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Abstract

Staphylococcus aureus (S. aureus) pathogenesis is a complex process involving a diverse array of extracellular and cell wall
components. ClfB, an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules) family surface
protein, described as a fibrinogen-binding clumping factor, is a key determinant of S. aureus nasal colonization, but the
molecular basis for ClfB-ligand recognition remains unknown. In this study, we solved the crystal structures of apo-ClfB and
its complexes with fibrinogen a (Fg a) and cytokeratin 10 (CK10) peptides. Structural comparison revealed a conserved
glycine-serine-rich (GSR) ClfB binding motif (GSSGXGXXG) within the ligands, which was also found in other human proteins
such as Engrailed protein, TCF20 and Dermokine proteins. Interaction between Dermokine and ClfB was confirmed by
subsequent binding assays. The crystal structure of ClfB complexed with a 15-residue peptide derived from Dermokine
revealed the same peptide binding mode of ClfB as identified in the crystal structures of ClfB-Fg a and ClfB-CK10. The results
presented here highlight the multi-ligand binding property of ClfB, which is very distinct from other characterized
MSCRAMMs to-date. The adherence of multiple peptides carrying the GSR motif into the same pocket in ClfB is reminiscent
of MHC molecules. Our results provide a template for the identification of other molecules targeted by S. aureus during its
colonization and infection. We propose that other MSCRAMMs like ClfA and SdrG also possess multi-ligand binding
properties.
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Introduction

Staphylococcus aureus (S. aureus), an important opportunistic

pathogen, is a major threat to humans and animals causing high

morbidity and mortality worldwide. It is responsible for a variety of

infections ranging from mild superficial infections to severe infections

such as infective endocarditis, septic arthritis, osteomyelitis and sepsis

[1]. Such infections are of growing concern because of the increasing

antibiotic resistance of S. aureus [2,3]. Multiple sites within the body can

be colonized, including the perineum and the axilla, but the most

frequent site of the carriage is the moist squamous epithelium of the

anterior nares. Moreover, the organism can be disseminated from a

superficial site via the bloodstream to internal organs where it can set

up a metastatic focus of infection. Approximately 80% of invasive S.

aureus infections are autologous in that they are caused by strains

carried in the patient’s nose prior to illness [4,5].

The ability of S. aureus to cause diseases has been generally

attributed to two classes of virulence determinants: cell wall-

associated proteins and extracellular protein toxins. The initial

step in pathogenesis is often cell adhesion, mediated by surface

adhesins called MSCRAMMs (Microbial Surface Components

Recognizing Adhesive Matrix Molecules) [6,7]. To date, S. aureus

is known to express more than 20 different potential

MSCRAMMs [8,9].

SD-repeat-containing (Sdr) proteins are members of the

MSCRAMM family, including clumping factor A (ClfA), ClfB,

SdrC, SdrD and SdrE of S. aureus and SdrF and SdrG of S.

epidermidis. The Sdr proteins are characterized by the presence of

an R region composed largely of repeated SD dipeptides [10].

They exhibit a comparable structural organization including an N-

terminal secretory signal sequence followed by a ligand-binding A

region and a dipeptide repeat region (R) composed mainly of

aspartate and serine residues. The LPXTG cell wall-anchoring

motif (W) immediately follows the SD-repeat region and is

followed by a hydrophobic membrane-spanning domain (M) and

a short positively charged cytoplasmic tail (C). Despite their

conserved structural organization, the Sdr proteins are not closely

related in sequence, with only 20 to 30% identical amino acid

residues in the ligand-binding A domain. This suggests that

different Sdr proteins might play different roles in S. aureus

pathogenesis [11].

ClfB is one of the best characterized surface proteins on S. aureus

during the past decade [12–18]. The multi-functional character-
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istics are quite unique to this adhesin, unlike ClfA and SdrG that

have been shown to bind only to fibrinogen [19–21]. ClfB plays a

key role in establishing human nasal colonization by binding to the

human type I cytokeratin 10 (CK10) expressed on squamous

epithelial cells [17,18,22,23]. Consistently, recent studies have

shown that the immunization of mice with ClfB reduces nasal

colonization [24]. As a bifunctional MSCRAMM, ClfB also binds

to fibrinogen a (Fg a), which is assumed to be significant in platelet

activation and aggregation and has been shown to contribute to

the pathogenesis of experimental endocarditis in rats [7,17,25,26].

Unlike ClfA, FnBPA and FnBPB, which bind to the c chain of

fibrinogen, ClfB binds to repeat 5 (NSGSSGTGSTGNQ) of the

flexible region of its a chain [15,16,27]. The repeat may form a

loop, similar to the Tyr-(Gly/Ser)n V loops present in the C-

terminus of CK10, to which ClfB also binds [18]. Fg a and CK10

harbor the same or overlapping binding sites on ClfB [18], but the

detailed mechanism of ClfB recognition of Fg a and CK10 is

unclear.

Structural studies suggest that ClfA and SdrG have different

ligand binding characteristics and mechanisms [21,28], although

the structural organizations of the adhesion domains of these two

MSCRAMMs are very similar. A ‘‘dock, lock, and latch’’ (DLL)

model was proposed for SdrG-ligand recognition, where SdrG

adopts an open conformation that allows the Fg ligand to access a

binding trench between the N2 and N3 domains [21]. In ClfA,

however, the cavity is preformed in a stabilized closed configu-

ration, into which the C-terminal of the c chain of fibrinogen

threads. Therefore, the ClfA-Fg binding mechanism was proposed

to be ‘‘Latch and Dock’’ [28].

Here we solved the crystal structures of the apo-ClfB adhesive

domain and its complexes with peptides derived from Fg a and

CK10. Our structures showed that ClfB recognizes its ligands in a

similar manner with the DLL model. A previous study on the

structures of ClfB complexed with Fg a and CK10 peptides

suggested that the conserved peptide-derived motif (GSSGXG) is

required for their binding to ClfB [29]. The data presented in the

present study, however, support a minimal nine amino acids Gly-

Ser-Rich (GSR) motif that is necessary and sufficient for binding to

ClfB. Human genome mining using the motif as a template

identified several candidates including Engrailed protein, TCF20

and Dermokine as potential ClfB-binding proteins. Interaction of

Dermokine with ClfB was confirmed by biochemical and

structural studies, which demonstrate that nearly identical

mechanisms are utilized by ClfB to recognize its binding partners.

