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Abstract

Thrips palmi is a widely distributed major agricultural pest in the tropics and subtropics,

causing significant losses in cucurbit and solanaceous crops through feeding damage and

transmission of tospoviruses. Thrips palmi is a vector of capsicum chlorosis virus (CaCV) in

Australia. The present understanding of transmission biology and potential effects of CaCV

on T. palmi is limited. To gain insights into molecular responses to CaCV infection, we per-

formed RNA-Seq to identify thrips transcripts that are differentially-abundant during virus

infection of adults. De-novo assembly of the transcriptome generated from whole bodies of

T. palmi adults generated 166,445 contigs, of which ~24% contained a predicted open read-

ing frame. We identified 1,389 differentially-expressed (DE) transcripts, with comparable

numbers up- (708) and down-regulated (681) in virus-exposed thrips compared to non-

exposed thrips. Approximately 59% of these DE transcripts had significant matches to NCBI

non-redundant proteins (Blastx) and Blast2GO identified provisional functional categories

among the up-regulated transcripts in virus-exposed thrips including innate immune

response-related genes, salivary gland and/or gut-associated genes and vitellogenin

genes. The majority of the immune-related proteins are known to serve functions in lyso-

some activity and melanisation in insects. Most of the up-regulated oral and extra-oral diges-

tion-associated genes appear to be involved in digestion of proteins, lipids and plant cell wall

components which may indirectly enhance the likelihood or frequency of virus transmission

or may be involved in the regulation of host defence responses. Most of the down-regulated

transcripts fell into the gene ontology functional category of ‘structural constituent of cuticle’.

Comparison to DE genes responsive to tomato spotted wilt virus in Frankliniella occidentalis

indicates conservation of some thrips molecular responses to infection by different tospo-

viruses. This study assembled the first transcriptome in the genus Thrips and provides

important data to broaden our understanding of networks of molecular interactions between

thrips and tospoviruses.
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Introduction

Thrips belong to the family Thripidae in the order Thysanoptera which contains nearly 7700

described thrips species [1]. However, less than 1% of them are considered as agricultural pests

that cause crop damage directly by feeding and indirectly by transmitting tospoviruses [2]. At

present, 15 thrips species have been reported to transmit tospoviruses [3]. Among them,

Frankliniella occidentalis is world-wide the most devastating invasive species, with a broad

host range, transmitting multiple tospoviruses (genus Orthotospovirus, family Tospoviridae,
Order Bunyavirales) including the economically important tomato spotted wilt virus (TSWV)

[4]. Melon thrips (Thrips palmi) originated in Southeast Asia [5] and have become a serious

invasive pest in tropical and subtropical countries [6]. Several tospoviruses are known to be

transmitted by T. palmi including calla lily chlorotic spot virus [7], groundnut bud necrosis

virus [8], melon yellow spot virus [9], tomato necrotic ringspot virus [10], watermelon bud

necrosis virus [11] and watermelon silver mottle virus [12]. In Australia, capsicum chlorosis

virus (CaCV) is transmitted by T. palmi [13].

Thrips transmit tospoviruses in a persistent and propagative mode by which virus circulates

and replicates within the thrips body [3]. Thrips acquire virus while feeding on infected plant tis-

sues—most efficiently as first instar larvae–and the virus is retained during larval and pupal

molts [14]. While viruliferous late second instar larvae can inoculate plants, adults are vector-

competent only if the virus was acquired during the larval stages [15]. After ingestion, virions

travel through the esophagus to the midgut—the primary site of virus entry—where they repli-

cate and then disseminate and replicate in the surrounding visceral muscle tissue [16]. Virus

also replicates in the primary salivary glands (PSG) of thrips [17]. Virus is then transmitted from

salivary glands to plants during thrips feeding. Until recently, there was no evidence to indicate

the exact infection route of TSWV from midgut to PSG. However, a recent study revealed pro-

gression of TSWV infection in larvae of F. occidentalis spread from midgut to ligaments and

tubular salivary glands (TSG), where efferent salivary duct and filament structures connect TSG

and PGS [18]. These authors further showed that during thrips development, the primary site of

tospovirus replication shifts from midgut and TSG in larvae to PSG in adult thrips.

Tospoviruses have been shown to alter thrips vector performance and behavior both

directly and indirectly. Direct negative effects on thrips reproductive potential and develop-

mental time have been reported from TSWV-F. fusca [19, 20] and impatiens necrotic spot

virus-F. occidentalis [21] interactions, however experimental evidence indicates no apparent

negative effect of TSWV infection on life history traits of F. occidentalis [22, 23] or watermelon

silver mottle virus on T. palmi [24]. Effects of TSWV infection on F. occidentalis have been

documented, including enhanced reproduction [25], reduced developmental time [26, 27],

and altered feeding behaviors [28]. Predictive models developed to study dynamics in virus

spread suggest that TSWV infection may change thrips preferential feeding behavior and

enhance survival [29]. Indirect effects include plant-mediated effects of virus infection on the

performance, development, fecundity, survival and host preference of thrips vectors [3]. In

general, the majority of tospovirus-thrips interactions report no apparent negative effects on

the fitness of the vector. One hypothesis is that thrips mount molecular defense responses

against virus infection that minimize cytopathological effects that could, if unharnessed, nega-

tively impact their development and survival.

Recently, transcriptomes of two Frankliniella species, F. occidentalis and F. fusca, in

response to tospovirus infection were reported [30, 31]. Both studies analysed larval, pupal and

adult stages for whole-body responses to TSWV infection using high throughput sequencing

(RNA-Seq). Gene ontologies that infer processes and functions associated with host defence,

insect cuticle structure and development, metabolism and transport were affected by TSWV
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infection in F. occidentalis [30]. In F. fusca, TSWV-responsive genes were similarly associated

with intracellular transport, development and immune responses [31]. Furthermore, the reper-

toire of responsive genes varied between developmental stages in both systems. In this study,

we aimed to investigate a different thrips-tospovirus system involving the genus Thrips for the

first time, to broaden our understanding of the molecular responses of thrips vectors exposed

to tospovirus infection. We identified transcriptome-wide responses of T. palmi to CaCV

infection, some of which were conserved in other thrips species in response to infection with

different tospoviruses. This knowledge may be useful in future studies to identify molecular

targets to interfere with tospovirus transmission by thrips.

Materials and methods

Maintenance of T. palmi colonies

A T. palmi colony derived from a pure culture maintained at the Vector Laboratory, National

Taiwan University, Taipei, Taiwan was reared on bean (Phaseolus coccineus) seedlings follow-

ing conditions previously established [24]. Oviposition of female thrips was enhanced by

allowing them to feed on pollen (Hung Gee, Taiwan) in a sealed Petri plate containing a bean

leaf. Cohorts of L1 larvae were transferred into a 2-L beaker enclosed with a fresh bean seed-

ling and reared until adulthood in a growth cabinet at 25˚C with 70% relative humidity and 16

h/8 h light/dark photoperiod.

