CSD tracings were

fitted by using the one binding site model [72] to obtain residue-

specific dissociation constants (Kd); which are summarized in

Table 1.

Molecular docking of the D3B-MSP complex
The models of the complex structure between NS5A-D3B and

VAPB-MSP were constructed as we previously described on

other systems [51,72,73], by use of the HADDOCK software

Figure 9. NS5A competes with EphA4 in binding with MSP. (a). Superimposition of 1H-15N NMR HSQC spectra of VAPB-MSP(1–125) saturated
with the pre-existence of D3C at a molar ratio of 1:2 (MSP/D3C), in the absence of (blue) and in the presence of 181-residue EphA4 ligand binding
domain at a molar ratio of 1:10 (red) (MSP/EphA4). Significantly-shifted residues are labeled. (b). Crystal structure of the human VAPB-MSP(1–125)
with significantly-shifted residues displayed in red spheres. (c). Residue-specific changes of integrated 1H and 15N chemical shifts of VAPB-MSP(1–125)
T46I mutant in the presence of unlabeled NS5A-D3C at a molar ratio of 1:6 (MSP/D3C). Significantly-shifted residues with CSD (chemical shift
difference) .1 standard deviation are colored in red.
doi:10.1371/journal.pone.0039261.g009
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[83] in combination with CNS [84], which makes use of

chemical shift perturbation data to derive the docking while

allowing various degrees of flexibility. The docking procedure

was performed by three steps as follows: first, randomization and

rigid body energy minimization; second, semi-flexible simulated

annealing; and third, flexible explicit solvent refinement. Briefly,

all D3B (Figure 5a) and MSP (Figure 6c) residues with HSQC

peaks disappeared or significantly shifted were set to be ‘‘active’’

residues, whereas neighbors of active residues were defined as

‘‘passive’’ residues according to HADDOCK definition. The

crystal structure of VAPB-MSP (3IKK) we previously determined

[46] was used here while an extended D3B structure was utilized

for docking. One thousand structures were generated during the

rigid body docking, and the best 50 structures were selected for

semi-flexible simulated annealing, followed by water refinement.

Three structures with the lowest energies were selected for

detailed analysis and display by the PyMOL molecular graphics

system (W. L. DeLano, DeLano Scientific LLC, San Carlos, CA).
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