Our data not only provides insights into the ligand binding

mechanism of ClfB but also raises the possibility that ClfB targets

multiple substrates during S. aureus infections. These results would

be valuable for the development of new therapeutic strategies.

Results

Structure of apo-ClfB(197–542)

Previous studies indicated that a segment of ClfB containing N2

and N3 regions (Figure 1A) is sufficient for recognition of Fg a and

CK10 [18,27,29]. We therefore cloned the segment encoding the

two regions (amino acids 197 to 542) of the ClfB protein from S.

aureus and purified the protein from E. coli for our structural

studies. The structure of the ClfB(208–540)-Fg a(316–328) complex was

solved by a Se-Met derived protein and was used as a starting

model for determination of the other structures by the molecular

replacement method (Table 1).

The apo-ClfB(197–534) structure was solved at 2.5 Å resolution,

consisting of residues Ser197-Ala534 (Figure 1B). No electron

density was observed for the C-terminal eight residues in the apo-

ClfB structure. The polypeptide chain of apo-ClfB(197–534) is

composed of two distinct domains N2 and N3, as previously

described for other MSCRAMMs in S. aureus (Figure 1A) [30] .

The N-terminal N2-domain contains 146 residues (amino acids

213–358) and the N3 domain 170 residues (amino acids 359–528).

In the crystal structure, both N2 and N3 have two layers of b-

sheets that pack tightly against each other (Figure 1B). In contrast,

packing between the two domains is much looser, resulting in the

formation of a large groove between them where presumably

ligands bind. In N3 domain, strands A, B, E, and D form one of

the two principal sheets, while strands D9, D0, C, F, and G on the

opposite face present the other. Similar to the structures of other

Fg-binding MSCRAMMs [21,28,29,31], the structures of N2 and

N3 display a typical Dev-IgG fold featured by the existence of the

additional strands D9 and D0 as compared to the C-type IgG fold

[30]. The structures of the N2 and N3 domains can be well

superposed with an rms deviation of 0.98 Å for all Ca atoms. One

structural difference between them, however, is the three-stranded

b-sheet (A, B and E) on one side of N2 in comparison with a four-

stranded b-sheet (D, F, C and G0) on its corresponding side in N3,

as described in the structures of ClfA, SdrG and ClfB [21,28,29].

ClfBSer197 and ClfBLeu198 or even a short N-terminally extended

segment such as the unrelated His-tag were shown to be necessary

to maintain the Fg binding activity of ClfB [16], though the

mechanism of how the N-terminal segment of N2 participates in

substrate binding is unclear. In the crystal structure of apo-ClfB,

the N-terminus (Ser197-Ala201) of one ClfB(197–542) molecule

binds to the N3 domain of a symmetry-related ClfB molecule,

forming a b-sheet together with the strand G (Figure 1C and

Figure S1) mediated by 2 pairs of main-chain hydrogen bonds.

Additional hydrogen bonds involving ClfBGln235 and ClfBVal200

further contribute to the N-terminus-mediated interaction be-

tween ClfBs (Figure 1D). These interactions may act together to

stabilize the G-strand of the N3 domain, thus maintaining its Dev-

IgG fold and mimicking the transition state of ligand binding.

(All structural figures in this paper were generated with PyMOL

[32]).

Author Summary

Staphylococcus aureus (S. aureus), an important opportu-
nistic pathogen, is a major threat to humans and animals,
causing high morbidity and mortality worldwide. It is
responsible for a variety of infections ranging from mild
superficial infections to severe infections such as infective
endocarditis, septic arthritis, osteomyelitis and sepsis. Such
infections are of growing concern due to the increasing
antibiotic resistance of S. aureus. In order to understand
the mechanism of the S. aureus pathogenesis, we studied
one of the bacterial surface proteins clumping factor B
(ClfB) bound by the fibrinogen a (Fg a) and cytokeratin 10
(CK10). From analyses of the high resolution crystal
structures we found that the ClfB-binding peptides harbor
a stretch with consensus sequence (GSSGXGXXG) that is
also conserved in Engrailed protein, TCF20 and Dermo-
kines. The interaction between ClfB and a dermokine-
derived peptide was demonstrated using binding assays.
Consistent with a role of ClfB in the inflammatory
responses induced by S. aureus, expression of dermokines
is predominant in epithelial tissues and upregulated in
inflammatory diseases. The data presented in this study
raise a possibility that multiple human proteins are
targeted by ClfB during S. aureus infection. The multi-
ligand binding feature of ClfB would be valuable for
developing new therapeutic strategies.

Crystal Structure of ClfB Complexes
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Structure of the ClfB with Fibrinogen a (Fg a)(316–328) and
Type I Cytokeratin 10 (CK10)(499–512) peptide complexes

ClfB is a key adhesin mediating S. aureus adherence by binding

to CK10 and Fg [18,27]. To study the molecular mechanisms

underlying ClfB-ligand recognition, we solved the crystal struc-

tures of ClfB(208–542) in complex with CK10 (amino acids 499–512,

referred as CK10(499–512)) or Fg a (amino acids 316–328, referred

as Fg a(316–328)) at 2.3 Å and 1.92 Å, respectively (Figure 2A). The

electron density unambiguously defines the existence of the

peptides in the structures (Figure S2). In both complexes, the

peptides adopt an extended conformation and are inserted into the

tunnel formed between N2 and N3. Structure comparison

revealed that the peptide binding induces an extension of b-

strand G at its C-terminal side, which covers the bound peptides

(Figure 2A and Figure S2). Similar structural features have also

been observed in the structures of ClfA and SdrG complexed with

their respective ligands (Figure S3) [21,28]. Tight contacts between

the peptide and the two domains in each complex result in

extensive interactions, with a buried surface area of 966.6 Å2 in

ClfB-Fg a(316–328) and 1002.6 Å2 in ClfB-CK10(499–512).

