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Oxidative stress (OS) has the ability to damage different molecules and cellular structures, altering the correct function of organs
and systems. OS accumulates in the body by endogenous and exogenous mechanisms. Increasing evidence points to the
involvement of OS in the physiopathology of various chronic diseases that require prolonged periods of pharmacological
treatment. Long-term treatments may contribute to changes in systemic OS. In this review, we discuss the involvement of OS in
the pathological mechanisms of some chronic diseases, the pro- or antioxidant effects of their pharmacological treatments, and
possible adjuvant antioxidant alternatives. Diseases such as high blood pressure, arteriosclerosis, and diabetes mellitus contribute
to the increased risk of cardiovascular disease. Antihypertensive, lipid-lowering, and hypoglycemic treatments help reduce the
risk with an additional antioxidant benefit. Treatment with methotrexate in autoimmune systemic inflammatory diseases, such
as rheumatoid arthritis, has a dual role in stimulating the production of OS and producing mitochondrial dysfunction. However,
it can also help indirectly decrease the systemic OS induced by inflammation. Medicaments used to treat neurodegenerative
diseases tend to decrease the mechanisms related to the production of reactive oxygen species (ROS) and balance OS. On the
other hand, immunosuppressive treatments used in cancer or human immunodeficiency virus infection increase the production
of ROS, causing significant oxidative damage in different organs and systems without widely documented exogenous antioxidant
administration alternatives.

1. Introduction

Oxidative stress (OS) is characterized by the imbalance
between the production and degradation of reactive oxygen
species (ROS) or reactive nitrogen species (RNS) [1]. ROS
are molecules whose chemical makeup gives them high reac-
tivity and can come from the metabolism of oxygen or nitro-
gen. ROS and RNS can be free radicals such as the superoxide
radical (O2

⋅-), hydroxyl radical (OH⋅), and nitric oxide (NO⋅).
However, other nonfree radicals can also be found, such as
hydrogen peroxide (H2O2) and peroxynitrite (ONOO-) [2].
ROS produce enzymatic reactions within the mitochondria
characterized by the reduction of oxygen through the elec-
tron transport chain [3]. In addition, the endoplasmic reticu-

lum and peroxisomes are other sources of ROS [4, 5].
Different cellular processes such as protein phosphorylation,
activation of transcription factors, immunity, and apoptosis
depend on the cellular concentration of ROS [6].

The main endogenous antioxidant enzymes that neutral-
ize ROS are superoxide dismutase (SOD), catalase (Cat), and
glutathione peroxidase (GPx) [7]. SOD belongs to a group of
metalloenzymes that transforms O2

⋅- into oxygen and H2O2
[8]. Three forms of SOD are known in mammals: cytoplas-
mic SOD (SOD1), mitochondrial SOD (SOD2), and extracel-
lular SOD (SOD3) [9]. ROS can be neutralized by other
nonenzymatic molecules with free radical scavenging proper-
ties such as vitamins, melatonin, and glutathione (GSH) [10].
When antioxidant defenses fail to properly neutralize ROS,
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ROS remain in the body longer and oxidize susceptible
biomolecules [11]. Excessive levels of ROS can damage cel-
lular proteins, membrane lipids, and nucleic acids, causing
damage to proper cellular function [11]. The NO⋅ radical
is an endothelium-dependent mediator in vascular vasore-
laxation. NO⋅ is produced normally by the enzyme nitric
oxide synthase (NOS) [12]. In OS conditions, NO⋅ reacts
with the radical O2

⋅- to generate ONOO- causing endothelial
damage [13].