To generate populations of CaCV-exposed and non-exposed adult T. palmi, larvae were

given a 24-h acquisition access period (AAP) on CaCV-infected and non-infected Chenopo-
dium quinoa leaves. Briefly, 5–6 weeks old C. quinoa plants were mechanically inoculated with

a crude extract of CaCV-infected symptomatic C. quinoa leaves and kept in a growth cabinet

at 25˚C with 16 h/8 h light/dark photoperiod until symptom development. Cohorts of larvae

(<12 h) were obtained from thrips that fed on healthy bean leaves. Batches of 100 larvae were

transferred into Petri plates each containing a C. quinoa leaf placed on wet tissue paper. Larvae

were given 24 h AAP on CaCV-infected leaves that developed chlorotic lesions seven days

after inoculation. As control, larvae were allowed to feed on uninfected leaves. At least 1000

CaCV-exposed and non-exposed larvae were transferred to fresh bean seedlings contained in

2-L beakers and reared until adulthood in separate growth cabinets at 25˚C with 70% relative

humidity and 16 h/8 h day/night. Infection status of batches of virus-exposed and non-exposed

thrips for the presence or absence of CaCV was determined by reverse transcription polymer-

ase chain reaction (RT-PCR) using RNA extracted from sub-samples of each batch of thrips.

Total RNA extraction and library preparation

Virus-exposed and non-exposed adult thrips were collected separately as batches of 100 indi-

viduals into 1.5 ml microfuge tubes to obtain three biological replicates for the two treatments.

All samples were immediately processed independently. Total RNA was extracted using TRI-

zol reagent (Life Technologies) following manufacturer’s instructions. RNA extracts were

treated with DNase using Turbo DNA-free kit (Ambion, Thermo Fisher Scientific) following

manufacturer’s protocol. RNA was quantified using NanoDrop 3000 (Thermo Fisher Scien-

tific). CaCV infection in all RNA samples was assessed using One-step RT-PCR kit (Gene-

Mark) with CaCV-N gene-specific primers [CaCV-N-F1: ATGTCTAACGTCAGGCAACTT and

CaCV-N-R1: CACTTCTATAGAAGTACTAGG [32]. Total RNA (2.5–3.0 μg) from three biologi-

cal replicates of virus-exposed and non-exposed T. palmi was shipped on dry ice from Taiwan

to the Australian Genome Research Facility (AGRF, Melbourne) for cDNA library prepara-

tion, Illumina sequencing, transcriptome assembly and expression profiling. Rest of the total

RNA was stored at -80˚C until quantitative PCR (qPCR) analysis.

Thrips palmi transcriptome in response to capsicum chlorosis virus
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Illumina sequencing

Illumina cDNA libraries were prepared from total RNA by AGRF following the protocols for

TruSeq RNA v2 (2014). Briefly, mRNA in total RNA preparations was enriched by using oligo

dT beads prior to library preparation. Purified mRNA was then fragmented with a combina-

tion of divalent cations and heat and cDNA was synthesized. First strand cDNA was synthe-

sized by random priming. Six cDNA libraries were prepared from poly(A) mRNA of three

replicates each of virus-exposed and non-exposed adult thrips. The six libraries were multi-

plex-sequenced in one lane of an Illumina HiSeq 2000 sequencer to generate 100-bp paired-

end reads using bclsfastq 2.17.1.14 pipeline. Quality control (QC) of resulting sequence reads

was done according to AGRF QC standards, Phred 30 across all samples for 100 bp reads [33,

34]. High quality reads were further screened for the presence of any Illumina adapters/over-

represented sequences and CaCV sequences that were then removed.

De novo assembly of T. palmi transcriptome

High quality reads from the six libraries were enriched as described below prior to de novo
assembly of T. palmi reference transcriptome. Random errors in Illumina sequencing were

corrected by Recorrector software using a k of 31 [35] followed by adapter trimming using

Trimmomatic with Phred cut-off� 2 [36]. Following enrichment, reads were de novo assem-

bled using Trinity (v2.2.1), specifying the library type [37]. Quality of the de novo assembly

was evaluated using TransRate by mapping all reads to the assembly which gave 0.46 optimal

score with 0.38 optimal cut-off [38].

Differential expression analysis

To determine differentially expressed (DE) transcripts in response to exposure to CaCV, reads

from 6 Illumina libraries were individually mapped to the de novo assembled T. palmi refer-

ence transcriptome using TopHat (v2.0.14) software [39]. Number of Illumina reads that

mapped to each contig of the reference transcriptome were estimated and counts were sum-

marized at gene level across the three biological replicates using the featureConts (v1.4.6-p5)

[40] utility of the Subread package [41]. Transcripts were assembled with the Stringtie tool

v1.1.4 utilizing the reads alignment and in a de novo fashion [42].

DE transcripts between replicates of virus-exposed and non-exposed thrips were deter-

mined using Cufflinks tools [39]. Expression values were normalized as read counts per gene

per sample with fragments per kilobase of exon per million mapped reads (FPKM). Signifi-

cantly DE genes were identified using a binary statistical assessment. Briefly, a p-value was cal-

culated for each gene in each sample and each comparison. Then p-values were corrected for

multiple tests and comparisons (q-value) using false discovery rate (FDR). In this study, a FDR

0.05 cut off was used to determine p-value threshold. The correlation between virus-exposed

and non-exposed transcripts was determined by calculating a Pearson correlation coefficient

value [43].

Provisional functional annotation of DE transcripts

Stringent filtering criteria were used to select highly significant DE transcripts for functional

annotation. DE transcripts were selected by setting a cut off q-value < 0.01, log2-fold change

(FC) > 1 and FPKM > 10, and were classified into functional categories using Blast2GO

(B2GO) with default parameters [44]. Initially, transcripts were searched for sequence similari-

ties in the NCBI non-redundant (nr) database using Blastx algorithm. Then transcripts were

annotated by retrieving gene ontology (GO) terms associated with BLAST hits using GO

Thrips palmi transcriptome in response to capsicum chlorosis virus
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databases in NCBI, nr reference protein database including PSD, UniProt, Swiss-Prot,

TrEMBL, RefSeq, GenPept and DBXRef. Annotations were further improved by merging

InterPro protein signatures and fine-tuned by using Annex-based GO term augmentation fol-

lowed by removal of First Level GO terms. Enzyme codes were assigned for annotations using

B2GO to identify which biological pathways are effected by DE enzymes and these were

mapped to the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database [45].

Validation of RNA-Seq expression data with real-time RT-qPCR of selected

transcripts

RNA-Seq expression levels of six randomly selected transcripts were validated using RT-

qPCR. Actin, β-tubulin and 40S ribosomal protein S14 (RPS 14) were selected as non-DE

genes from the dataset as internal references. Primers for target and reference genes were

designed using Primer3 [46, 47]. Primer sequences are listed in S1 Table. Complementary

DNA was synthesized using oligo dT primers and Superscript III First-strand cDNA synthesis

kit (Life Technologies) using the same total RNA preparations (DNase-treated) used for Illu-

mina sequencing. SensiFAST SYBR No-ROX Kit (Bioline) was used in a Rotor-Gene Q real-

time PCR cycler (Qiagen) with 20 μl volumes containing 1 μl (10 ng) cDNA, 0.8 μl of each

primer (10 μM), 7.4 μl of DNase- and RNase-free water and 10 μl of 2x SYBR No-ROX mix.

