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ABSTRACT
Background: Avian pathogenic Escherichia coli (APEC), an important
extraintestinal pathogenic E. coli, causes colibacillosis, an acute and mostly systemic
disease involving multiple organ lesions such as meningitis. Meningitis-causing
APEC can invade the host central nervous system by crossing the blood–brain barrier
(BBB), which is a critical step in the development of meningitis. However, the
bacteria-host interaction mechanism in this process remains unclear.
Methods: In this study, we examined E. coli and bEnd.3 cells transcriptomes during
infection and mock infection to investigate the global transcriptional changes in both
organisms using RNA sequencing approach.
Results: When APEC infected the bEnd.3 cells, several significant changes in the
expression of genes related to cell junctional complexes, extracellular matrix
degradation, actin cytoskeleton rearrangement, immune activation and the
inflammatory response in bEnd.3 cells were observed as compared to the mock
infection group. Thus, the immune activation of bEnd.3 cells indicated that APEC
infection activated host defenses. Furthermore, APEC may exploit cell junction
degradation to invade the BBB. In addition, amino acid metabolism and energy
metabolism related genes were downregulated and the protein export pathway
related genes were upregulated in APEC cultured with bEnd.3 cells, compared to that
in control. Thus, APEC may encounter starvation and express virulence factors
during incubation with bEnd.3 cells.
Conclusion: This study provides a comprehensive overview of transcriptomic
changes that occur during APEC infection of bEnd.3 cells, and offers
insights into the bacterial invasion strategies and the subsequent host defense
mechanism.
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INTRODUCTION
Avian pathogenic Escherichia coli (APEC), an important extraintestinal pathogenic E. coli
(ExPEC), causes colibacillosis, an acute systemic disease that involves multiple organ
lesions including respiratory, digestive, vascular and nervous system diseases (Dziva &
Stevens, 2008; Ewers et al., 2004). Previous studies have demonstrated that APEC strains
with different serotypes (O18, O2, O1) can induce meningitis in newborn mammals, such
as mice, with varying degrees of septicemia via pathogenic mechanisms that are similar
to those of neonatal meningitis-causing E. coli (NMEC) strains (Krishnan et al., 2015;
Mellata, Johnson & Curtiss, 2018; Zhu Ge et al., 2014). The APEC XM strain (O2:K1),
isolated from the brain of a duck with septicemia and meningitis, was shown to be
involved in the systemic infection of 7-day-old ducks and 5-week-old Institute of Cancer
Research mice, causing severe meningitis in a neonatal mouse model (Hejair et al., 2017;
Ma et al., 2014).

Various bacterial factors have been recognized as potent or putative virulence factors
of APEC strains, including adhesins (Fim, Pap and Mat), iron acquisition systems
(siderophores), two-component regulatory systems (RstAB system, ArcA/B system),
vacuolating autotransporter toxin located in the chromosome, and the ColV plasmid
encoded virulence genes (Breland, Eberly & Hadjifrangiskou, 2017; Gao et al., 2012;
Johnson et al., 2006; Zhao et al., 2015). In particular, it has been reported that the virulence
genes ibeA and gimB, which contribute to the invasion of host cells, are shared between
APEC and NMEC (Barbieri et al., 2013; Peigne et al., 2009). Moreover, the host cell
cytosolic phospholipase A2 and E. coli ibeA gene have been proved to be involved in the
invasion of brain microvascular endothelial cells (BMECs) (Das et al., 2001; Maruvada &
Kim, 2012; Zhu, Pearce & Kim, 2010). Since APEC is a potential reservoir of ExPEC
virulence genes and pathogenic to humans (Rodriguez-Siek et al., 2005), APEC infection
may pose a potential risk for zoonotic transfer (Mitchell et al., 2015). E. coli usually
causes meningitis via several steps involving bacteria–host interactions: entry into the
gastrointestinal tract mucosa (Birchenough et al., 2017), invasion of the intravascular space,
survival and multiplication in the serum to a particular order of magnitude (Sullivan,
Lascolea & Neter, 1982), traversing through the blood–brain barrier (BBB), and ultimately
contributing to central nervous system (CNS) complications and neuronal injury (Kim,
2003b; Witcomb et al., 2015). A critical step in meningitic process is the bacterial crossing
of the BBB, a structural and functional barrier formed by BMECs, astrocytes and pericytes
that blocks the transport of harmful substances and pathogenic microorganisms.
Bacteria invade the BBB via intercellular and paracellular pathways as well as Trojan horse
mechanisms (Kim, 2003a, 2008). However, the mechanisms involved in the bacteria-host
interaction during this process remain unclear.

Bacteria can rapidly reprogram their gene expression networks in response to their
constantly changing living environment. During in vivo infection, the bacteria compete
with the host for survival or nutrition and gene expression changes are observed in
both, which differ from those observed in artificial culture conditions. Dual RNA
sequencing (RNA-seq) was first used to simultaneously profile host and pathogen

Wang et al. (2020), PeerJ, DOI 10.7717/peerj.9172 2/26

http://dx.doi.org/10.7717/peerj.9172
https://peerj.com/


transcriptomes in 2012 in order to better understand the host–pathogen interactions
(Westermann, Gorski & Vogel, 2012). Since then, dual RNA-seq analyses have been
successfully performed to assess pathogen–host interactions, including those between
Pseudomonas plecoglossicida and Epinephelus coioides (Zhang et al., 2019) as well as
Salmonella and HeLa cells (Westermann et al., 2016). However, the interaction between
E. coli and BBB-related cells has not yet been explored by dual RNA-seq.

In this study, we investigated the potential mechanism of APEC-host cell interaction by
infecting the mouse brain microvascular endothelial cell line (bEnd.3) with the APEC
XM strain (O2:K1). The transcriptomes of APEC strain and bEnd.3 cells were measured by
dual RNA-seq during the interaction. The findings of this study may contribute toward
improving the current understanding of E. coli invasion across the BBB.