Structural comparison of the apo-ClfB and the two complexes

shows that the RMSDs of the Ca atoms in ClfB are 0.46 Å and

0.49 Å respectively, indicating that the overall ClfB remains

unchanged upon binding of the ligands (Figure 2A). Marked

conformational changes, however, occur to the C-terminus of

ClfB(499–512) in both complexes. In ClfB-Fg a(316–328), the residues

ClfBArg529- Ser542 that are disordered in the structure of apo-ClfB

become well defined following Fg a(316–328) binding. The distal C-

Figure 1. Crystal structure of apo-ClfB(197–542). A. Domain organization of ClfB. The numbers of the amino acid residues identifying the
boundaries between adjacent domains are indicated below. S, signal sequence; N1-3, N-terminal fibrinogen binding region; R, serine-aspartate repeat
region; W, wall-spanning domain; M, membrane anchor; C, cytoplasmic positively charged tail. The N2 and N3 domains were used in crystallization of
the ClfB(197–542)-peptide complexes. B. Ribbon representation of the structure of apo-ClfB(197–542), with its N and C terminus indicated. The N2 and N3
domains are shown in orange and magenta, respectively. The strands and loops are marked. C. Ribbon representation of the two symmetry-related
molecules in the unit cell, shown in orange and magenta, respectively. The N and C termini of both molecules are indicated. D. Closer view of the
interaction between the two symmetry-related molecules. The N-terminus of one molecule (amino acids 196–201) is shown as sticks and the other
one is colored in magenta as in (B). The amino acids from both molecules are marked in red and black characters, respectively. The hydrogen bonds
are shown as red dashed lines.
doi:10.1371/journal.ppat.1002751.g001
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terminus of ClfB(197–542) forms a short b-strand G9, which forms a

parallel b-sheet with the b-strand E from the N2 domain. The

formation of the b-sheet is mediated by several main chain and side

chain hydrogen bonds (Figure 2B). The ligand-induced stabilization

of the C-terminal peptide of ClfB allows it to run across Fg a(316–328)

on the top. This binding mode is consistent with the DLL model as

demonstrated in SdrG-Fg b complex [21,28]. In contrast with Fg

a(316–328), the peptide CK10(499–512) did not induce formation of the

b-strand G9 in ClfB (Figure 2A). Nonetheless, the C-terminal

portion of strand G that interacts with Fg a(316–328) also becomes

well defined and caps on the CK10(499–512) peptide.

While we were preparing this manuscript, the structures of apo-

and ligand binding ClfB were reported by V.Ganesh et. al [29].

Interestingly, the structural features we observed here are

noticeably distinct from those of Fg a/CK10-ClfB complexes

solved by them [29]. In both of their structures, particularly in the

Fg a-ClfB complex, although the peptide adopts a conserved

conformation as that in our structure, the C-terminus of the G-

strand exhibits a different orientation and is not inserted into the

N2 domain to form an extra strand G9 with the strand E, and thus

the peptide is not locked in the groove between N2 and N3

(Figure 2C). In this way, their structures do not support the DLL

model proposed based on the SdrG protein structure [21]. In

addition, on peptide binding no rearrangement occurs to the loop

between D and D9 in N2 (Figure 2C). Although the C-terminus of

ClfB in the CK10-ClfB complexes has similar conformation as

that in our structure, the D D9 loop in N2 domain shows no

rearrangement, either (Figure 2D). The differences in the peptide

conformations observed between our and Ganesh et al. works,

could be attributed to the methodologies adopted in crystalliza-

tion. While we co-purified the ClfB with the peptides to form a

complex prior to crystallization, Ganesh et al. reported that they

soaked the peptides into the apo-ClfB crystals [29]. In their

structures, the conformational changes observed in our study to

accommodate the peptide and then to lock it in place could have

been hindered by crystal packing within the crystals.

Table 1. Statistics of data collection and structure refinement.

Parameter Fg a bound CK10 bound Dermokine bound Peptide free

Data collection Se-SAD Native Native Native

Space Group P3121 P3121 P3121 P 43 21 2

Unit Cell (Å) 70.98, 70.98, 174.91 70.33, 70.33, 177.15 70.08, 70.08, 175.76 94.42, 94.42,86.71

Wavelength (Å) 0.979 0.979 0.919 0.979

Resolution (Å) 1.92 (1.99-1.92) 2.3 (2.34-2.3) 2.5 (2.59-2.5) 2.51 (2.6-2.51)

Rsym* (%) 9.9(68) 8.6(50) 7.8(54) 7.5(53.1)

I/sigma 56.5(1.75) 28(2.5) 22.9(2.1) 45.6(10.1)

Completeness (%) 99.5(98.1) 99.6(99.5) 98.3(88.1) 100(100)

Redundancy 8.2(7.6) 10.2(7.9) 8.5(5.9) 14.4(9.9)

Wilson B factor (Å2) 40.6 38.7 61.3 52.1

SAD phasing

Anomalous scatterers 3 Se

Figure-of-merit (FOM) 0.387

FOM after DM 0.687

FOM after phase combination 0.788

Refinement

R factor# 0.1792 0.2204 21.95 23.29

R free 0.2145 0.2546 25.43 28.87

No. atoms 2899 protein atoms+117
H2O+2 Mg2+

2593 protein atoms+ 5
H2O+1 Mg2+

2640 protein atoms+11
H2O+2 Mg2+

2558 protein atoms+5
Mg2+

B factors:

Overall 38.53 39.47 63.91 55.95

Main chain 36.45 37.11 62.64 53.21

Side chain 40.6 41.84 65.16 58.48

RMSD bond lengths 0.006 0.008 0.007 0.01

RMSD bond angles 0.998 1.168 1.168 1.169

Ramachandran plot statistics (%)

Preferred regions 95.4 93.4 92.3 94.9

Allowed regions 4.4 5.2 6.8 3.9

Outliers 0.3 1.3 0.8 1.2

PDB code 4F27 4F1Z 4F20 4F24

+Values in parentheses are for the highest resolution shell.
*Rsym =ShSi|Ih,i2Ih|/ShSiIh,i, where Ih is the mean intensity of the i observations of symmetry related reflections of h.
#R =S|Fobs2Fcalc|/SFobs, where Fcalc is the calculated protein structure factor from the atomic model (Rfree was calculated with 5% of the reflections).
doi:10.1371/journal.ppat.1002751.t001
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In all, our structures strongly support the DLL model for ClfB-

ligand binding. Briefly, ‘‘Dock’’ of the peptide triggers the

rearrangement of the C-terminus of the N3 domain, allowing

ClfBArg529 to form a hydrogen bond with the ClfBAsn238 from N2

domain. This would result in ‘‘Lock’’ of the peptide into the

substrate binding groove, whereas the strong interaction between

G9 and the E strand of N2 can ‘‘Latch’’ the peptide (Figure 2B).