Reaction conditions were 2 min at 95˚C followed by 40 cycles of 95˚C for 5s, 60˚C for 10s

and 72˚C for 20s. Experimental design and subsequent data analysis methods were adopted

from a previously described protocol [48]. Three biological replicates and two technical repli-

cates were used per sample. Since initial experiments showed stable gene expression for all ref-

erence genes across all samples and treatments, actin was selected for future experiments.

Real-time PCR amplification efficiencies of target genes and actin were determined by the

standard curve method using a ten-fold dilution series of cDNA (from 50 ng to 0.001 ng).

PCR efficiencies were calculated from the slopes of standard curves. Threshold cycle (Ct)

number was determined from log scale amplification curves. Reaction efficiencies for target

and reference genes showed 95–100% efficiency for 1–50 ng of cDNA template input. Hence,

we used 10 ng of cDNA template for further experiments. For each reaction, no-template and

no-RT control samples were included. Relative expression levels of target genes were calcu-

lated as 2−(Ct of target−Ct of reference) [49]. Fold changes in gene expression between treatment

and control were calculated using the 2−ΔΔCtmethod; 2−(ΔCt of treatment−ΔCt of control) [49]. For

validation, qPCR derived log2-fold changes were compared with log2-fold values obtained by

RNA-Seq analysis. Quantitative PCR results were compared with RNA-Seq data and Pearson

correlation coefficient R and associated p values were calculated [43].

Results

De novo transcriptome assembly and differential gene expression

Thrips palmi transcriptome was de novo assembled using 243,546,011 paired-end reads of 100

bp (48.71 Gb of sequence) from three biological replicates of cDNA libraries consisting of

virus-exposed and non-exposed thrips. The raw sequence read data generated from the six

samples have been deposited in the NCBI Sequence Read Archive as BioProject PRJNA498538

with accession numbers SAMN10316162—SAMN10316167. Per base sequence quality of all

six libraries was >93% bases above the Phred quality score of 30. Assembly of high quality

reads generated 166,445 contigs with an average length of 918 bp and an N50 of 2114 bp

(Table 1). Cleaned reads from individual libraries were aligned to the de novo assembled con-

tigs to estimate read counts that mapped to contigs. All six libraries aligned to the reference

Thrips palmi transcriptome in response to capsicum chlorosis virus
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transcriptome with at least 75% concordant pair alignment rate. Quality assessment of Cuf-

flinks data showed fairly good quality in all the six libraries. Collectively, there was a positive

correlation (Pearson correlation, rp = 0.83, P< 0.0001) between the normalized read counts

(FPKM) of the virus-exposed and non-exposed treatments for transcripts that exhibited

greater than 2-fold change in expression with a q-value < 0.01, and the virus treatment tended

to have a larger range of FPKM values, indicating significant perturbation (Fig 1). For strin-

gency, a transcript was considered DE when the log2-fold change was>1.0, the q-value

was< 0.01, and FPKM>10 for at least one of the treatments (CaCV-exposed or non-exposed)

in the pairwise comparison. With these criteria, we identified 1,389 DE transcripts, of which

708 were up-regulated and 681 were down-regulated in virus-exposed thrips.

Annotation of DE transcripts

Of the 1,389 identified DE transcripts, 430 (60.7%) up-regulated and 385 (56.5%) down-regu-

lated transcripts matched sequences in the NCBI non-redundant sequence database. Among

the DE transcripts that had Blastx hits, 316 up-regulated and 287 down-regulated transcripts

were annotated. Forty-five GO terms categorized into biological process (BP), molecular func-

tion (MF) and cellular component (CC) were assigned for DE transcripts at level 2. The most

dominant GO terms were ‘metabolic process’ in BP domain, ‘peptidase activity’ in MF domain

and ‘cytoplasm’ and ‘cytoplasm part’ in CC domain (Fig 2). Within the BP category, GO terms

Table 1. Summary statistics for T. palmi de-novo assembled transcriptome.

Assembly feature Statistic

Total assembled contigs 166,445

Total assembled bases 152,899,637

Mean contig length 919 bp

N 50 contig length 2,114 bp

No. contigs with predicted ORFs 39,449

No. contigs� 400 bp with predicted ORFs 32,262

Blastx matches (E � 10−5) 22,582

B2GO annotations 10,407

https://doi.org/10.1371/journal.pone.0208538.t001

Fig 1. Comparison of normalized read counts (FPKM) between CaCV-exposed and non-exposed adults of Thrips
palmi. Each point represents one transcript with log2 fold change> 1 in relative abundance between the two

treatments and a q-value< 0.01. rp = Pearson’s correlation coefficient.

https://doi.org/10.1371/journal.pone.0208538.g001
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associated with regulation of metabolic processes, signal transduction and cell communication

were all down-regulated, whereas lipid localization, carbohydrate/derivative metabolic process,

phosphorous metabolic process, single organism transport and biosynthetic process were all

up-regulated. Other transcripts that fell into GO terms ‘transport’, ‘metabolic processes’, ‘cellu-

lar biosynthetic process’ and ‘oxidation-reduction’ had both up- and down-regulated tran-

scripts. In the MF category, transcripts assigned with GO terms ‘nucleic acid/nucleotide

binding’ and ‘nucleoside phosphate binding’ were all down-regulated, whereas ‘lipid transport

activity’ and ‘hydrolase activity’ were all up-regulated. In the CC category, GO terms such as

‘integral component of membrane’, ‘cytoskeletal part’ and ‘intracellular non-membrane-

bounded organelle’ were among the down-regulated GO terms and cytoplasm and cytoplasmic

part were among the up-regulated GO terms. Mapping enzymes into KEGG pathways [45]

revealed the most enriched pathways among the up-regulated transcripts were ‘biosynthesis of

antibiotics’ and ‘purine metabolism’ with 10 enzymes placed in each. Of the down-regulated

transcripts the most enriched pathways were ‘purine metabolism’, ‘tyrosine metabolism’ and

‘isoquinoline alkaloid biosynthesis’ with 3 enzymes placed in each.

Following GO term assignment, 186 up-regulated DE transcripts could be categorized into

three groups that may infer roles in innate immunity, salivary gland processes, and thrips fit-

ness and fecundity based on Blastx descriptions and GO terms (Table 2). The majority of the

most highly down-regulated transcripts had Blastx annotations for structural constituents of

the cuticle (Table 3). In addition, there were chitinases and nucleic acid binding genes among

the down-regulated transcripts.

Real-time quantitative PCR

Fold changes of six randomly selected DE transcripts among the annotated genes were vali-

dated by real-time qPCR using the same total RNA preparations used for Illumina library

Fig 2. Number and functional categories of gene ontology terms assigned for up-regulated and down-regulated

transcripts of CaCV-exposed Thips palmi at level 2.

https://doi.org/10.1371/journal.pone.0208538.g002
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Table 2. List of significantly up-regulated DE (q< 0.01, log2-FC> 1.0, FPKM>10) transcripts categorized based on Blastx descriptions and GO terms that are pre-

dicted to be associated with innate immunity, salivary glands and fitness and fecundity in CaCV-exposed and non-exposed Thrips palmi transcriptome.