MATERIALS AND METHODS
Culture conditions
The APEC XM strain (O2:K1) was isolated from the brain of a duck with symptoms
of septicemia and meningitis (donated by Dr. Guoqiang Zhu, Yangzhou University),
and grown aerobically on Luria-Bertani (LB) plates or in LB broth with agitation
(180 rpm/min) at 37 �C. Mouse BMECs (bEnd.3; ATCC CRL-2299, American Type
Culture Collection, Manassas, VA, USA) were cultured in Dulbecco’s Modified
Eagle Medium (DMEM; Invitrogen, Carlsbad, CA, USA), supplemented with 10%
heat-inactivated fetal bovine serum (FBS; Gibco, Carlsbad, CA, USA) in 10 cm cell culture
dishes at 37 �C in a 5% CO2 atmosphere.

Bacterial adherence and invasion of bEnd.3 cells
For the adherence and invasion assays, the APEC strain was grown in LB broth with
agitation (180 rpm/min) until the optical density at 600 nm reached 1.0 (1 × 108 CFU/mL)
in exponential phase. The bacteria were collected by centrifugation (3,500 rpm, 8 min),
washed twice with phosphate-buffered saline (PBS), and resuspended in FBS-free
DMEM. Then, bEnd.3 cells were infected with the APEC XM strain in 10 cm dishes at
a multiplicity of infection (MOI) of 100 for 1, 2, 3, 4, 5 or 6 h at 37 �C in 5% CO2.
The mock-infection cells were cultured in FBS-free DMEM as control. The bEnd.3 cells
were gently washed with PBS three times to remove any non-adherent bacteria, and
then lysed with 0.5% Triton X-100 for 30 min at 37 �C. The suspensions were collected,
serially diluted 10-fold, and plated on LB plates. After incubation overnight at 37 �C,
the number of CFUs was calculated. The time point at which the highest number of
bacteria adhered to and invaded the bEnd.3 cells was selected for the sample collection and
RNA-seq analysis.

Total RNA isolation
Bacteria were cultured in DMEM without FBS for 3 h and then were treated with
RNAprotect Bacteria Reagent (QIAGEN, Hilden, Germany) to protect the RNA. Total
RNA was extracted using TRIzol reagent according to the manufacturer’s instructions
(Invitrogen Co., Ltd., San Diego, CA, USA) and genomic DNA was digested using
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RNase-free DNase. To sequence the bacterial transcriptome, rRNA was removed from the
total RNA using a Ribo-Zero rRNA removal kit (gram-negative bacteria, Epicentre
Biotechnologies, Madison, WI, USA). The total RNA of bEnd.3 cells, infected with or
without APEC for 3 h, were isolated using pre-cooled TRIzol reagent (Invitrogen Co., Ltd.,
San Diego, CA, USA) according to the manufacturer’s instructions. RNA integrity was
analyzed using an Agilent Bioanalyzer 2100 (Agilent Technologies, Palo Alto, CA, USA),
RNA purity was checked using a NanoPhotometer� spectrophotometer (IMPLEN,
Westlake Village, CA, USA), and RNA concentration was measured using a Qubit� RNA
Assay Kit with a Qubit� 2.0 Fluorometer (Invitrogen Co., Ltd., San Diego, CA, USA).

cDNA library construction and RNA-seq
Nine individual cDNA sequencing libraries (three mock infection APEC samples, three
mock-infected bEnd.3 samples, and three infection samples) were prepared using a
NEBNext� UltraTM RNA Library Prep Kit for Illumina� (NEB, Ipswich, MA, USA)
according to the manufacturer’s recommendations. Index codes were added to attribute
sequences to each sample. Briefly, mRNA was purified from total RNA using poly-T
oligo-attached magnetic beads and fragmented using divalent cations under high
temperatures in NEBNext First Strand Synthesis Reaction Buffer (5×) (NEB, Ipswich,
MA, USA). cDNA was synthesized using a random hexamer primer and fragments of
250–300 bp in length were preferentially selected and purified using an AMPure XP
system (Beckman Coulter, Brea, CA, USA). PCR was then performed using a Phusion
High-Fidelity DNA polymerase (Vazyme, Nanjing, China), universal PCR primers, and
Index (X) primers. The PCR products were purified using an AMPure XP system
(Beckman Coulter, Brea, CA, USA) and library quality was assessed using an Agilent
Bioanalyzer 2100 system (Agilent Technologies, Palo Alto, CA, USA). The index-coded
samples were clustered using a cBot Cluster Generation System (Illumina, Inc., San Diego,
CA, USA) with a TruSeqPE Cluster Kit v3-cBot-HS (Illumina, Inc., San Diego, CA, USA)
according to the manufacturer’s instructions. The library was then sequenced on an
Illumina HiSeq platform (Illumina, Inc., San Diego, CA, USA) to generate 125/150 bp
paired-end reads. The raw reads in FASTQ format were first processed using in-house Perl
scripts and clean data were obtained by removing reads containing adaptor or poly-N
sequences and low-quality reads. The Q20, Q30 and GC content of the clean data were
then calculated. Bowtie2-2.2.3 was used to build the reference genome index and align the
clean reads to the reference genome. HTSeq v0.6.1 was used to count the number of
reads mapped to each gene. Gene transcription levels were estimated by calculating the
fragments per kilobase of transcript per million mapped reads.

Differentially expressed genes screening and functional analysis
The DEGs in bEnd.3 cells and APEC were evaluated by comparing the transcriptome data
of both cell types cultured in DMEM or during their interaction using the DESeq2 R
package (1.16.1). The P values of results were adjusted using Benjamini and Hochberg’s
approach to control the false discovery rate. Differential expression was determined using
the following thresholds: |log2-fold change| of ≥1 or 0.5 and an adjusted P value of ≤0.05.
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DEG functional annotation and enrichment were performed using the Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, while KOBAS
software was used to test the statistical enrichment of DEGs in KEGG pathways and the
GOseq R package was used to analyze the GO enrichment of DEGs. GO terms with
corrected P values of less than 0.05 were considered to be significantly enriched for DEGs.