Structural comparison of ClfB with ClfA and SdrG
In spite of the low identities in the amino acid sequences, the

structures of ClfB, ClfA and SdrG exhibit high similarities

(Figure 3). The most conserved residues are mainly located in

the loop region of them (Figure 3B). Although the adherence

domain organizations of ClfB, ClfA and SdrG and their ligand

binding sites are conserved, the ligand binding specificities of the

Figure 2. The ClfB-ligand binding is consistent with the DLL model. A. Ribbon representation of the superimposition of apo-ClfB, ClfB-Fg a
and ClfB-CK10 complexes. The apo-ClfB is shown in limon. In the ClfB-Fg a complex, the protein and Fg a are shown in magenta and marine,
respectively. In the ClfB-CK10 complex, ClfB and CK10 are shown in orange and yellow, respectively. B. Closer view of the interactions between the C-
terminal G9 strand of N3 domain and N2 domain in the ClfB-Fg a complex. Residues involved in the interactions from both G9 strand and N2 domain
are shown as sticks and marked by blue and black characters, respectively. The Fg a peptide is shown as sticks in yellow. C. Structural alignment of
the ClfB-Fg a complex solved in this study and the one by V.Ganesh et al. (PDB entry: 3AT0) shown in stereo view, with RMSD 0.635 Å. The ClfB-Fg a
complex in this study is shown in orange and the peptide is shown as sticks in the same color. The ClfB in the corresponding structure by V.Ganesh et
al. is shown in cyan and Fg a is shown as sticks with its N and C termini marked. The C termini of ClfB in both structures and the G9 strand of ClfB in
the current study are indicated. D. Structural alignment of the ClfB-CK10 complex solved in this study and the one by V.Ganesh et al. (PDB entry:
3ASW), with RMSD 0.479 Å. The ClfB-CK10 complex in this study is shown in marine and the peptide is shown as sticks with its N and C termini
marked. The ClfB in the corresponding structure by V.Ganesh et al. is shown in lime and CK10 is shown as sticks. The C-termini of ClfB in both
structures are indicated.
doi:10.1371/journal.ppat.1002751.g002
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three MSCRAMMSs vary (Figure 3D) [18,21,28]. All the bound

peptides form into a b-strand paired with the G-strand and pass

through the tunnel formed by the N2, N3 and the end of the G-

strand (Figure S3). In the ClfB-Fg a(316–328)/CK10(499–512)

structures, one peptide is bound to one ClfB, in the same

orientation as the Fg c-chain peptide in ClfA and a reverse

orientation compared to the Fg b-chain peptide in SdrG

(Figure 3D) [21,28].

In both ClfA-Fg c and SdrG-Fg b structures, the C-terminus of

the N3 domain forms a b-stand G9 (Figure 3D). ClfATyr338 that is

conserved in the structures of SdrE and SdrD (data not shown),

forms a hydrogen bond with the amino acid at the end of the G

strand (Asn530 in ClfA), thus stabilizing the conformation of the

G9 strand (Figure S4). In ClfB, the amino acid at the

corresponding position is substituted with phenylalanine

(ClfBPhe328) (Figure 3A). Comparison of the apo- and ligand-

bound form structures of ClfB indicates that the interactions

between the ligands and the G strand of N3 play a vital role in the

redirection of the C-terminus of N3. ClfBArg529, the last residue in

the C-terminus of the G strand in ClfB, interacts with the ligand

peptides in both complex structures. ClfBAsn238 and ClfBArg529

form a stable hydrogen bond to lock the peptides into the GG9

covered tunnel. Interestingly, although in the ClfB-CK10 structure

the G9 strand appears disordered, the ClfBAsn238-Arg522 hydrogen

bond also exists (Figure 2B), consistent with the DLL model.

Taken together, our structures strongly support the DLL model for

ClfB-ligand binding.

Peptides recognition of ClfB
In the crystal structures of the ClfB-Fg a(316–328)/CK10(499–512)

complexes, both peptides lie down into a tunnel between N2 and

N3. The peptides are covered by the C-terminal end of b-strand G

(Figure S2). The C-termini of the two peptides have nearly

identical conformations, with a turn formed at Fg aGly326 and

CK10Gly510 (Figure S5). In contrast, the N-termini of the peptides

are notably different. A sharp twist at Fg aGly318 allows the N-

terminal portion of the peptide to exit the tunnel and point

upward. Unlike Fg a(316–328), CK10(499–512) adopts a more

extended conformation.

Numerous contacts with distances of less than 4 Å between the

protein and the peptides are observed (Figure 4 and Figure S6).

The interactions between ClfB with the peptides are primarily

Figure 3. Structural aligment of ClfB, ClfA and SdrG. A. Sequence aligment of ClfB (amino acids 212–550), ClfA (amino acids 229–544) and SdrG
(amino acids 117–441). Residues displaying 100% and 50% identity are shown in dark blue and light blue, respectively. F406 in ClfB is marked by red
star. B. Ribbon representation of ClfB, with conserved residues colored from red to green following the order from highly conserved to less conserved.
C. Superimposition of apo-ClfB and apo-SdrG, colored in orange and cyan, respectively. D. Superimposition of ClfB-Fg a, SdrG-Fg b and ClfA-Fg c
complexes. The SdrG-Fg b and ClfB-Fg a are colored as in Figure 3C. The ClfA-Fg c complex is colored in blue.
doi:10.1371/journal.ppat.1002751.g003
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mediated through a number of hydrogen bonds. The conserved

hydrogen bonds are observed between ClfB and the middle region

of the two peptides (Figure 4). Hydrophobic contacts of the middle

region of both peptides with the G strand of ClfB(208–542), the loop

between b-sheet A, B and the loop between b-sheet C, D of N2

domain also contribute to peptide-protein interactions.

In the ClfB(208–531)-CK10(499–512) complex structure, four pairs of

hydrogen bonds were observed between the main chains of the

peptide and the G strand of N3 domain, resulting in the formation of

a parallel b-sheet. Polar groups in side chains of ClfBTrp522, and Asn524

in N3 domain form two hydrogen bonds with the hydroxyl group of

CK10Ser503. The hydroxyl group of CK10Ser503 forms the third

hydrogen bond with ClfBSer376 of N3 and side-chain hydroxyl group

of CK10Ser504 forms another hydrogen bond with ClfBSer236 of N2.