Putative pathway Blastx description

(no. of transcripts)

FPKM

(non-virus-

exposed)

FPKM

(virus-

exposed)

log2-

FC

GO term Putative function

Cellular immunity

Lysosome Cathepsin B (10) 40.9–501.4 166–1188.8 1.0–

2.0

Viral entry into host cells, Proteolysis,

Endopeptidase activity, Lysosome

Innate immunity [50]

Lipase 1 (4) 3.2–33.6 20.7–82.5 1.3–

2.7

Hydrolase activity, Lipid metabolic process,

Membrane

Antiviral [51], innate

immunity [52]

Lysosomal aspartic protease

(3)

316.5–360.9 934.4–1127.5 1.6 Proteolysis, Lysosome Innate immunity [53]

Lysozyme C (2) 37.2–341.7 115–784.3 1.2 Lysozyme activity Innate immunity [54–56]

Acid-phosphatase-1 8.4 20.8 1.3 Acid phosphatase activity Antimicrobial [57]

Beta mannosidase 4.3 10.6 1.3 CHO metabolic process Innate immunity [58]

Melanisation Phenoloxidase 2 (6) 2.3–42.5 10.0–91.0 1.0–

2.3

Melatonin encapsulation of foreign target,

L-DOPA monooxygenase activity, Defence,

Oxidation-reduction

Innate immunity [59]

Phenoloxidase subunit A3 16.4 51.8 1.7 Oxidation-reduction Innate immunity [59]

Serine protease ester-like 14.9 47.8 1.7 Proteolysis, Melanisation defence response Innate immunity [60],

Salivary gland [61]

Glucose dehydrogenase

[quinone] (9)

5.2–77.8 12.8–193.4 1.0–

1.6

Oxidation-reduction process Innate immunity [62]

Poly(U)-specific

endoribonuclease

homologue (3)

93–11.0 31.7–38.2 1.8 Hydrolase activity Innate immunity [63]

Laccase-5 isoform X1 19.4 61.5 1.7 Oxidation-reduction process Innate immunity [64, 65]

Troponin isoform 1 like (2) 13.7–65.8 28.4–208.1 1.0–

1.6

Protein binding, Calcium binding Innate immunity [66]

Serine protease 13 143.0 354.3 1.3 Proteolysis, Serine-type peptidase activity Innate immunity [67]

Humoral immunity

Complement and

coagulation cascades

Carboxypeptidase B like (3) 4.5–146.3 27.8–328.0 1.3–

3.3

Proteolysis, Metallo-carboxypeptidase Innate immunity [68]

Coagulation factor ix 11.6 31.0 1.4 Zymogen activation, Extracellular exosome Innate immunity [69]

Limulus clotting factor C

like

11.1 31.6 1.5 Protein binding Innate immunity [70]

Immune system pathway

Toll Defensin 2 10.4 47.2 2.2 Defence response Innate immunity [65]

Gram-negative bacteria-

binding 3-like

132.8 469.8 1.8 CHO binding Innate immunity [71]

Serine protease 44 5.9 18.9 1.7 Proteolysis, Serine-type peptidase activity Innate immunity [72, 73]

Antigen processing

and presentation

70 kDa heat shock partial 20.2 54.7 1.4 ATP binding Antiviral [74]

Heat shock 70 a1 partial 54.7 113.0 1.0 ATP binding, Extracellular exosome Antiviral [74]

Heat shock cognate 71 31.7 90.6 1.1 ATP binding Antiviral [55]

Other innate immunity-related genes

Serine proteases Serine protease (4) 15.3–95.8 31.4–218.7 1.0–

1.7

Proteolysis, Serine-type peptidase activity Innate immunity [75]

Serine protease 12 -like (3) 4.2–37.8 13.0–109.9 1.6 Proteolysis, Serine-type peptidase activity Innate immunity [76]

Serine protease 9-like (5) 8.2–38.6 21.0–92.9 1.3–

1.5

Proteolysis, Serine-type peptidase activity Innate immunity [76]

Trypsins Trypsin-like serine protease

(3)

2.6–26.2 12.8–73.5 1.5–

2.3

Proteolysis, Serine-type peptidase activity Innate immunity [77]

Trypsin 7.6–32.0 16.1–85.0 1.0–

1.5

Proteolysis, Serine-type peptidase activity Innate immunity [78]

(Continued)
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Table 2. (Continued)

Putative pathway Blastx description

(no. of transcripts)

FPKM

(non-virus-

exposed)

FPKM

(virus-

exposed)

log2-

FC

GO term Putative function

Apolipo D-like (2) 12.8–29.1 43.6–78.3 1.4–

1.8

Pigment binding Innate immunity [56]

Chitin binding peritrophin-A domain containing

(2)

33.0–48.3 110.0–211.8 1.7–

2.1

Chitin metabolic process Innate immunity [79, 80]

Chymotrypsin protease (4) 8.7–28.5 22.1–89.1 1.3–

1.6

Proteolysis Innate immunity [81]

Cytochrome P450 4C1 (2) 3.5–10.9 15.7–31.7 1.5–

2.1

Oxidation-reduction process Immunity [82]

Cytochrome P450 6k1-like 313.5 634.1 1.0 Oxidation-reduction process Immunity [82]

Extracellular serine threonine kinase FAM20C 44.2 135.8 1.6 Protein phosphorylation Immunity [83]

Esterase FE4-like 6.0 16.7 1.5 Hydrolase activity Innate immunity [80]

Facilitated trehalose transporter Tret1-like 9.7 19.6 1.0 Transmembrane transport Immunity [84]

Elicitin 6 partial 12.2 33.0 1.4 Defence response, Chitin binding Defence response in

plants [85]

Pathogenesis-related protein 5-like 5.8 15.8 1.4 Systemic acquired resistance, Response to

virus, apoplastic

Defence response in

plants [86]

Salivary gland-associated

Lipase 3 (15) 2.5–71.8 12.3–347.4 1.0–

2.3

Lipid metabolic process, Hydrolase activity General digestion [87,

88]

Seine protease (9) 5.9–95.8 18.8–218.2 1.0–

1.7

proteolysis

Trypsin-like serine protease (3) 2.6–26.2 12.8–73.4 1.5–

2.3

Proteolysis, Serine-type peptidase activity

Carboxypeptidase (3) 4.5–146.4 27.8–328.0 1.3–

3.3

Proteolysis

Pectin lyase (4) 32.4–216.8 68.1–507.0 1.0–

1.5

Polysaccharide catabolic process Digestion of plant cell

wall [88]

β-glucosidase 2.3 12.0 2.3 Carbohydrate metabolic process

Endoglucanase (4) 66.5–152.1 166.7–339.2 1.2–

1.3

Fructose, Sucrose metabolic process, Cellulase

activity

α-amylase A-like 69.0 186.8 1.4 Sucrose metabolic process, Extracellular

exosome

Sugar metabolism [88]

Angiotensin-converting enzyme-like 8.4 17.0 1.0 Proteolysis Detoxification and

inhibition of plant

defence [89]

Phosphoribosyl formylglycinamidine synthase 24.7 56.2 1.2 'de novo' IMP biosynthetic process Advantageous for

infecting virus [90]

Uridine phosphorylase 1 isoform X1 3.1 10.9 1.8 Nucleoside metabolic process Salivary gland [91]

Pyridoxal phosphate phosphatase 8.3 46.7 2.5 Dephosphorylation, Hydrolase activity Salivary gland expressed

gene [92]

Fitness and fecundity-related genes

Vitellogenin (54) 3.1–2446.1 11–7446 1.0–

2.6

Lipid transport Reproduction [93,94],

Innate immunity [95]

Other genes

LPXTG-domain-containing cell wall anchor partial 28.0 77.7 1.5 Phosphorylation Cell surface adhesion

[96]

FC = fold change of virus-exposed treatment relative to non-virus control treatment.

https://doi.org/10.1371/journal.pone.0208538.t002
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preparation. Expression of target genes was normalized to actin internal reference gene

selected from non-DE genes in the dataset. Relative expression levels and fold changes in target

gene expression in virus-exposed and non-exposed thrips showed similar trends in qPCR and

RNA-Seq for most transcripts tested. The exception was pectin lyase transcripts that showed a

reduced ratio between virus-exposed and non-exposed expression levels in qPCR (Fig 3).