Quantitative real-time PCR
qRT-PCR was carried out using a previously described method for validating gene
expression data obtained by high-throughput profiling platforms (Everaert et al., 2017).
A total of 17 genes were randomly selected to analyze their relative expression level and
then qRT-PCR primers were designed and validated for these genes (Table S1). qRT-PCR
was carried out on a CFX CONNECT Real-time PCR machine (Bio-Rad, Louisville,
KY, USA) using ChamQ SYBR qRT-PCR Master Mix (2×) (Vazyme, Nanjing, China)
according to the manufacturer’s instructions. The amplification cycles were performed
as follows: 95 �C for 10 min, followed by 40 cycles of 95 �C for 30 s, 60 �C for 30 s,
and 72 �C for 30 s. All qRT-PCR assays were performed in triplicate, with expression
values estimated using the 2−ΔΔCt method and normalized using gapA and GADPH for
APEC and bEnd.3 cells, respectively. The correlation between the fold changes obtained by
qRT-PCR and RNA-seq were determined using Pearson correlation analysis.

RESULTS
Ability of APEC to adhere to and invade bEnd.3 cells
To characterize the interactions between the APEC strain and the BBB, bEnd.3 cells were
used to establish an in vitro model. The ability of adhesion and invasion at six serial time
points were evaluated. MOI of 100 was identified as the appropriate infectious dose of
bacteria and the maximum adhesion and invasion was achieved at 3 h (Fig. S1).

Dual RNA-seq analysis of APEC and infected bEnd.3 cells
To characterize the response of bEnd.3 cells to infection and investigate the effect of
bEnd.3 cells resistance on the transcriptional response of E. coli in vitro, we used a dual
RNA-seq method that enabled the simultaneous transcriptional profiling of bacteria
and bEnd.3 cells. Total RNA, including cellular and bacterial RNA, was isolated from
infected bEnd.3 cells at 3 h. Nine individual cDNA sequencing libraries (three mock
infection APEC samples, three mock-infected bEnd.3 samples, and three infection
samples) were prepared and sequenced using the Illumina paired-end method, generating
more than 1 × 107 clean reads per group after removal of the low-quality reads (Table 1).
The clean reads of Q20 and Q30 were above 97% and 91%, respectively, with a GC
content of approximately 50%. Next, we mapped the sequenced clean reads to the
Mus musculus (Ensembl release-92) and E. coli (GCF_002844685.1) genomes. In the
bEnd.3 cell-APEC interaction (be_AP) group, over 65% of the clean reads were mapped
to the M. musculus genome and less than 20% were mapped to the E. coli genome,
providing sufficient data for further analysis. In the two control groups, more than
92% and 99% of the clean reads were mapped to the E. coli and M. musculus genomes,
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respectively. All further analyses were based on the uniquely mapped reads and all
raw data were submitted to the ZENODO database (DOI 10.5281/zenodo.3689240,
10.5281/zenodo.3672826).

Validation of dual RNA-seq data by qRT-PCR
To confirm the results of the RNA-seq analysis, 17 highly expressed DEGs were randomly
selected for further validation using qRT-PCR (details in Table S1). The trends of up- and
down-regulation for 16 of the genes were consistent with the results of the Illumina
sequencing analysis, except the Vask gene (Figs. 1A and 1B). In addition, the Pearson
correlation coefficients (R2) of bEnd.3 cells and APEC strain were 0.954 and 0.876,
respectively, indicating that the results of both techniques correlated strongly (Figs. 1C and
1D), thus confirming the reliability and accuracy of the transcriptome analysis.

Analysis of changes in the bEnd.3 cells transcriptome during infection
The hierarchical clustering (Fig. 2A) and RNA-seq sample Pearson correlation analysis
(Fig. 2B) of gene expression datasets from the infected and uninfected bEnd.3 cells
demonstrated high reproducibility within group. The DESeq2 R package identified
5,552 DEGs between the uninfected and infected bEnd.3 cells, among which 3,134
were upregulated and 2,418 were downregulated in response to infection (Fig. 2C;
|log2-fold change| ≥ 0.5 and adjusted P value < 0.05).

Functional classification of the DEGs using KEGG pathway enrichment analysis
revealed their association with 273 pathways, indicating that many host genes, whose
expression changed in response to infection, were enriched in signal transduction and
immune response. The top 20 pathways are shown in Figs. 3A and 3B. The DEGs were also

Table 1 Summary of illumina RNA-seq data. Each row of data indicates the total reads, clean reads,
total mapped clean data, Q30 (%), GC (%), and percent sequence reads mapped of every sample.

Sample Total reads Clean reads Total mapped
clean data* (Gb)

Q30
(%)

GC
(%)

Mapped
rate (%)

APEC_1 11,377,278 11,303,464 1.7G 92.84 51.33 99.43a

APEC_2 12,595,278 12,482,110 1.87G 92.86 51.46 99.39a

APEC_3 9,850,068 9,786,504 1.47G 94.91 51.45 99.72a

bEnd3_1 59,805,426 59,042,776 8.86G 92.05 50.7 92.44b

bEnd3_2 49,924,482 49,319,300 7.4G 92.1 51.22 92.46b

bEnd3_3 64,453,186 63,528,514 9.53G 91.87 50.15 92.29b

bE_AP_1 77,516,134 76,516,858 11.48G 92.15 48.91 19.16a

79,574,798 78570978 11.79G 92.14 49.1 67.44b

bE_AP_2 77,558,096 76,635,112 11.5G 92.83 48.42 16.29a

80,037,182 79,108,450 11.87G 92.81 48.63 69.38b

bE_AP_3 75,686,054 74,877,152 11.23G 92.91 48.65 13.96a

78,470,990 77,655,916 11.65G 92.89 48.85 71.53b

Notes:
* Clean data were obtained from raw data by removing reads containing adapter, ploy-N and low quality reads.
a Clean reads were mapped to Escherichia coli genome.
b Clean reads were mapped to Mus musculus genome.
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annotated by GO enrichment analysis using the GOseq R package, which showed that
the DEGs were enriched in 12,833 GO terms, including 9,505 biological process terms,
1,158 cellular component terms and 2,152 molecular function terms. The majority of
the top 30 enriched GO terms (23/30) were classified as biological processes, details of
which are shown in Fig. 3C. This study focused on the interesting changes in the bEnd.3
cells, including DEGs responsible for altering the integrity of host cell junctional