Residues from the middle region of CK10 interact with

ClfBSer236, Asp270, and Asn526 via main chain-main chain hydrogen

bonds (Figures 4A and Figure S6A). Hydrogen bonds were also

observed between the amino groups of CK10Ser504, and Gly506 and side

chain hydroxyl or carbonyl groups of ClfBAsn234, and Asp270 in the loop

region of N2. The carbonyl groups of the C-terminal residues

CK10Ser508, and Ser509 interact with the side chain hydroxyl group of

ClfBTyr273 in the CD-loop of N2 (Figure 4A and Figures S6A, B). The

aromatic ring of ClfBTrp522 of the G strand of N3 plays an important

role in anchoring the N-terminus of CK10 peptide through

hydrophobic interactions with CK10Gly501 and CK10Gly502. The

C-terminal segment of the peptide lies in the hydrophobic trench

formed by residues of the loop region of N2 and is covered by the G

strand of N3 (Figure 4A and Figures S6A,B).

Foster’s study demonstrated that substitution of CK10Gly507

with the bulky residue tyrosine resulted in loss of interaction of

CK10 with ClfB [33]. Structural analysis showed that the space

surrounding CK10Gly507 is significantly circumscribed by its

neighboring residues ClfBVal528, Gly269, Val271, and Phe328. Modeling

studies (data not shown) indicated that any residue with a side

chain would generate steric hindrance and cannot be accommo-

dated in the pocket defined by the above four ClfB residues

(Figure 4B and Figures S6C,D).

Mechanisms of specifically recognizing repeat 5 of Fg a
(Fg a5) by ClfB

The Fg a C-terminal domain (amino acids 221–610) of human

Fg contains ten 13-residue tandem repeats, within which up to

eight residues are glycines or serines [34]. Despite the similar

sequences among the repeats, only Fg a5 was shown to be

recognized by ClfB [18]. The reason for this was proposed to be

the presence of proline or arginine residues in the center of the

putative V loops in the other repeats though the precise underlying

mechanism remains unknown [27]. The crystal structures

presented here offer an explanation for this observation. Structural

comparison of the two complexes revealed that interactions of the

peptides with ClfB are primarily mediated through a conserved

motif in the peptides: G-S-S-G-S/T-G-S-X-G (Figure 5A).

Sequence alignment of the repeats indicates that Fg a5 differs

from the other repeats at the 5th, 7th and 9th positions (Figure 5B).

The hydroxyl group of S/T at the 5th position is involved in

hydrogen bonding interactions. On the other hand, the size of the

residue at this position is limited by its neighboring residues. Thus,

other residues except S/T at this position are expected to

compromise the interactions between the repeat and ClfB either

because of loss of hydrogen bonding interaction or generation of

steric hindrance. The 7th position appears to play a role in

maintaining the local conformation of the peptide by forming a c-

turn with the 9th position. In the structure of CK10-ClfB complex

solved by V.Ganesh et al., the 7th position was replaced with a

histidine residue, suggesting that the residue at this position can be

varied (Figure S6). The G9 residue was headed to the end of the b-

sheet D and the ClfBMet280 and ClfBPro281 in N2 limit residues

with any side chain which would generate clash against them. In

addition, a turn at the G9 is required to permit the peptide out of

the tunnel, explaining why the repeat 2 with an alanine at this

position cannot bind to ClfB (Figure 5B) [18].

Importance of the GSR motif in recognition by ClfB
After carefully analyzing the sequences and the peptide binding

specificities of ClfB, we propose that a small motif G1-S2-S3-G4-G/

S/T5-G6-X7-X8-G9 is responsible for ligand binding to the ClfB

adhesive domains. Taking the Fg a(316–328)-ClfB complex as an

Figure 4. Detailed interactions between the ligand binding of
ClfB in the ClfB-CK10/Fg a complexes. A. Detailed interactions
between the ligand and ClfB in the ClfB-CK10 complex. The ClfB and
CK10 peptides are shown as sticks, colored in magenta and yellow,
respectively. The hydrogen bonds are indicated by red dashed lines.
The amino acids of ClfB and CK10 are marked with black and red
characters, respectively. B. Detailed interactions between the ligand and
ClfB in the ClfB-Fg a complex. The ClfB and Fg a peptides are shown as
sticks, colored in cyan and slate, respectively. The hydrogen bonds are
indicated by red dashed lines. The amino acids of ClfB and Fg a are
marked with black and red characters, respectively.
doi:10.1371/journal.ppat.1002751.g004
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example, within this motif, the G1 is limited by the side chain of

ClfBW522 with the limitation of the space and is also required for

the Fg a peptide making a turn thus exiting the tunnel. The S2 is

the most critical residue because it not only forms two hydrogen

bonds with the side chains of ClfBW522 and ClfBQ377 but also binds

to the main chain of ClfBS376. Similar to the S2, the S3 forms two

hydrogen bonds with the side chain of ClfBQ235 and ClfBS236 in

the N2 domain, which could be replaced by a smaller residue such

as alanine. The following residues, especially the G4, G/S/T/5

and G6, are necessary for the formation of the stable protein-

peptide complex because they form hydrogen bonds with ClfB and

the size of the b-sheet G covering tunnel does not accommodate

residues with larger side chains. The S7 might play a role in

maintaining the local conformation of the peptide by forming a c-

turn with the G9. The space for the S8 appears to be enough for

residues with larger side chains (Figure 5B and Figure S6). Finally,

the G9 needs to form a turn to allow the peptide out of the tunnel.

Thus, the somewhat soft binding trench of ClfB would be able to

bind to a series of peptides with this feature.

To further confirm our hypothesis regarding the importance of

the nine-amino-acid GSR motif, we did the alanine scan using the

SPR (Surface Plasmon Resonance) system with a synthetic 9-

residue peptide derived from the GSR motif (GSSGSGSNG). The

results are highly consistent with our structural observation and

clearly show that the nine-amino-acid peptide is necessary and

sufficient for binding to ClfB in vitro (Figure 6).