Table 3. List of significantly down-regulated DE (q< 0.01, log2-FC> 1.0, FPKM>10) transcripts in CaCV-exposed and non-exposed Thrips palmi transcriptome.

Blastx description

(no. of transcripts)

FPKM

(non-virus-

exposed)

FPKM (virus-

exposed)

log2- FC GO term

Larval cuticle A2B-like (3) 117.1–220.8 0.3–1.8 9.3–8.0 Structural constituent of cuticle

Serine protease inhibitor 3 4 isoform

X1

44.2 0.2 7.9 Extracellular space

Pupal cuticle C1B-like (2) 29.4–100.6 0.1–0.6 7.4–7.6 Structural constituent of cuticle

Endocuticle structural glyco bd-8-like 53.6 0.4 7.1 Structural constituent of cuticle

Alpha-tocopherol transfer -like 28.2 0.2 7.0 Transport

Collagen alpha-1(III) chain-like 47.2 0.5 6.5 Chitin binding, Extracellular region

Uncharacterized protein

LOC106678716

29.6 0.3 6.4 Integral component of membrane

Apolipo D-like 85.8 1.0 6.4 Pigment binding

Endocuticle structural glyco bd-4-like

(2)

29.8–203 0.4–2.8 6.2–6.3 Structural constituent of cuticle

Uncharacterized protein

LOC103510819

24.2 0.3 6.1 Integral component of membrane

Trypsin 24.2 0.4 6.0 Proteolysis; serine-type endopeptidase activity

Serine ase stubble 72.8 1.1 6.0 GTPase activity, Proteolysis, Serine-type endopeptidase activity

Probable chitinase- 3 19.4 0.3 6.0 Chitinase activity, Extracellular region

Fibroin heavy chain 32.7 0.5 5.9 Structural constituent of cuticle

Cuticle 7 49.6 0.8 5.9 Structural constituent of cuticle

Glycine-rich cell wall structural -like 37.4 0.7 5.8 Anatomical structure development

Cuticular analogous to peritrophins

1-G

12.5 0.2 5.7 Chitin binding, Chitin metabolic process, Extracellular region

Cytochrome P450 4g15 26.1 0.5 5.7 Iron ion binding, Oxidation-reduction process

Serine ase stubble isoform X2 16.7 0.4 5.5 GTP binding, Serine-type endopeptidase activity

Location of vulva defective 1 isoform

X2

12.7 0.3 5.5 Membrane, Integral component of membrane

COPII coat assembly partial 87.2 1.9 5.5 Neuropeptide signaling pathway

Sal 1 20.9 0.5 5.5 Nucleic acid binding

Glucose dehydrogenase

[quinone]-like

14.5 0.3 5.4 Oxidation-reduction process

Proclotting enzyme-like 14.8 0.3 5.4 Proteolysis, Serine-type endopeptidase activity

Larval cuticle A3A-like 24.2 0.7 5.2 Structural constituent of cuticle

Glycine-rich cell wall structural -like 12.9 0.3 5.2 Chitin-based cuticle development, Structural constituent of chitin-

based cuticle

Endocuticle structural glyco bd-

partial

168.6 4.8 5.1 Structural constituent of cuticle, Extracellular space

Osiris 14 15.2 0.4 5.1 Integral component of membrane

Cuticular precursor 24.1 0.7 5.1 Structural constituent of cuticle, Nucleic acid binding

Endocuticle structural glyco bd-2-like 33.4 1.0 5.0 Structural constituent of cuticle, Extracellular space

FC = fold change of virus-exposed treatment relative to non-virus control treatment.

https://doi.org/10.1371/journal.pone.0208538.t003
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Pearson correlation coefficient rp was 0.658 (P = 0.003) indicating a significant positive corre-

lation between the RNA-Seq and qPCR data.

Comparison of DE transcripts between T. palmi-CaCV and F. occidentalis-
TSWV interactions

A comparison of the adult transcriptomes of T. palmi—CaCV (this study) and F. occidentalis—
TSWV [30] using tblastx revealed a small number of transcripts that were differentially up-regu-

lated in both thrips—tospovirus interactions (Table 4). This suggests potentially conserved

responses by different thrips species across genera against tospoviruses from different ser-

ogroups that may be suitable targets for novel generic pest control.

The up-regulated genes common to both virus-vector interactions are associated with

innate immunity and salivary glands. Hexamerins [log2 fold change 1.81 (T. palmi) vs 4.2 (F.

occidentalis)] are multi-subunit storage proteins with phenol oxidase activity that are involved

in insect innate immunity, humoral immune response to pathogens and disease resistance

[59]. Similarly, hemocyanin subunit 1 precursor [log2 fold change 1.75 (T. palmi) vs 13.31 (F.

occidentalis)] was shown to have phenol oxidase activity in melanogenesis [97]. Carbonic

anhydrase [log2 fold change 2.08 (T. palmi) vs 2.88 (F. occidentalis)] has a physiological role in

pH and ion regulation pathways. Endoglucanase [log2 fold change 1.2–1.3 (T. palmi) vs 1.95

(F. occidentalis)] is a salivary gland-associated cell wall digestive enzyme [88]. Four isoforms of

this gene were identified in T. palmi transcriptome. Deoxyribonuclease I [log2 fold change

1.31 (T. palmi) vs 2.62 (F. occidentalis)] is an endonuclease that cleaves DNA and has been sug-

gested to play a role in apoptosis [98]. This gene is also listed among the DE contigs with a log2

fold change of 2.82 associated with vector response to TSWV infection in F. fusca adult tran-

scriptome [31], further validating the conserved response of up-regulating this thrips gene.

Fig 3. Validation of RNA-Seq gene expression by qPCR. FPKM values obtained by RNA-Seq analysis and relative

expression levels obtained by qPCR for six selected genes in CaCV-exposed and non-exposed Thrips palmi are shown.

Values were multiplied by a factor of 1000. Error bars represent the standard error for three biological replicates.

https://doi.org/10.1371/journal.pone.0208538.g003
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When down-regulated genes in adult transcriptomes were compared, none of the most

highly down-regulated TP transcripts were shared between the two systems. However, genes

of endocuticle structural glycoprotein [log2 fold change 5.0–7.1 (T. palmi) vs 4.5 (F. occidenta-
lis)], which is a structural constituent of cuticle and alpha-tocopherol transfer-like [log2 fold

change 7.0 (T. palmi) vs 4.9 (F. occidentalis)] which has been shown to be involved in antiviral

immunity in Drosophila melanogaster [99] were down-regulated in F. occidentalis larvae [30]

and T. palmi adults.