Figure 1 Validation of dual RNA-seq analysis. (A) qRT-PCR analysis of bEnd.3 transcriptome
representative genes identified by RNA-seq. The x-axis represents individual genes and the y-axis fold
change in expression determined by RNA-seq (black bars) or qRT-PCR (white bars). All data are shown
as means ± SD. BEnd.3 transcriptome representative genes are Hilpda (hypoxia inducible lipid droplet
associated), Nfkbia (nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha),
Tnfaip3 (tumor necrosis factor, alpha-induced protein 3), Apold1 (apolipoprotein L domain contain-
ing 1), Ctgf (connective tissue growth factor), Pxn (paxillin), Tjp2 (tight junction protein 2), Lama5
(laminin, alpha 5) and Ogfod1 (2-oxoglutarate and iron-dependent oxygenase domain containing 1).
(B) qRT-PCR analysis of BEnd.3 transcriptome representative genes identified by RNA-seq. APEC strain
transcriptome representative genes are clbS (colibactin self-protection protein clbS), neuC (UDP-N-
acetylglucosamine 2-epimerase (hydrolyzing)), tf (type 1 fimbrial protein), rfbC (dTDP-4-dehy-
drorhamnose 3,5-epimerase), clbI (colibactin polyketide synthase ClbI), clbH (colibactin non-ribosomal
peptide synthetase clbH), VasK (type VI secretion protein VasK) and clbC (colibactin polyketide synthase
ClbC). All data are shown as means ± SD. (C) The correlation coefficient (R2) between the two data sets of
bEnd.3 cells. The x-axis represents the log2 fold change in expression determined by qRT-PCR and the
y-axis represents the log2 fold change in expression determined by RNA-seq. (D) The correlation
coefficient (R2) between the two data sets of APEC strain. The x-axis represents the log2 fold change in
expression determined by qRT-PCR and the y-axis represents the log2 fold change in expression
determined by RNA-seq. Full-size DOI: 10.7717/peerj.9172/fig-1
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complexes, actin cytoskeletal rearrangements, extracellular matrix (ECM) degradation,
immune activation, and inflammatory responses (Table 2; Table S2).

The BBB is a highly specialized structural and biochemical barrier; its properties are
primarily determined by junctional complexes between the endothelial cells (ECs),
comprising of adherens junctions (AJs) and tight junctions (TJs). In this study, genes
encoding AJs (e.g., Cdh5, Cdh24, Pcdh1, Pcdhgc3, Nectin1 and Nectin2), which were
involved in supporting cadherin association and regulating out-in signaling processes,
were downregulated, but Nectin3 was upregulated in E. coli-infected bEnd.3 cells.

Figure 2 Differential expression overview profiles of bEnd.3 cells transcriptome data. (A) Heat maps
of bEnd.3 gene expression during infection or mock infection samples. The read counts of each cellular
mRNA were normalized by the sum of the total reads. Colors from white to red indicate upregulated
cellular genes; colors from white to blue indicate downregulated cellular genes. (B) Pearson correlation
between infection and mock infection samples. (C) Volcano plot of P values as a function of weighted fold
change for mRNAs in infected and control groups. The vertical dotted line delimits up- and down-
regulation. Red plots represent significant upregulated and green plots represent significant down-
regulated. (|log2 fold change| of ≥0.5, corrected P < 0.05). Full-size DOI: 10.7717/peerj.9172/fig-2
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Figure 3 Enrichment analysis of KEGG pathways and GO terms for DEGs in bEnd.3 cells. (A and B)
The top 20 enriched KEGG pathways were classified as human disease (9/20, Salmonella infection and
Legionellosis etc), endocrine system (4/20, Estrogen signaling pathway and Oxytocin signaling pathway
etc), signal transduction (2/20, HIF-1 signaling pathway, TNF signaling pathway) and other pathways.
The size of each circle represents the number of DEGs in each pahway (larger circles represent more
DEGs) and the color represents the corrected P value of each pathway. Red bars represent significant
upregulated, blue bars represent significant downregulated and white bars represent no expression or no
significant expression. (C) In the top 30 enriched GO terms, most terms (23/30) were classified as
biological process, seven of them were belonged to cellular component.Red bars represent significant
upregulated and blue bars represent significant downregulated (|log2 fold change| ≥0.5, �corrected
P < 0.05). Full-size DOI: 10.7717/peerj.9172/fig-3
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Moreover, genes encoding TJs (e.g., Cldn5, Tjap1, Actn1 and Actn4), which are involved in
sealing the interendothelial cleft, were downregulated in the infected cells. These findings
indicated that the structural integrity, permeability and paracellular barriers of the
BBB were destroyed during infection.

Previously, it has been shown that the actin cytoskeleton was rearranged and the ECM,
with related receptors, were closely regulated when NMEC traversed the BBB (Kim,
Kang & Kim, 2005; Kim, 2002). In the present study, some DEGs (Rock1, Rock2, Vav3,

Table 2 DEGs of bEnd.3 cells between the two groups.Different expression genes of bEnd.3 cells between the infection and mock-infection group.

Components Genes log2 padj Description
Fold
change

DEGs related to cell junctional complexes

Tight junctions (TJs) Claudins Cldn5 −0.51506 0.000166 claudin 5

Adherens junctions (AJs) Cadherin Cdh5 −0.73355 3.27E−19 cadherin 5

Cdh24 −0.78667 0.041049 cadherin-like 24

nectin Nectin1 −1.7466 1.22E−50 nectin cell adhesion molecule 1

Nectin2 −0.53373 0.00102 nectin cell adhesion molecule 2

Nectin3 0.59157 3.14E−07 nectin cell adhesion molecule 3

DEGs related to actin cytoskeletal rearrangements

Regulation of actin cytoskeleton Cfl1 −0.54554 3.27E−10 cofilin 1, non-muscle

Actn1 −0.60337 2.06E−09 actinin, alpha 1

Limk1 −0.6284 0.001253 LIM-domain containing, protein kinase

Pxn −0.83324 3.61E−10 paxillin

Actn4 −1.6743 1.54E−27 actinin alpha 4

Actb 2.0004 1.10E−136 actin, beta

Itgav 0.78575 1.76E−21 integrin alpha V

Rock1 0.61447 2.59E−12 Rho-associated coiled-coil containing protein kinase 1

Rock2 0.50308 2.05E−09 Rho-associated coiled-coil containing protein kinase 2

DEGs of immune activation and inflammatory response

Pattern recognition receptors
(PRRs)

