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The Lung Microbiome in Health, Hypersensitivity Pneumonitis, and
Idiopathic Pulmonary Fibrosis: A Heavy Bacterial Burden to Bear

The microbiome regulates human health and immunity,
contributing robustly to physiological homeostasis. The healthy
lung is not sterile and consists of bacterial communities that exist in
a relatively low biomass state and correlate with local immunity
(1, 2). In the diseased lung, there is a growing recognition of the
potential mechanistic role of alterations or “dysbiosis” of lung
microbiota (3). In particular, the lung microbiome has been
implicated in the pathogenesis of idiopathic pulmonary fibrosis
(IPF).

Studies in patients with IPF demonstrate that an increased
burden of lung microbiota, as well as specific taxa such as
Streptococcus and Staphylococcus, is associated with an elevated risk
of disease progression and/or mortality (4–6). Lung microbiota are
associated with innate immune activation signatures in peripheral
blood (7), and increased a diversity of lung microbiota correlates
with lower alveolar inflammation (4). In animal models, lung
dysbiosis precedes fibrosis and eradication of the microbiome
significantly ameliorates fibrosis, suggesting a causal role for the
lung microbiome, possibly through the activation of immune
pathways (4, 8). Recently, Invernizzi and colleagues reported an

absence of correlations between key radiological markers and
physiological features of IPF and lung bacterial burden,
demonstrating that the increased bacterial burden reported in IPF
is not simply the direct result of architectural distortion and
parenchymal destruction (9). This addressed a key question in the
field. However, it remains unknown whether these observations in
IPF are universal to all interstitial lung disease (ILD).

Chronic hypersensitivity pneumonitis (CHP) is an enigmatic
clinical syndrome and common form of ILD that frequently
proves fatal. Both CHP and IPF share fibrotic remodeling of the
lung parenchyma, may be indistinguishable by radiographic
studies/histopathology, and respond to therapy directed at
progressive fibrosis, supporting shared mechanistic pathways
(10). Yet, patients with IPF fundamentally differ in prognosis
(poorer in IPF, better in CHP), the presence of environmental
antigen exposures (generally absent in IPF), and response to
immunosuppression (detrimental in IPF, often beneficial in CHP),
suggesting important differences between these diseases that are
poorly understood.

In this issue of the Journal, Invernizzi and colleagues
(pp. 339–347) report their findings on CHP and the lung
microbiome in an elegant study (11). The authors compared key
features of the healthy lung microbiome, the CHP microbiome, and
the IPF lung microbiome. Patients with CHP exhibited a
significantly lower lung bacterial burden compared with patients
with IPF, although they still had greater lung bacterial burden
compared with healthy subjects. However, bacterial burden was not
associated with mortality in patients with CHP, unlike IPF, which
is a fundamental new clinical observation. Furthermore, there were
distinct differences in lung microbial composition between CHP
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and IPF. The lung microbiota of patients with IPF showed a greater
abundance of Firmicutes and lower abundance of Proteobacteria
compared with CHP. Interestingly, Staphylococcus, at the genus
level, was more abundant in patients with CHP compared with IPF.
However, the abundance of Staphylococcus was not associated with
clinical outcomes in the CHP cohort, again unlike IPF. Overall, this
paper supports the hypothesis that IPF pathogenesis is uniquely
impacted by the microbiome and that the increased bacterial
burden reported in IPF does not simply reflect the extent of
underlying tissue fibrosis.

The paper by Invernizzi and colleagues has some noteworthy
limitations. The study was performed as a single-center
observational study and is limited in patient numbers. There are
considerable differences in patient cohorts, with significant
differences in age, sex, and disease severity at baseline. Although
fibrosis is a commonality in CHP and IPF, the usual interstitial
pneumonia pattern on radiographic studies predominated in IPF.
There may be notable differences in community composition based
on topography of the respiratory tract because previous studies have
noted changes in bacterial communities based on the presence or
absence of honeycombing in IPF (12). Furthermore, we lack an
accurate understanding of the temporal changes that may occur in
respiratory tract dysbiosis or the impact of immunosuppressive or
antifibrotic therapy on the lung microbiome. The current study
design with a single-time-point BAL cannot cater for this and
important differences may be missed as a result. Because cellular
and humoral immunological responses vary considerably between
IPF and CHP, a more detailed analysis of immunological
phenotype in the studied cohorts would have been revealing.

Nevertheless, this work exposes exciting new horizons. Recent
reviews have highlighted the probable bidirectionality of
host–microbiome interactions: an initial injury leads to dysbiosis,
which in turn perpetuates injury (13). Perhaps patients with IPF
may be uniquely susceptible to injury mediated by dysbiosis. In
turn, lung bacterial communities in IPF may also be uniquely
vulnerable to the impact of local physiological disturbances. It is
remarkable that many IPF genetic risk factors involve innate
immunity or host defense genes (14). In Invernizzi and colleagues’
report, CHP mortality was ,25% over 4 years as opposed to
approximately 50% for IPF (11). Perhaps microbiome
perturbations are not sufficient to impact CHP outcomes, but in
IPF they suffice to perturb a fragile homeostasis enough to lead to
morbidity and mortality. In this case, respiratory tract dysbiosis in
IPF serves as a second hit/insult, which leads to decompensation.