Discussion

Quantifying changes in global gene expression is one means of inferring cellular and physio-

logical responses of insects to infection by insect-pathogenic viruses or insect-vectored plant-

viruses [100]. This is especially relevant for viruses like tospoviruses that circulate and propa-

gate inside insect cells and tissue systems, exploiting host cellular machinery to replicate and to

complete their life-cycles [101, 102]. This study presents the first transcriptome for an insect in

the genus Thrips. We analysed T. palmi transcriptome in response to CaCV infection to iden-

tify DE transcripts and to classify these genes by sequence homologies (ontologies) to known

proteins to begin to dissect the global response of this thrips species to tospovirus infection.

Here, we present hypotheses about the effect of virus infection on three dynamic processes in

vector biology: innate immunity, growth and development, and fitness.

Innate immunity-related genes

Based on Blastx descriptions and GO terms for DE transcripts, we identified 86 up-regulated

transcripts putatively associated with innate immune response that may have been triggered

by CaCV infection (Table 2). The majority of these genes are likely involved in cellular immu-

nity activated in lysosomes such as cathepsin B [50, 103, 104], lysosomal aspartic proteases and

lysozyme C. We identified 10 cathepsin B genes that were up-regulated in virus-exposed T.

palmi. Cathepsins are known to be involved in various biological processes including protein

degradation, apoptosis and signalling activated in late endosome and lysosome and implicated

Table 4. List of conserved up-regulated transcript sequences in two adult-stage thrips—tospovirus interactions.

Tp transcript annotation Focc—TSWV transcript

code

Tp—CaCV transcript code Log2 FC

Focc

Log2 FC

Tp

% sequence

identity

Sequence

coverage

DNase I FOCC007280-RA TP.8153.1 + 2.62 + 1.31 86 1186 nt

Uncharacterized protein

LOC106129042

TCONS_00032732 TP.1784.1 + 2.06 + 2.47 81 194 aa

Endoglucanase FOCC015899-RA TP.19931.1, TP21769.1, TP.21770.1,

TP.21771.1

+ 1.95 + 1.2 to

+ 1.3

80 115 aa

Carbonic anhydrase CUFF.8568.2 TP.33694.1 + 2.88 + 2.08 80 92 aa

Uncharacterized protein

LOC105690123

CUFF.8228.1

CUFF.2322.1

>10 Isoforms

>10 Isoforms

+ 2.58

+2.64

up

up

62

60

< 200 aa

< 200 aa

Hexamerin FOCC009367-RA TP.20198.1# + 4.20 + 1.81 45 33 aa

Hemocyanin subunit type 1

precursor

FOCC002013-RA TP.20202.1# + 13.31 + 1.75 38 50 aa

Hexamerin, arylphorin subunit

alpha

FOCC012829-RA TP.25095.1# + 8.87 + 1.1 38 45 aa

Focc = Frankliniella occidentalis; TSWV = tomato spotted wilt virus; Tp = Thrips palmi; CaCV = capsicum chlorosis virus; nt = nucleotides; aa = amino acids. FC = fold

change of virus-exposed treatment in relative to non-virus control treatment.

# Annotated as phenol oxidase 2-like

https://doi.org/10.1371/journal.pone.0208538.t004
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in virus entry and replication [105, 106]. Therefore, it appears that CaCV infection may lead to

cytopathological effect in thrips cells through cell damage and apoptosis. Another set of genes

that were up-regulated in virus-exposed thrips encode glucose dehydrogenases that are known

to participate in the initiation of cellular immune responses by encapsulation of pathogens

[62].

Genes associated with melanisation seem to play a significant role in virus-exposed T.

palmi. Besides pigmentation, melanin deposits and encapsulates foreign targets such as nema-

todes, parasitoids and virus-infected tissues and inhibits progression of infection [59, 107].

Enzymes such as phenoloxidases (PO) [59], serine proteases (SP) [60] and laccase [64] are the

key players in the melanisation pathway. PO generate highly cytotoxic quinones that can inac-

tivate invading viral pathogens [108]. In T. palmi transcriptome, we identified several PO

genes and a CLIP domain-containing SP that were up-regulated in virus-exposed thrips. Previ-

ous studies have shown that PO cascade is activated in mosquitoes in response to Semliki For-

est virus infection resulting in inhibition of virus spread in cell culture [109, 110]. CLIP

domain-containing SP induce melanisation immune response by activating PO [59, 60]. In

addition to PO and SP, other genes that participate in the melanisation process were identified,

such as poly(U)-specific endoribonuclease homologues and laccase-5 [63–65].

Genes involved in other innate immune system pathways such as Toll, antigen processing

and presentation, and complement and coagulation cascades (humoral immunity) were also

found up-regulated. Among the up-regulated transcripts in CaCV-exposed thrips, 63 encoded

proteolytic enzymes, including 30 serine protease and trypsin genes. According to GO assign-

ment all serine proteases and trypsins in this thrips transcriptome were predicted to exhibit

serine-type endopeptidase activity. The role that these proteases may play in virus-exposed

thrips is not known. Previously it was shown that insect serine proteases and trypsin-like serine

proteases are generally involved in hemolymph coagulation, activation of antimicrobial pep-

tide synthesis, and melanin synthesis [75, 111, 112]. Therefore, these genes may have roles in

thrips humoral immunity. Interestingly, among the immune-related genes, two genes showed

>67% similarity to plant genes encoding pathogenesis-related (PR) protein 5 and elicitin 6.

Our study of T. palmi identified activation of different immunity-related pathways than the

results reported by Zhang and collaborators [52] for F. occidentalis-TSWV, such as Toll, JAK--

STAT and RNA interference. Either these pathways have no significant role in adult T. palmi
against CaCV or they were active only in larvae at the time of virus acquisition and initial repli-

cation and intercellular movement, which was not captured by our adult transcriptome. In

another study, Schneweis and colleagues [30] showed that in adult F. occidentalis exposed to

TSWV, 75% of innate immune response related transcripts were annotated as insect storage

proteins, hexamerins which are also associated with humoral immunity. We did not identify

hexamerins among the DE transcripts of T. palmi suggestive of activation of different set of

genes in T. palmi’s innate immunity. When compared with F. fusca-TSWV adult DE genes, we

identified up-regulation of several similar immune system-related genes such as cathepsin B,

aminopeptidase N, serine proteases and heat shock protein 70. Therefore, it is likely that more

generally in adult thrips infected with tospoviruses, immune reactions like apoptosis, phagocy-

tosis and proteolysis are activated.

Salivary gland-associated genes

Salivation is an essential process in insect feeding [113, 114] and virus inoculation of hosts [28,

115]. Various components of saliva are involved in extra-oral digestion of plant tissues and

suppression or detoxification of host defence responses [116, 117]. In the present study, the

majority of up-regulated putative salivary gland genes identified in this study appear to be
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involved in digestion (Table 2). Of the 20 lipases, up-regulated in virus-exposed thrips, 15 were

lipase 3-like, 4 transcripts corresponded to lipase 1, and 1 was a H-B-like lipase. Lipases are

also known to be involved in innate immunity [51]. To identify lipases that may be secreted

components of saliva, signal peptide sequences were predicted in silico. All lipase 1 sequences

lacked a signal peptide, hence were considered unlikely to be components of saliva and more

likely involved in innate immunity. Of the 15 lipase 3 genes, nine sequences contained a signal

peptide and a predicted cleavage site at their N-terminus, suggestive of secreted proteins.