Tlr13 1.2499 6.48E−16 toll-like receptor 13

Tlr4 0.82039 2.48E−17 toll-like receptor 4

Complement system C3 −0.58759 0.005068 complement component 3

C3ar1 0.74408 2.90E−05 complement component 3a receptor 1

Cfp −0.99477 3.44E−05 complement factor properdin

Masp1 3.9332 0.00077 mannan-binding lectin serine peptidase 1

Chemokines C subfamiliy Xcr1 1.749 6.96E−06 chemokine (C motif) receptor 1

C–C subfamiliy Ccl2 0.61885 0.000328 chemokine (C–C motif) ligand 2

Ccrl2 0.72992 0.03855 chemokine (C–C motif) receptor-like 2

C–X3–C
subfamiliy

Cx3cl1 −0.54859 0.000456 chemokine (C–X3–C motif) ligand 1

C–X–C subfamiliy Cxcl1 1.7688 2.22E−06 chemokine (C–X–C motif) ligand 1

Cxcl16 1.4227 0.000779 chemokine (C–X–C motif) ligand 16

Cxcl2 1.7977 0.00055 chemokine (C–X–C motif) ligand 2
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Itgav, Lamc2, Sdc4, Gp1ba, and Thbs1) related to actin arrangement and the ECM were
upregulated, while other DEGs with similar functions (Actn4, Actn1, Itgb4, Pxn, Cfl1,
Wasf1,Wasl,Dag1, Col5a3, Col5a1, Itga5, Col27a1, Lama5, Itgb4, Fn1, Agrn, Comp, Col1a1
and Hspg2) were downregulated. These findings suggested an increase in Rho/ROCK
pathway activation, F-actin cytoskeleton rearrangement, and BBB permeability.

Inflammation is a hallmark of bacterial meningitis and is mediated mainly by cytokines
and chemokines, which occurs in response to bacteria or their products. Additionally, Tlr4,
Tlr13, Cxcl2, Cxcl1, Xcr1, Cxcl16, Nfkbia, Tnfaip3, Il6, Casp12, Nod2, Ccl2, Vcam1,
Ncf2, Cfd, Cd46 and C3ar1 were upregulated and C3 was downregulated in the infection
group, which suggested that the permeability of the BBB increased and the recruitment
of monocytes, neutrophils, T cells, and natural killer cells was enhanced during the
infection process.

E. coli transcriptome changes during bEnd.3 cells infection
The hierarchical clustering (Fig. 4A) and RNA-seq sample Pearson correlation analysis
(Fig. 4B) of gene expression datasets demonstrated high reproducibility within group from
the infected and mock-infected bEnd.3 cells. The DESeq2 R package identified 1,894
DEGs between the two infection conditions, including 969 upregulated and 925
downregulated genes (Fig. 4C, |log2 fold change| ≥ 1 and adjusted P-value < 0.05).

KEGG pathway enrichment analysis was used to functionally classify the DEGs for 88
pathways, revealing that many E. coli genes were enriched in amino acid and energy
metabolism when APEC was cultured with the cells. The top 20 pathways are shown in
Figs. 5A and 5B. The DEGs were also annotated by GO enrichment analysis using the
GOseq R package, and enriched for 2,482 GO terms, including 1,376 biological process
terms, 311 cellular component terms and 795 molecular function terms. The majority of
the top 30 enriched GO terms (18/30) were classified as biological processes, which are
shown in detail in Fig. 5C. In this study, we also identified several interesting changes in
E. coli, particularly in the DEGs related to virulence factors, protein export systems and
amino acid metabolism (Table 3; Table S3).

A critical step in the development of meningitis is the adhesion and invasion of ECs.
Therefore, virulence factors related to fimbriae, flagella, outer membrane proteins, and
lipoproteins are highly important for allowing pathogenic E. coli to resist blood flow and
cross the BBB.

The RNA-seq data showed that the expression of seven genes related to outer
membrane proteins (e.g., CXG97_RS09580, CXG97_RS01930), eight fimbrial genes
(e.g., CXG97_RS09010, CXG97_RS09025), one flagellin gene (CXG97_RS11050), two
pilus genes (CXG97_RS17695 and CXG97_RS17680), and one lipoprotein gene
(CXG97_RS19095) increased significantly during infection, whereas the expression of
nine fimbrial genes (e.g., CXG97_RS01490, CXG97_RS25950) decreased during infection
(Table 3; Table S3).

Lipopolysaccharide (LPS) is produced by most Gram-negative bacteria and can
activate the host immune system via TLR4. RNA-seq data revealed that eight DEGs
were enriched in the LPS biosynthesis pathway, five of which (e.g., CXG97_RS21640,
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CXG97_RS21660) were upregulated in the infection group. Colicins are class III
bacteriocins, which are produced during nutrient or oxygen stress and regulated by the
SOS response (Smarda & Smajs, 1998). The expression of six genes related to colicin
biosynthesis and transport (e.g., CXG97_RS26815, CXG97_RS27750) increased
significantly during infection. In addition, thirteen colibactin genes (e.g., CXG97_RS11550,
CXG97_RS11545), which induce chromosomal instability and DNA damage in eukaryotic
cells and lead to EC senescence and immune cell apoptosis, were downregulated
during infection, while only one colibactin gene (CXG97_RS11495) was upregulated.

Figure 4 Differential expression overview profiles of APEC strain transcriptome data. (A) Heat maps
of APEC strain gene expression during infection or control samples. The read counts of each cellular
mRNA were normalized by the sum of the total reads. Colors from white to red indicate upregulated
cellular genes; colors from white to blue indicate downregulated cellular genes. (B) Pearson correlation
between infection and control samples. (C) Volcano plot of P-values as a function of weighted fold
change for mRNAs in infection and control groups. The vertical dotted line delimits up- and down-
regulation. Red plots represent significant upregulated and green plots represent significant down-
regulated (|log2 fold change| ≥1, corrected P < 0.05). Full-size DOI: 10.7717/peerj.9172/fig-4
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Figure 5 Enrichment analysis of KEGG pathways and GO terms for DEGs in APEC strain. (A and B)
The top 20 enriched KEGG pathways were classified as amino acid metabolism (7/20, Valine, leucine and
isoleucine biosynthesis and Selenocompound metabolism, etc.), lipid metabolism (2/20, Biosynthesis of
unsaturated fatty acids and Glycerolipid metabolism), energy metabolism (2/20, Nitrogen metabolism
and Oxidative phosphorylation) and othe pathways. The size of each circle represents the number of
DEGs in each pahway (larger circles represent more DEGs) and the color represents the corrected P value
of each pathway. Red bars represent significant upregulated, blue bars represent significant down-
regulated and white bars represent no expression or no significant expression. (C) In the top 30 enriched
GO terms, most terms (18/30) were classified as biological process, eight of them belonged to cellular
component and four of them were classified as molecular function. Red bars represent significant
upregulated and blue bars represent significant downregulated (|log2 fold change| ≥1, �corrected
P < 0.05). Full-size DOI: 10.7717/peerj.9172/fig-5
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Table 3 DEGs of APEC strain between two groups. Different expression genes of APEC strain between the infection and mock-infection group.