Dermokine is a potential ligand of ClfB
Our results suggest that proteins carrying the GSR motif are

able to bind to ClfB. To find other potential ligands of ClfB, we

searched the NCBI protein database for additional proteins

containing the sequence of G1-S2-S3-G4-G/S/T5-G6-X7-X8-G9.

Three proteins, TCF20, Engrailed protein and Dermokine (Derm)

were found to be the hits, out of which Dermokine was evaluated

more in detail in this study (Figures. 5 and 6). Dermokine is

expressed in many epithelial tissues, localized to intracellular or

pericellular spaces and overexpressed in inflammatory diseases.

The two major isoforms a and b are transcribed from different

promoters at the same locus. Recently, additional transcript

variants c, d and e have been identified [35,36].

Firstly, Derm was tested for its interaction with ClfB. To this

end, we synthesized a 15-amino-acid-peptide (250–264;

GQSGSSGSGSNGDNN, designated as Derm15 hereafter) de-

rived from Derm and then characterized its binding to ClfB using

the SPR (Surface Plasmon Resonance) assay. In the assay, ClfB

bound to the peptide with a dissociation constant of 2.37 mM

(Figure 7A). Interestingly, the results also showed that the Derm

peptide interacted with ClfB with slow kinetics, further supporting

the DLL model (Figure 7A). To understand the molecular

mechanism underlying this interaction, we solved the crystal

structure of ClfB(208–542) bound to the peptide at 2.5 Å resolution.

As expected, Derm15 interacts with ClfB in a nearly identical

manner with Fg a(316–328) and CK10(499–512) (Figure 7 B). The

ClfBArg529 forms a hydrogen bond with ClfBAsn328 and the C-

terminus of N3 forms an extra strand, which is similar as that in the

ClfB-Fg a(316–328) and ClfB-CK10(499–512) complexes (Figure 7 C).

Mutagenesis studies were conducted to further verify the binding of

Derm15 to ClfB. We replaced the residues ClfBS236, W522 that

participate in interactions with the peptide with alanine respectively.

The mutant proteins were purified to homogeneity and tested for

their interaction with the Derm peptide using SPR. While the

wild type ClfB bound tightly to Derm15, the mutant proteins

ClfB(197–542) S236A or W522A exhibited much lower binding

affinities with the peptide in mM range (Figure S8). Interestingly,

besides the low binding affinities, both mutant proteins exhibited

rapid association and dissociation behaviors in the experiments, as

compared to the slow association and scarcely any dissociation

behaviors observed for the wild type protein. These results indicated

that the residues ClfBS236, W522 are not only involved in the binding

with ClfB, but also participate in stabilizing or ‘‘locking’’ the peptide

Figure 5. Mechanisms of specifically recognizing repeat 5 of Fg a. A. Superimposition of the Fg a and CK10 peptides. The Fg a and CK10
peptides are shown as sticks, colored in yellow and slate, respectively. Residues highlighted within the boundaries of the red dashed line constitute
the segment important for ClfB binding. The consensus amino acids are shown above the peptides. B. Sequence alignment of the repeat 2, 3, 4 and 5
of the Fg a, CK10 (type I cytokeratin 10, residues 473–485 and residues 499–511), K10 (Keratin 10, type I cytoskeletal 10 isoform-1 from Pan
troglodytes, residues 501–513), Derm (Dermokine, residues 250–264), TCF20 (TCF20, residues 49–57), EN (Engrailed protein, residues 37–45) and the
derived peptide 9. The conserved amino acids are shown in red and the consensus sequence is designated below the sequences. The repeat 2, 3 and
4 of the Fg a which have been proved cannot bind to ClfB are indicated in skyblue.
doi:10.1371/journal.ppat.1002751.g005
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in place. Collectively, our results strongly support the interaction

between ClfB and Derm in vitro and suggest that Derm may involve

in the infection process and pathogenesis caused by S. aureus in vivo.

Discussion

The colonization of the host nares by the Gram-positive

bacterium S. aureus is mediated by a family of cell surface proteins

which promote its adhesion to the extracellular matrix, that is, the

MSCRAMMs [13,18]. ClfB, as a component of this family

protein, has been studied for the past decade and was unique in its

multi-functional characteristics, as compared to ClfA and SdrG

that only bind to fibrinogens [18,19,21,29].

Consistent with the studies of the SdrG-fibrinogen complex

[21], data from this study support the DLL binding mechanism of

ClfB with the Fg a/CK10-derived peptides, but not the

mechanism suggested in the previous study by V. Ganesh et al.

[29]. In their work, due to the absence of the ‘‘Latch’’ procedure

observed in the crystal structure, the binding mechanism was

ascribed to the ‘‘DL’’ model. However, the structures of ClfB-

peptide complexes solved in this study, together with the SPR

data, indicate that the DLL model should be the mechanism

utilized by ClfB to bind to its ligands. Our results also indicate that

the DLL model may be the principal mechanism of MSCRAMM-

ligand complexes.

In V. Ganesh et al.’s studies of the ClfB complexes, they

proposed a common GSSGXG motif constituting the ClfB

binding site [29], which is inconsistent with the previous studies

on ClfB. For example, within the ten tandem Fg a repeats, repeat

2, 3, 4 and 5 all contain the GSSGXG motif but only the repeat 5

can bind to ClfB (Figure 5B) [18]. Our structural and the alanine

screening analyses demonstrate that a 9-residue peptide G1-S2-S3-

G4-G/S/T5-G6-X7-X8-G9 is necessary and sufficient for binding

to ClfB in vitro. It is therefore predicted that a protein incorporating

such a motif is able to interact with ClfB. Indeed, our biochemical

assays showed that a Dermokine-derived peptide containing the

ClfB binding motif interacted with ClfB (Figures 7B, 7C). Further

supporting this prediction, our structural studies revealed that the

Figure 6. The SPR analysis of the interactions between ClfB and dermokine peptides. A. Panel of dermokine peptides. Peptide 1
corresponds to the 9-residue peptide derived from dermokine protein (253–261). The substituted peptides (Peptides 2–10) have individual amino
acids replaced with Ala and peptide 11 is the six amino acid peptide. (B–L). The SPR analysis of the binding between ClfB and Peptides 1–11. Navy,
2000 mM; Magenta, 1000 mM; Dark cyan or dark yellow, 500 mM; Blue, 250 mM; Red, 125 mM; Green, 62.5 mM; Black, 31.25 mM. KD values of individual
binding assays are indicated below the sensorgrams.
doi:10.1371/journal.ppat.1002751.g006
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binding mode of the Dermokine-derived peptide to ClfB is nearly

identical with that of the Fg a/CK10-derived peptide (Figure 7B).