Lipases have previously been identified to be associated with salivary glands of other insects,

including the potato leafhopper (Empoasca fabae) [87], whitefly (Bemisia tabaci) [61] and F.

occidentalis [88]. Other large groups of enzymes that may be involved in general digestion are

proteolytic enzymes, serine proteases and carboxypeptidases. Eleven of 15 serine proteases and

trypsin-like serine proteases and carboxypeptidases in virus-exposed T. palmi, contained pre-

dicted signal peptides and cleavage sites. Similar proteins were identified in salivary gland tran-

scriptomes of E. fabae and F. occidentalis [87, 88]. One of the serine proteases contained a

CLIP domain. Because CLIP domain-containing serine proteases are known to induce melani-

sation [59] and the presence of a predicted signal peptide cleavage site, this protease may be a

component of saliva which provides immunity by activation of Toll signalling pathway or PO

cascade leading to melanisation [118, 119]. Up-regulation of several transcripts encoding

secreted lipases and proteolytic enzymes implies that they participate in general digestion of

lipids and proteins during thrips feeding.

Plant-feeding insects secrete a range of cell wall-degrading enzymes to release cell contents

and to facilitate subsequent ingestion [120]. Pectin is one of the major polysaccharides in the

plant cell wall and middle lamella [121]. Pectin lyase is a pectin-hydrolysing enzyme expressed

in salivary glands of phytophagous insects, including F. occidentalis [88], E. fabae [87] and the

plant bug Lygus hesperus [122]. Other cell wall degrading enzymes investigated from insects

are laccase, β-glucosidase and endo-β-glucanase [87, 88, 123–125]. Presence of transcripts

encoding pectin lyases, β-glucosidases and endoglucanases in the T. palmi transcriptome is

consistent with findings in other insects. Based on signal peptide predictions, some of these

enzymes may be secreted, a requisite for extra-oral digestion.

A α-amylase that may be involved in sugar metabolism was identified among up-regulated

transcripts in virus-exposed thrips. This sequence lacked an obvious signal peptide, but its GO

term ‘extracellular exosome’ suggests extracellular localization and a putative digestive role. α-

amylases have been identified in the saliva of many insects including honeybee (Apis melifera)
[126], mosquito (Ades aegypti) [127], silkworm (Bombyx mori) [128] and red flour beetle (Tri-
bolium castaneum) [129], and also in salivary gland transcriptomes of thrips F. occidentalis
[88] and E. fabae, [87]. Genes encoding several other sugar metabolic enzymes such as maltase,

sucrase and β-glucosidase were identified in the F. occidentalis salivary gland transcriptome

[88] but were not detected among the significantly DE genes in the T. palmi transcriptome.

Among the other salivary gland-associated genes identified in this study were angiotensin-

converting enzyme-like (ACE) genes which may have a role in inhibition of plant defence [89,

91]. Wang and colleagues [89] suggest that pea aphid secreted ACE may digest plant peptide

hormones in phloem sap and function as signal molecules to mount defence response against

herbivorous insects, thereby supressing plant immune responses. The T. palmi ACE may have

similar functions.

Fitness and fecundity-associated genes

Among the up-regulated genes in CaCV-exposed thrips, 54 transcripts represented vitello-

genin (Vg) homologues (Table 2). Vg contigs were also highly up-regulated (log2 fold change
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>9) in adult and pupal transcriptome of F. fusca infected with TSWV [31]. The primary role

of insect Vg is to transport egg yolk protein components synthesized extra-ovarially in fat bod-

ies into growing oocytes by receptor-mediated endocytosis [130]. In female insects Vg is one

of the most abundant proteins [131]. Accumulation of Vg in vesicles in insects is mediated by

receptors of the low-density lipoprotein receptor (LDLR) family [111]. Among the up-regu-

lated genes in virus-exposed thrips we identified two Vg receptors and a LDLR; one of the Vg

receptor genes was highly abundant with a FPKM value of 1598 and a log2-fold change of 2.0.

Abundance of Vg transcripts and their receptors in virus-exposed T. palmi implies transovarial

transport of egg yolk protein components to the growing oocytes had been promoted in the

presence of CaCV infection. Enhanced vitellin and vitellogenin levels in response to a plant

virus infection was first reported from whitefly, MEAM1 (B biotype) B. tabaci that fed on

tomato yellow leaf curl China virus-infected plants [93]. These authors speculated that the vec-

tor benefits from virus infection due to increased longevity and fecundity. A recent study has

shown that TSWV has positive effects on the fecundity of F. occidentalis [132]. In contrast,

leafhopper, Recilia dorsalis that fed on rice gall dwarf virus (RGDV)-infected plants showed

significantly reduced longevity and fecundity associated with reduced levels of Vg compared

to non-viruliferous individuals [94].

There are other reports that have shown involvement of Vg in immune responses of insects

including citrus whitefly (Dialeurodes citri) [50], A. aegypti [95] and honeybee (Apis mellifera)
[133]. Based on these precedents, enhanced Vg gene expression in virus-exposed T. palmimay

play a role in innate immunity to CaCV infection. In support, Vg was found to be 9-fold up-reg-

ulated in pupae of F. fusca exposed to TSWV [31]. Another known role that Vg plays in plant

virus-vector interactions is facilitation of vertical virus transmission, exemplified by transovarial

transmission of rice stripe virus in small brown planthopper (Laodelphax striatellus) [134]. Sim-

ilar to our findings in virus-exposed T. palmi, Vg was the most abundant transcript in virus-

exposed small brown planthopper transcriptome [135]. Previously, it has been shown that

TSWV is not vertically transmitted from viruliferous adult females to eggs [22]. Further, there is

no evidence for vertical transmission in other tospovirus-thrips pathosystems and it is generally

accepted that tospoviruses are not transovarially transmitted. However, existence of transovarial

transmission of CaCV in T. palmi cannot be excluded due to a current lack of knowledge in tis-

sue tropism and virus localization in the body of T. palmi. Furthermore, Vg was not among the

most abundant unigenes and DE genes in F. occidentalis transcriptome infected with TSWV

[52]. Therefore, it is possible that enhanced Vg expression is unique to CaCV-T. palmi interac-

tion, but the exact role that Vg may play needs to be investigated further.