Components Gene log2 padj Description
name Fold

Change

Virulence factors related to meningitis

Outer membrane protein CXG97_RS20855 – −2.3638 3.43E−06 membrane protein

CXG97_RS13750 – −1.8361 0.0083262 membrane protein

CXG97_RS15480 – −1.7665 0.014095 membrane protein

CXG97_RS10635 – −1.1948 0.039525 membrane protein

CXG97_RS12085 – 3.121 3.42E−09 membrane protein

CXG97_RS18795 – 1.5797 0.003432 membrane protein

CXG97_RS10035 – 1.1784 0.032157 membrane protein

CXG97_RS08525 – 1.3149 0.015745 autotransported outer membrane protein involved in cell adhesion

CXG97_RS01930 – 1.7816 0.0014647 autotransporter outer membrane beta-barrel domain-containing
protein

CXG97_RS01635 – 1.4776 0.0098823 autotransporter outer membrane beta-barrel domain-containing
protein

CXG97_RS09010 – 1.6293 0.049761 fimbrial biogenesis outer membrane usher protein

CXG97_RS18505 – 1.3315 0.045966 fimbrial biogenesis outer membrane usher protein

CXG97_RS09580 slyB 1.3411 0.0099186 outer membrane lipoprotein SlyB

CXG97_RS15430 – 1.5911 0.0023044 outer membrane protein assembly factor BamD

CXG97_RS15540 – 1.2863 0.015568 outer membrane protein assembly factor BamE

fimbrial CXG97_RS01490 – −3.3352 2.07E−05 fimbrial chaperone EcpB

CXG97_RS17665 – −1.2869 0.0229 fimbrial protein SteB

CXG97_RS25945 fimA −1.1275 0.041784 type 1 fimbriae major subunit

CXG97_RS13610 – −1.7529 0.002143 flagella biosynthesis regulator Flk

CXG97_RS25950 – −2.2246 0.00011843 fimbrin fimI

CXG97_RS09010 – 1.6293 0.049761 fimbrial biogenesis outer membrane usher protein

CXG97_RS09025 – 2.7839 2.36E−07 fimbrial chaperone protein FimC

fimbrial CXG97_RS09015 – 1.7675 0.0015729 fimbrial chaperone protein FimC

CXG97_RS17675 – 1.996 8.94E−05 type 1 fimbrial protein

CXG97_RS20510 – 1.2399 0.02421 type 1 fimbrial protein

CXG97_RS09020 – 2.3148 5.86E−06 Fml fimbriae subunit

flagellin CXG97_RS11050 – 1.2589 0.039065 flagellin FliC

LPS biosynthesis CXG97_RS21640 – 2.4423 3.2651E−06 ligase

CXG97_RS21660 – 1.9943 0.00014874 LPS 1%2C2-glucosyltransferase

CXG97_RS21655 – 2.0378 0.00015131 LPS core heptose(II) kinase RfaY

CXG97_RS21665 – 1.8557 0.00042876 lipopolysaccharide 3-alpha-galactosyltransferase

CXG97_RS06255 – −1.3255 0.017077 lipid A biosynthesis lauroyl acyltransferase

CXG97_RS21670 – 1.2497 0.019185 lipopolysaccharide core heptose(I) kinase RfaP

CXG97_RS21630 – −1.7497 0.038733 ADP-heptose–LPS heptosyltransferase
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The type VI secretion system (T6SS) contributes to the pathogenicity of bacteria
(Zhou et al., 2012) and bacteria–bacteria interactions (Basler, Ho & Mekalanos, 2013).
Four T6SS genes (e.g., CXG97_RS01210, CXG97_RS01220) were downregulated during
infection in the present study. ABC transporters are essential bacterial virulence factors,
which play roles in the secretion of toxins and antimicrobial agents, and are associated
with physiological processes (Davidson & Chen, 2004). In RNA-seq data, numerous
DEGs were enriched in the ABC transporter pathway, with CXG97_RS18120,
CXG97_RS13545, CXG97_RS23390 and CXG97_RS05305 being the most significantly
upregulated genes in the APEC strain cultured with cells. These results suggested that the
occurrence of meningitis was related to synergistic effects of many virulence factors.

Compared to the negative control, the prokaryotic protein export pathway was one of
the most enriched E. coli KEGG pathways, which is composed of the general secretory
system (Sec system), twin-arginine translocase (Tat) system, and a single peptide. The Sec
and Tat systems are responsible for the transport of unstable or unfolded bacterial
structural proteins to the periplasm or cytoplasmic membrane. Some genes (secYFBG,
tatABC, yajc and lepB) from three parts of this pathway were upregulated in the infected
groups, which suggested that protein secretion may be increased in the infected group.
Moreover, several DEGs related to amino acid metabolism in APEC changed in response
to bEnd.3 cells, as compared to those cultured in DMEM. The majority of these genes,

Table 3 (continued)

Components Gene log2 padj Description
name Fold

Change

Proteins export and amino acid metabolism

Protein export CXG97_RS19815 SecY 2.0511 4.25E−05 protein translocase subunit SecY