Collectively, these findings raise a provocative possibility that ClfB

might act on multiple targets during S. aureus infections. Given the

fact that ClfB acts as a key determinant of S. aureus nasal

colonization, this may not be totally surprising.

Interestingly, Dermokine was first identified as a gene expressed in the

suprabasal layers of the epidermis, and more recently, other isoforms of

this gene besides its a and b isoforms have also been found. This gene is

expressed in various cells and epithelial tissues and over-expressed in

inflammatory conditions [35,36], suggesting that Dermokine might play

a role in inflammatory processes since the over-expression of the

mediators in immune cell activation characterizes many inflammatory

diseases. ClfB is involved not only in the S. aureus’s colonization of human

nares but also in the diseases caused by this bacterium. Additionally, S.

aureus has also been implicated in several inflammation processes

including corneal inflammation. ClfB’s binding to Dermokine raises the

possibility that ClfB might play a role in the S. aureus caused inflammation

and the Dermokine gene’s over-expression might serve as biological

markers whose products could bind to ClfB and participate in this

process. Obviously more investigations are needed to verify ClfB-

Dermokine interaction during S. aureus infections as well as the biological

significance of the interaction.

The characterization of ClfB as a multi-ligand binding protein

will be meaningful for the identification of putative substrates and

for furthering our understanding of the S. aureus infection pathway.

Our findings also provide important leads towards the develop-

ment of new therapeutic agents capable of eradicating S. aureus

carriage in individuals and efficiently interfering with staphylo-

coccal infection. This is particularly important since new

antibacterial strategies are in urgent need to combat the drug

resistant bacteria that continuing to emerge [37,38].

Figure 7. Dermokine is a potential ligand of ClfB. A. Left: Surface plasmon resonance shows the binding of different concentrations of ClfB(197–

542) to synthetic peptide 15 from Dermokine immobilized on a Proteon NLC Sensor Chip. Red, 700 mM; blue, 350 mM; green, 87.5 mM. KD was found to
be 2.37 mM. Right: kinetic and affinity binding values of the ClfB(197–542) wildtype, S236A or W522A single mutants with Derm15 peptide. B.
Comparative close-up view of CK10, Fg a and Derm15 binding to ClfB. The peptides CK10, Fg a and Derm15 are shown as sticks and colored in
yellow, slate and green, respectively. The N and C termini are marked. The color schemes of the N2 and N3 domain of ClfB are the same as in
Figure 1B. C. Closer view of the superimposition of apo-ClfB and ligand-ClfB complexes. N238 and R529 are highlighted and shown as sticks. The apo-
ClfB is colored in lime and the others are in the same color scheme as in Figure 1B.
doi:10.1371/journal.ppat.1002751.g007
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Materials and Methods

Cloning, expression and purification of the recombinant
proteins

The fragment of the ClfB gene (corresponding 197–542 aa) was

amplified by PCR from the S. aureus Newman genomic DNA.

After digestion with BamHI and HindIII (NEB), the amplified genes

were cloned into the prokaryotic expression vector pQE32 (GE

Healthcare Life Sciences) to produce His-tagged fusion protein

and were confirmed by DNA sequencing. The expected protein

was expressed in E.coli strain BL21 with a high yield. Recombinant

His-tagged protein was purified by Ni-affinity column chroma-

tography and ion exchange chromatography. For the purification

of protein-peptide complexes, the synthesized peptides were added

into the concentrated protein samples at a 10:1 ratio and further

subjected to gel filtration chromatography (Superdex-75 column)

using buffer (10 mM Tris-HCl pH 8.0, 150 mM NaCl, 2 mM

DTT) on the FPLC system (GE Healthcare Life Sciences). The

proteins from different stages of purification (i.e. affinity and gel

filtration chromatography) were monitored by SDS-PAGE. The

selenomethionine (Se-Met)-substituted ClfB derivative was ex-

pressed and purified similarly.

Crystallization and structure determination
The apo-ClfB and its complexes with different peptides were

concentrated to 30 mg/ml in 10 mM Tris-HCl pH 8.0, 150 mM

NaCl and 2 mM DTT. Crystals were produced by the hanging-

drop vapor diffusion method [39] using sparse-matrix screen kits

from Hampton Research (Crystal Screen reagent kits I and II),

followed by a refinement of the conditions through the variation of

precipitants, pH, protein concentrations and additives.

Crystals were grown at 18uC by mixing 1.1 ml of protein with

1.1 ml of reservoir solution and equilibrating against 200 ml of

reservoir solution. The apo-ClfB crystals are grown in 0.2 M

LiSO4, 0.1 M Tris-HCl pH 8.5, 30% polyethylene glycol 4000

and all the complexes with peptides are grown in 0.1 M sodium

citrate tribasic dehydrate pH 5.6, 20% 2-propanol and 20%

polyethylene glycol 4000. Similar conditions were used for

generation of the crystals of Se-Met-substituted ClfB. Native and

Se-SAD data were collected at Shanghai Synchrotron Radiation

Facility (SSRF) at a wavelength of 0.919 Å and 0.979 Å

respectively using a MAR225 (MAR Research, Hamburg) CCD

detector at 100 K and processed with HKL2000 [40]. Further

processing was carried out using programs from the CCP4 suite

(Collaborative Computational Project, 1994).

The selenium sites were located using SHELXs [41] from the

Bijvoet differences in the Se-SAD data. Heavy atom positions were

refined and phases were calculated with PHASER’s SAD

experimental phasing module [42]. The real-space constraints

were applied to the electron density map in DM [43]. The

resulting map was of sufficient quality for model building of the

ClfB molecules in COOT [44]. The structures with other peptides

were solved with molecular replacement methods in CCP4 and all

the structures were refined with the PHENIX [45] packages. Data

collection and structure statistics are summarized in table 1.