In summary, we have assembled a whole-body transcriptome of adult T. palmi and esti-

mated differential abundance of transcripts when exposed to CaCV infection. The majority of

DE transcripts did not contain Blastx annotations or conserved functional domains, but their

differential abundance reflects unique roles in T. palmi-virus interaction and T. palmi biology

in general. Although we cannot directly compare our data with studies of F. occidentalis [30]

and F. fusca [31] exposed to TSWV, during the adult stages of these species, there were a few

common GO terms assigned to DE transcripts such as hydrolase activity, nucleotide/nucleic

acid binding, carbohydrate metabolic process and peptidase activity. In addition, the majority

of annotations assigned to DE transcripts of T. palmi appeared to be species-specific. Aside

from the inherent differences across thrips species and tospoviruses species, differences in the

experimental methods and computational protocols and parameters used in data analyses

could explain the weak overlap in transcripts responsive to virus across the three studies. For

example, DE analyses for F. fusca [31] and T. palmi were performed using de novo transcrip-

tome assemblies, whereas Schneweis and colleagues [30] used a draft genome reference for DE

analysis for F. occidentalis.
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We identified virus-responsive up-regulated DE transcripts that have putative roles in

thrips innate immunity, feeding and fecundity. Down-regulated transcripts that are likely asso-

ciated with structural component of cuticle and integral components of membrane may be

responsible for delaying thrips development and increased longevity to ensure virus persis-

tence and transmission. However, functions of those genes need to be experimentally validated

in future. For example, transcripts associated with thrips feeding and fecundity could be candi-

dates for potential targets in thrips and tospovirus management. In addition, transcriptomic

data generated in this study will enrich genomic information of thrips and will allow func-

tional studies on other economically important thrips and insects more broadly.
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44. Conesa A, Götz S, Garcı́a-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for

annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005; 21

(18):3674–6. https://doi.org/10.1093/bioinformatics/bti610 PMID: 16081474

45. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28

(1):27–30. PMID: 10592173

Thrips palmi transcriptome in response to capsicum chlorosis virus

PLOS ONE | https://doi.org/10.1371/journal.pone.0208538 December 7, 2018 18 / 23

https://doi.org/10.1371/journal.pone.0102021
https://doi.org/10.1371/journal.pone.0102021
http://www.ncbi.nlm.nih.gov/pubmed/25010157
https://doi.org/10.1094/PHYTO.2004.94.7.706
https://doi.org/10.1094/PHYTO.2004.94.7.706
http://www.ncbi.nlm.nih.gov/pubmed/18943902
https://doi.org/10.1073/pnas.1100773108
http://www.ncbi.nlm.nih.gov/pubmed/21606372
https://doi.org/10.1371/journal.pone.0154533
http://www.ncbi.nlm.nih.gov/pubmed/27159134
https://doi.org/10.1016/j.virol.2016.10.009
http://www.ncbi.nlm.nih.gov/pubmed/27835811
https://doi.org/10.1099/jgv.0.000874
http://www.ncbi.nlm.nih.gov/pubmed/28741996
https://doi.org/10.1007/s00705-014-2324-8
http://www.ncbi.nlm.nih.gov/pubmed/25559672
http://www.ncbi.nlm.nih.gov/pubmed/9521922
http://www.ncbi.nlm.nih.gov/pubmed/9521921
https://doi.org/10.1093/bioinformatics/btu170
http://www.ncbi.nlm.nih.gov/pubmed/24695404
https://doi.org/10.1038/nprot.2013.084
http://www.ncbi.nlm.nih.gov/pubmed/23845962
https://doi.org/10.1101/gr.196469.115
https://doi.org/10.1101/gr.196469.115
http://www.ncbi.nlm.nih.gov/pubmed/27252236
https://doi.org/10.1038/nprot.2012.016
http://www.ncbi.nlm.nih.gov/pubmed/22383036
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1093/bioinformatics/btt656
http://www.ncbi.nlm.nih.gov/pubmed/24227677
https://doi.org/10.1093/nar/gkt214
http://www.ncbi.nlm.nih.gov/pubmed/23558742
https://doi.org/10.1038/nbt.3122
http://www.ncbi.nlm.nih.gov/pubmed/25690850
http://www.socscistatistics.com
https://doi.org/10.1093/bioinformatics/bti610
http://www.ncbi.nlm.nih.gov/pubmed/16081474
http://www.ncbi.nlm.nih.gov/pubmed/10592173
https://doi.org/10.1371/journal.pone.0208538


46. Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinfor-

matics. 2007; 23(10):1289–91. https://doi.org/10.1093/bioinformatics/btm091 PMID: 17379693

47. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabili-

ties and interfaces. Nucleic Acids Res. 2012; 40(15):e115. https://doi.org/10.1093/nar/gks596 PMID:

22730293

48. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc.

2008; 3(6):1101–8. PMID: 18546601

49. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR

and the 2− ΔΔCT method. Methods. 2001; 25(4):402–8. https://doi.org/10.1006/meth.2001.1262

PMID: 11846609

50. Yu S, Ding L, Luo R, Li X, Yang J, Liu H, et al. Identification of immunity-related genes in Dialeurodes

citri against entomopathogenic fungus Lecanicillium attenuatum by RNA-Seq analysis. PLoS One.

2016; 11(9):e0162659. https://doi.org/10.1371/journal.pone.0162659 PMID: 27644092

51. Ponnuvel KM, Nakazawa H, Furukawa S, Asaoka A, Ishibashi J, Tanaka H, et al. A lipase isolated

from the silkworm Bombyx mori shows antiviral activity against nucleopolyhedrovirus. J Virol. 2003; 77

(19):10725–9. https://doi.org/10.1128/JVI.77.19.10725-10729.2003 PMID: 12970462

52. Zhang Z, Zhang P, Li W, Zhang J, Huang F, Yang J, et al. De novo transcriptome sequencing in Frank-

liniella occidentalis to identify genes involved in plant virus transmission and insecticide resistance.

Genomics. 2013; 101(5):296–305. https://doi.org/10.1016/j.ygeno.2013.02.005 PMID: 23434629

53. Hamilton C, Lejeune BT, Rosengaus RB. Trophallaxis and prophylaxis: social immunity in the carpen-

ter ant Camponotus pennsylvanicus. Biol Lett. 2011; 7(1):89–92. https://doi.org/10.1098/rsbl.2010.

0466 PMID: 20591850

54. Tanaka H, Yamakawa M. Regulation of the innate immune responses in the silkworm, Bombyx mori.

Invert Surv J. 2011; 8(1):59–69

55. Badillo-Vargas I, Rotenberg D, Schneweis D, Hiromasa Y, Tomich J, Whitfield A. Proteomic analysis of

Frankliniella occidentalis and differentially-expressed proteins in response to tomato spotted wilt virus

infection. J Virol. 2012; 86(16):8793–8809. https://doi.org/10.1128/JVI.00285-12 PMID: 22696645

56. Clayton AM, Dong Y, Dimopoulos G. The Anopheles innate immune system in the defense against

malaria infection. J Innate Immun. 2014; 6(2):169–81. https://doi.org/10.1159/000353602 PMID:

23988482

57. Hernández-Martı́nez S, Lanz-Mendoza H, Martı́nez-Barnetche J, Rodrı́guez MH. Antimicrobial prop-

erties of Anopheles albimanus pericardial cells. Cell Tissue Res. 2013; 351(1):127–37. https://doi.org/

10.1007/s00441-012-1505-6 PMID: 23229355

58. Wippler J, Kleiner M, Lott C, Gruhl A, Abraham PE, Giannone RJ, et al. Transcriptomic and proteomic

insights into innate immunity and adaptations to a symbiotic lifestyle in the gutless marine worm Ola-

vius algarvensis. BMC genomics. 2016; 17(1):942. https://doi.org/10.1186/s12864-016-3293-y PMID:

27871231
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