CXG97_RS23005 tatC 1.9541 0.00021961 twin-arginine translocase subunit TatC

CXG97_RS02115 YajC 1.7879 0.00069815 preprotein translocase subunit YajC

CXG97_RS22995 TatA 1.3288 0.012952 twin-arginine translocase subunit TatA

CXG97_RS23000 TatB 1.2944 0.014643 twin-arginine translocase subunit TatB

CXG97_RS02125 SecF 2.2484 0.020017 protein translocase subunit SecF

CXG97_RS21575 SecB 1.237 0.025291 protein-export protein SecB

CXG97_RS19155 SecG 1.1816 0.027567 protein-export membrane protein SecG

Arginine and proline
metabolism

CXG97_RS23620 argB 3.3547 1.35E−05 acetylglutamate kinase

CXG97_RS17080 arcC 1.6337 0.008478 carbamate kinase

CXG97_RS08705 patD 1.3149 0.037641 gamma-aminobutyraldehyde dehydrogenase

CXG97_RS25795 argF 8.588 1.37E−24 ornithine carbamoyltransferase

CXG97_RS03780 speF 1.5823 0.034956 ornithine decarboxylase SpeF

CXG97_RS06060 putA −3.5858 0.005959 bifunctional proline dehydrogenase/L-glutamate
gamma-semialdehyde dehydrogenase PutA

CXG97_RS10130 astB −4.4096 0.006318 succinylarginine dihydrolase

CXG97_RS10135 astD −5.5193 0.000153 N-succinylglutamate 5-semialdehyde dehydrogenase

CXG97_RS17430 speB −1.8935 0.000611 agmatinase

CXG97_RS23160 glnA −1.458 0.009095 glutamate–ammonia ligase

Wang et al. (2020), PeerJ, DOI 10.7717/peerj.9172 15/26

https://peerj.com/
http://dx.doi.org/10.7717/peerj.9172


which were involved in arginine and proline metabolism (argB, astDB, speBF and patD),
histidine metabolism (hisHDFAF), and valine, leucine and isoleucine biosynthesis (leuCB
and ilvA), were downregulated in the infected samples, suggesting that APEC may
encounter a difficult and complex nutritional environment during the infection process.

DISCUSSION
Bacterial meningitis is an inflammatory disease of the CNS, which not only causes high
morbidity and mortality but also leaves survivors with long-term neurological sequelae.
To infect the CNS, bacteria must interact with and cross the BBB via a critical step
involving the adherence and invasion of BMECs, an important component of the BBB.
In the present study, we used RNA-seq to measure genome-wide transcriptional changes
in both APEC and bEnd.3 cells, including cell junctional complexes, cell signaling,
inflammatory responses, bacterial adhesion and invasion factors and metabolic
competition for similar nutritional substrates. The findings of the present study may
contribute toward an improved understanding of the microbe-cell interaction during
the invasion process.

TJ and AJ proteins can form junctional complexes and thus play important roles in
maintaining the integrity of the BBB (Tietz & Engelhardt, 2015). We found that major
components of TJs and AJs, such as Cldn5 and Cdh5, were downregulated in infected cells.
Cdh5 is involved in neuroinflammation development, BBB dysregulation (Gijbels et al.,
1990), and leukocyte transmigration in vitro (Orsenigo et al., 2012), and affects the
expression of other TJ and AJ proteins (Dejana & Vestweber, 2013; Orsenigo et al., 2012).
Conversely, Cldn5 highly expressed in ECs in the CNS (Daneman et al., 2010; Ohtsuki
et al., 2008), which plays a key role in the paracellular barrier and forms mechanical
links to maintain the structural integrity and high electrical resistance of vasculature
(Abbott et al., 2010). The changes in Cdh5 and Cldn5 expression observed in the present
study are consistent with the previous findings reported in a Staphylococcus aureus and
group B Streptococcus model of meningitis (Kim et al., 2015; McLoughlin et al., 2017).
In addition, Cdh5 controls Cldn5 by triggering its transcriptional repression via FoxO1 and
β-catenin (Taddei et al., 2008). Transcriptome data in the present study revealed a
significant decrease in FoxO1 expression during infection but only a slight increase in
β-catenin expression, which may be related to the up-regulation of β-catenin protein levels
and the activation of Wnt/β-catenin signaling by LPS (Xing et al., 2019). Moreover, Wnt/
β-catenin signaling was shown to be involved in BBB development, where its blockade
decreased Cdh5 expression in primary ECs of newborn mouse brain but not in that of
the adult (Hubner et al., 2018). The results of the present study as well as previous studies
(Kim et al., 2015; McLoughlin et al., 2017) suggest that Cdh5 and Cldn5 are major
determinants of BBB deterioration during infection, while Wnt/β-catenin signaling may
contribute to the maintenance of BBB integrity. However, further studies are required to
investigate the complex relationship between Cdh5, Cldn5 and Wnt/β-catenin signaling
during the development of E. coli meningitis.

As a dual (physical and immunological) barrier, the BBB is also a central determinant of
protective homeostatic surveillance during CNS infections (Klein & Hunter, 2017).
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CNS ECs are semiprofessional antigen-presenting cells that present antigens to T cells
and regulate the multistep cascade for immune cell trafficking into the CNS
(Meyer, Martin-Blondel & Liblau, 2017). In the present study, Tlr4 and Tlr13 were
upregulated in infected cells. However, a previous study on mouse meningitis induced by
E. coli showed that TLRs were activated in brain tissues, with elevated Tlr2, Tlr4 and Tlr7
expression (Bottcher et al., 2003). TLR activation has also been shown to modulate
microvascular EC permeability and the expression of coagulation pathway intermediaries
(Khakpour, Wilhelmsen & Hellman, 2015). Tlr13 was highly expressed in almost all
mouse CNS cell types and specifically detected 23S ribosomal RNA from E. coli (Li &
Chen, 2012). Recent studies have identified that the recognition of E. coli mRNA
stimulated helper T cell differentiation, promoted vaccine responses, and helped to
distinguish between live and dead microbes (Sander et al., 2011; Ugolini et al., 2018).
To our knowledge, this is the first study to report the high expression of Tlr13 in E. coli
meningitis model in vitro. However, further investigations are necessary to elucidate the
specific microbial components that activate Tlr13 in E. coli meningitis and reveal the
details of the related pathways involved in infection. Moreover, future studies should
investigate TLR inhibitors as potential targets to prevent serious meningitis-related
complications.