Although these diseases share some common features, we must
recognize that neither CHP nor IPF are monolithic disease entities
but are likely to consist of several sub- or endotypes. For example,
genetic risk factors that are associated with IPF have also been
identified in CHP (15), and certain patients with CHP exhibit the
radiological features and adverse outcomes of IPF (16). This
suggests that subgroups of CHP may share pathomechanisms,
prognosis, and perhaps lung dysbiosis characteristics with
subgroups of IPF, and as such, future work may require more
detailed clinical, immunological, and microbiological endotyping.

In conclusion, this paper reports a fundamental observation for
the field of lung microbiome science and ILD. An increased bacterial
burden in the respiratory tract of patients with CHP is not associated
with mortality, whereas in patients with IPF, the increased bacterial
burden elevates the risk of death. For patients with IPF, this

increased bacterial load is indeed a heavy burden to bear. An
improved understanding of this key observation will require further
mechanistic work and carefully designed longitudinally observational
studies. This future research will further advance us toward better
treatments and, hopefully, a cure for these devastating diseases. n
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Branching Out in Chronic Cough: Evidence for Increased Airway
Nerve Density

Chronic cough is believed to affect up to 12% of the general
population and most commonly occurs as a consequence of
cigarette smoking and chronic respiratory diseases (e.g., chronic
obstructive pulmonary disease, asthma, and bronchiectasis) (1, 2).
In patients presenting to specialist cough clinics, the cause is
often less obvious, and the cough is more likely to be associated
with nasal disease, gastroesophageal reflux disease, or asthma. In
some patients, the chronic cough may not improve with the
treatment of these conditions and is termed “refractory” or if no
cause can be identified, “unexplained.” Patients attending cough
clinics mainly describe a dry/minimally productive cough triggered
by trivial exposures to innocuous stimuli such as changes in
temperature, environmental irritants (e.g., perfumes and cleaning
products) and use of their voice (3). Coughing occurs typically
hundreds of times per day and has significant quality of life
impacts, especially if treatment of associated conditions is not
beneficial. Currently there are no licensed therapies for chronic
cough, and the underlying mechanisms are poorly understood.
In recent years, it has become increasingly accepted that a
hyperexcitability of the neuronal pathways controlling cough is
likely to be a fundamental component of the pathophysiology.
Indeed, heightened cough reflex responses have been demonstrated
in patients with chronic cough in studies experimentally evoking
cough (4). However, the precise nature of this hyperexcitability
remains unclear, and the extent to which this may reflect changes
in activation/function of the airway nerves responsible for initiating
cough and/or their connections in the central nervous system is
unknown.

In this issue of the Journal, the study by Shapiro and colleagues
(pp. 348–355) examined whether airway nerve density is increased
in patients with chronic cough (5). Remarkably few studies have
visualized airway nerves in bronchoscopic biopsies in respiratory
disease, probably as a consequence of the methodological
challenges. Achieving adequate staining of neuronal elements is
difficult in human tissue, perhaps because of inadequate

penetration of the immunohistochemical stains or the lack of
specificity of antibodies raised against neuronal targets in other
species. Thus, visualization of neurons is mainly achieved with the
panneuronal stain PGP9.5, and the presence of other receptors to
further characterize the innervation is limited (6). Moreover, once
neuronal staining patterns are achieved, describing the three-
dimensional neuronal architecture in an objective standard manner
is problematic.

Authors of this study are to be congratulated on developing a
technique for generating three-dimensional models to facilitate the
quantification of nerve length and branching as a means to describe
nerve density (7). Using this technique, they found that a group of
22 patients presenting with chronic cough (more than 12 wk
duration) had increased epithelial nerve density (both increased
length and branching) compared with a group of well-matched
healthy volunteers. Subepithelial nerve density was no different
between the groups, and there were also no differences in staining
with substance P or eosinophil peroxidase. This intriguing
finding raises the possibility that increased epithelial innervation
may play a role in the pathophysiology of chronic cough. The study
confirms the previous finding of nonsignificant increases in
epithelial nerve density in patients with chronic cough (8), adding
detail about neuronal length and branch points indicative of
neuroplasticity.

The factors mediating neuronal branching are complex and
vary considerably with different types of neurons (9). Most is known
about mechanisms in the brain, where the primary function of
branching is to form new synaptic connections. However, increased
branching/sprouting of sensory neurons also occurs in peripheral
tissues, including in lesional skin in atopic dermatitis (10) and
colonic mucosa of irritable bowel disease (11). Animal models of
cystitis/overactive bladder, painful arthritic joints, and breast
cancer–induced bone pain have also described increases in
nerve density (12–14). Branching is stimulated by extracellular
factors, such as guidance molecules, neurotrophic factors, and
adhesive ligands, and by intracellular organelle position and gene
expression (9). Branching can be activity dependent but may also
occur as a compensatory mechanism after neuronal damage. In the
study by Shapiro and colleagues, the increased density of epithelial
fibers may therefore have occurred as a consequence of many
processes; these include not only the direct effects of the shearing
forces and pressures generated by coughing but also the resultant
release of inflammatory mediators (e.g., ATP). Based on the
location and morphological features of the fibers studied, they are
most likely to be vagal C fibers, which are predominantly sensitive
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