Synthetic peptides
The synthesis and purification of the peptides were described

previously [18,27]. For the following peptides, the amino acid

residue numbers are given and the sequences are as follows:

peptide from repeat 5 of the C terminus of the a-chain of Fg

(NSGSSGTGSTGNQ); a peptide in the tail region of CK10

(YGGGSSGGGSSGG); peptide 15 from Dermokine protein

(SQSGSSGSGSNGDNN); The peptide 9 of GSR motif

(GSSGSGSNG) and its mutated forms by alanine scan; The six-

amino-acid peptide (GSSGSG).

Surface Plasmon Resonance spectroscopy
Binding of ClfB(197–542) to peptide 15 was assessed by SPR using

the ProteOn XPR36 equipment (Bio-Rad Laboratories, Inc.).

Each SPR experiment used multichannel detection. The system

was equilibrated with buffer (10 mM HEPES pH 7.2, 150 mM

NaCl). At each channel, peptide was captured to a ProteOn NLC

Sensor Chip (BIO-RAD) at 25uC, using a flow rate of 100 ml/min.

This resulted in peptide coupled at response levels of 460 RU. For

binding measures, ClfB(197–542) was injected simultaneously at

different concentrations at a flow rate of 100 ml/min. The

experiments were repeated three times.

The binding affinities between ClfB and the ten 9-amino–acid

peptides and the 6-amino-acid peptide were determined by surface

plasmon resonance (SPR) using BIAcore T200 instrument (GE

Healthcare) at 10uC. The ClfB protein was immobilized to about

5300 Response Unit (RU) on a research-grade CM5 sensor chip in

10 mM sodium acetate, pH 5.0 by standard amine coupling

method. The flow cell 1 was left blank as a reference. For the

collection of data for affinity analyses, the 11 peptides in a buffer of

10 mM HEPES pH 7.4, and 150 mM NaCl, plus 0.005% (v/v)

Tween 20, were injected over the flow cells at various concentra-

tions at a 30 ml/min flow rate. The ligands were allowed to

associate for 60 s and dissociate for 120 s. Data were analyzed

with the BIAcore T200 evaluation software by fitting to a 1:1

Langmuir binding fitting model.

Supporting Information

Figure S1 The two symmetry-related molecules in the
unit cell. A. Ribbon representation of the two symmetry-related

molecules in the unit cell. The two molecules are shown in orange

and cyan, respectively. B. Electron densities showing the

interaction between N terminus of one molecule and the G strand

from the other one in the unit cell. S197 and L198 of the N

terminus, F and G strand from the other one are marked.

(TIF)

Figure S2 The electron density of Fg a and CK10
peptides. A. Ribbon representation of ClfB(208–542)-Fg a(316–328)

complex. The peptide is shown in sticks and the 2Fo-Fc map

around the peptide contoured at 1.5s is also shown. The color

scheme is the same as in Figure 1B. The N and C-termini of both

the protein and the peptide are designated, respectively. B. Ribbon

representation of ClfB(208–531)-CK10(499–512) complex. The peptide

is shown in sticks and the 2Fo-Fc map around the peptide

contoured at 1.5s is also shown. The color scheme is the same as

in Figure 1B. The N and C termini of both the protein and the

peptide are designated, respectively.

(TIF)

Figure S3 Surface representation of ClfB(208–540),
ClfA(229–545) and SdrG(276–597) showing the peptide
‘‘locked’’ into the molecule. The surface is color-coded

according to negative and positive charge residues that are

represented as red and blue. The peptides are shown as sticks. (A),

ClfB-Fg a(316–328). (B), ClfB-CK10(499–512). (C), ClfA-Fg c(395–411).

(D), SdrG- Fg b(6–20).

(TIF)

Figure S4 Cartoon view showing the interactions be-
tween the Fg c peptide with ClfA. The carbon, oxygen and

nitrogen atoms are shown in cyan, red and blue, respectively. The

residues of peptide are shown as sticks in magenta. The residues of
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ClfA are marked in black and those from Fg c are shown in

magenta. The hydrogen bonds are indicated in red dashed lines.

(TIF)

Figure S5 Closer view of the ligand binding tunnel of
ClfB. A, The N termini of the peptides. ClfB is represented as an

electrostatic surface model with negative and positive charges

indicated by red and blue, respectively. The Fg a peptide was

superposed onto the CK10 peptide and they are shown as sticks in

blue and yellow, respectively. B, The C-termini of the peptides.

The color scheme is the same as in Figure S5A.

(TIF)

Figure S6 Detail interaction of the ligands binding. A.

Closer view of the ligand binding tunnel of ClfB in the ClfB-CK10

complex. ClfB is represented as an electrostatic surface model with

negative and positive charges indicated by red and blue,

respectively. The CK10 peptide is shown as sticks in yellow.

The hydrogen bonds are indicated by red dashed lines. B.

Schematic representation of the hydrogen bond interactions

between ClfB and the CK10 peptide. Hydrogen bonds are shown

as dashed lines. The interactions with the CK10 come from strand

G in N3 domain, AB- and CD-loops from N2 domain in ClfB. C.

Closer view of the ligand binding tunnel of ClfB in the ClfB-Fg a
complex. The color scheme is the same as in Figure S6A. The

hydrogen bonds are indicated by red dashed lines. D. Schematic

representation of the hydrogen bond interactions between ClfB

and the Fg a peptide. Hydrogen bonds are shown as dashed lines.

The interactions with the Fg a come from strand G in N3 domain,

AB- and CD-loops from N2 domain in ClfB.

(TIF)

Figure S7 The electron density of Derm15 peptide.
Ribbon representation of structures of ClfB(208–542) binding to

Derm15 peptide from Dermokine. The peptide is shown in sticks

and the 2Fo-Fc map around the peptide contoured at 1.5s is also

shown. The color schemes of both the protein and the peptide are

the same as in Figures S2 A and B.

(TIF)

Figure S8 The ClfBS236A and ClfBW522A single mutants
cannot bind Derm15 peptide. A and B. surface plasmon

resonance (SPR) shows the binding of different concentrations of

synthetic Derm15 peptide to ClfB(197–542) S236A or W522A single

mutants immobilized on a GLH Sensor Chip. Red, 4 mM; green,

2 mM; blue, 1 mM; pink, 0.5 mM; orange, 0.25 mM. C. Kinetic

and affinity binding values of the ClfB(197–542) mutants S236A or

W522A with Derm15 peptide.

(TIF)
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