Following inflammatory activation, host cells release cytokines and chemokines to
maintain immune surveillance, facilitate leukocyte traffic, and recruit other inflammatory
factors (Takeshita & Ransohoff, 2012). In the present study, Cxcl1, Cxcl2 and Cxcl16
were significantly upregulated in infected cells. A similar innate immune response was
previously observed in different bacterial meningitis as well. Cxcl1, Cxcl2 and CXCL16
were associated with the migration of immune cells to sites of inflammation, matrix
metalloproteinase activity, increased cell–cell adhesion, NF-кB-dependent cell
proliferation, and proinflammatory gene transcription (Chandrasekar, Bysani &
Mummidi, 2004; Girbl et al., 2018; Griffith, Sokol & Luster, 2014; Hofnagel et al., 2011;
Semple, Kossmann & Morganti-Kossmann, 2010; Van Der Voort et al., 2005). In addition,
Cxcl1 and Cxcl2 have been shown to alter human BMEC permeability and disrupt EC
junctions during the migration of neutrophils and monocytes (Girbl et al., 2018; Zhang
et al., 2013).

The mechanism of E. coli pathogenesis involves complex patterns of adhesion, protein
export into host cells, changes in signaling mechanisms, impaired immune responses with
colonization, disrupted membrane potential, and cytoskeletal manipulation (Bhavsar,
Guttman & Finlay, 2007; Hornef et al., 2002; Kim et al., 2010). In the present study, many
bacterial DEGs related to fimbrial and flagellin components were upregulated in the
infection group. Type 1 fimbriae are mainly formed by FimAGHF proteins and mediate
the mannose-sensitive adhesion of E. coli to various eukaryotic cells (Hanson & Brinton,
1988; Klemm, 1984; Teng et al., 2005). Conversely, the expression of S fimbriae in E. coli
promoted adhesion to cow, human, and rat BMECs but not the systemic vascular
endothelium (Prasadarao, Wass & Kim, 1997). Moreover, it has been shown that flagella,
the locomotive organelles of bacteria, are an association factor rather than an invasion
factor in human BMECs (Parthasarathy, Yao & Kim, 2007). The results of the present
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study also indicated that fimbrial and flagellin components were highly important
virulence factors of the APEC XM strain for BBB attachment and invasion.

E. coli exerts physiological or pathogenic functions by exporting proteins via eight
different systems (Crane & Randall, 2017). In the present study, many DEGs (secYFBG and
LepB) related to the Sec system were upregulated in the infection group. SecB plays a
crucial role as a chaperone during protein secretion by binding to precursors and
delivering them to the membrane for translocation. Previous studies have shown that
many virulence factors, such as P pilus, type 1 pilus, curli, OmpT and OmpA, were secreted
into the extracellular environment or localized in the outer membrane by the SecYEG
complex or SecB chaperone (Baars et al., 2006; Stathopoulos et al., 2000; Stones & Krachler,
2015). Recently, LepB has been proved to be a potential target for an attractive new
antibacterial agent due to its crucial role in the Sec pathway; LepB inhibition leads to
preprotein accumulation at the phospholipid bilayer and thus cell death (De Rosa et al.,
2017; Ferrandez & Condemine, 2008). On the basis of these results, Sec pathway-mediated
secretion may play an important role in bacterial pathogenesis. Thus, Sec pathway-
associated proteins could be potential antibiotic drug targets for the prevention and
treatment of meningitis. Another major component of the protein export pathway is the
Tat system. In the present study, the three primary components of the Tat system (tatABC)
were upregulated in the infected group. The Tat system was shown to take part in the
development of bacteremia as well as the production of Shiga toxin 1 (Stx1) and H7
flagellin (Siddiqui, Beattie & Khan, 2012). Therefore, these results suggest that the Tat
system may have a potential role in virulence during meningitis.

In addition to the deterioration of physical and immunological barrier functions, host
cells and pathogens fiercely competed for nutrition. Indeed, the metabolic competition
between the host and bacteria could influence both bacterial virulence and host responses,
which determine the outcome of infection (Olive & Sassetti, 2016). In the present study,
we identified a series of DEGs related to arginine and proline metabolism, which are
particularly important nutrients for the host–pathogen interaction. Arginine is the unique
substrate for nitric oxide synthase (NOS) to generate nitric oxide (NO) (Palmer, Ashton &
Moncada, 1988), which has a variety of physiological functions, including vasodilation,
leukocyte activation, and killing of virus and bacteria in diseases (Chicoine et al., 2004).
In the present study, four host genes (Gm15587, Nos2, Pycr1, Arg2) were enriched in this
metabolic pathway, two of which (Nos2, Pycr1) were downregulated in the infection group.
Nos2 encoded a NOS and contributed to BBB breakdown and thus early mortality in
murine Streptococcus pneumoniae meningitis (Yau et al., 2016). Previous studies
showed that E. coli utilized arginine via the arginine decarboxylase and the arginine
succinyltransferase pathway to produce polyamines (putrescine, spermidine, and
spermine) for proliferation or survival in an acidic environment (Schneider, Kiupakis &
Reitzer, 1998; Stancik et al., 2002). Since arginase and iNOS have the same substrate,
E. coli may exploit their competition to block NO production and thus avoid being killed
by NO in a similar manner to other pathogens (Bronte & Zanovello, 2005; Eckmann et al.,
2000; Talaue et al., 2006). In our RNA-seq data set, some DEGs related to arginine
and proline metabolism (argBF, arcC, patD, and speF) were upregulated in the infection
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group, while others (putA, astBD, speB and glnA) were downregulated. On the basis of
these results, arginine/ornithine ABC transporters may be an effective target for preventing
meningitis. Furthermore, the simultaneous changes in arginine and proline metabolism
in the host and microbe may provide novel insights into nutrient and metabolite
competition that occurs during meningitis development. Further experiments are required
to explore this field and discover the molecular mechanisms underlying the host–pathogen
relationship during infection.

CONCLUSION
This study provided a comprehensive overview of the transcriptomic changes that
occurred when APEC infected the bEnd.3 cells. APEC may exploit the degradation of
cell junctional connections to invade the BBB and secrete virulence factors to promote
bacterial infection. Meanwhile, bEnd.3 cells resisted the bacterial infection via immune
activation and inflammatory response. Therefore, this study provides insights into the
process of bacterial invasion and the subsequent host defense mechanism, which can be
used as reference for further investigations in this field.
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