The lipoperoxidation (LPO) process is a mechanism of
damage produced by OS on lipids. LPO is characterized by
having carbon-carbon double bonds, especially polyunsatu-
rated fatty acids. The main LPO products are hydroperox-
ides, such as propanal, hexanal, 4-hydroxynonenal, and
malondialdehyde (MDA) [14]. Other LPOs are isoprostanes
from nonenzymatic oxidation of essential fatty acids, such
as arachidonic acid [15]. Additionally, ROS can damage the
DNA structure when they react with guanine bases. Guanine
oxidation commonly forms 8-hydroxy-2′-deoxyguanosine
(8-OHdG) or 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-
oxodG) [16]. These metabolites under normal conditions
are repaired by the enzyme oxoguanine glycosylase (hOGG1)
and are known jointly, like biomarkers of the OS [17]. OS is
present in various chronic diseases, which can contribute to
its progression [18]. OS and the inflammatory process are
closely linked to each other and contribute to the tissue
damage of some autoimmune diseases such as rheumatoid
arthritis [19]. OS is linked to hyperglycemia and the progres-
sion of type 2 diabetes mellitus (DM) [20]. The participation
of OS in cardiovascular disease is mainly attributed to its
effects on hypertension and the formation of atheroma leaf-
lets [21, 22]. The pathological development of other chronic
diseases such as neurodegenerative diseases [23], cancer
[24], or infection by the human immunodeficiency virus
(HIV) is related to increased production of ROS [25]. On
the other hand, exogenous factors, such as the recommended
pharmacological treatments for certain chronic pathologies,
have the ability to alter the production of ROS [2]. The
purpose of this small review is to describe the role that OS
plays in different pathological processes (atherosclerosis,
high blood pressure, DM, rheumatoid arthritis, cancer,
HIV, and some neurodegenerative diseases). The prooxidant
or antioxidant effects of some pharmacological management
alternatives will be briefly described (Figure 1).

1.1. Oxidative Stress in Atherosclerosis. Atherosclerosis is a
chronic disease characterized by inflammation, the manifes-
tation of which occurs in the vascular system. Atherosclerosis
is the main origin of cardiovascular disease (CVD) in devel-
oped countries of the world [26]. Atherosclerosis represents
the development of vascular lesions or plaque deposition in
the blood vessels after the response of endothelial damage
produced by the inflammation/oxidation processes [27]. Pla-
que is mainly made up of blood cells, foam cells, lipids, and
proteins accompanied by calcium accumulation, favoring
vascular expansion, vascular blockage, and inhibition of vas-
cular blood flow, which leads to the explosion of the vascular
wall [28, 29]. In CVD, blockage and rupture of the athero-
sclerotic coronary arteries cause myocardial infarction, while

blockage of the carotid arteries causes stroke [30]. Endothe-
lial damage is related to risk factors for the heart and blood
vessels such as DM, high blood pressure, nicotine use, lipid
disorder, obesity, and metabolic disorders. Impaired endo-
thelial physiological functions are observed during the early
stages of atherosclerotic lesions due to oxidative damage
[31]. The renin-angiotensin system (RAS) plays an essential
role in the advancement of atherosclerosis by influencing
endothelial physiology, inflammatory reactions, thrombosis,
and oxidative lesions [32]. Angiotensin II (Ang II) causes
oxidative damage in the vascular system by inducing the gen-
eration of ROS by activating NADPH oxidase with the ability
to oxidize cellular biomolecules, including lipids, lipopro-
teins, and DNA, leading to endothelial deterioration [33].

1.2. Management for Atherosclerosis and Oxidative Stress.
Hypercholesterolemia is considered the main trigger for
atherosclerosis. Therefore, the control of lipoprotein levels
through the administration of statins is one of the main
management alternatives to reduce the risk of atheroscle-
rosis [34]. Statins antagonize the activity of the enzyme
hydroxy-methylglutaryl-coenzyme A (HMG-CoA) reduc-
tase, decreasing the production of intracellular cholesterol
and decrease of liver LDL receptors [35]. Statins show
pleiotropic effects on endothelial function, inhibition of
thrombus gene activity, the stability of atherosclerosis pla-
ques, and decreased inflammation and OS [36]. Statins
have been shown to have antioxidant effects on redox sig-
naling of vascular and myocardial tissue by modifying
NADPH oxidase activity [37]. Statins show effects on
eNOS and decreased LPO [38]. Treatment of patients with
simvastatin has protective effects on lipoprotein oxidation
[39]. However, the metabolism of statins generates ROS
and produces toxicity in various tissues, including skeletal
muscle and liver damage [40, 41]. The activity of simva-
statin and lovastatin inhibits the complete II, III, IV, and
V of the electron transport chain, whereas fluvastatin
and cerivastatin only inhibit the V complex, thus causing
mitochondrial dysfunction [42]. Eight weeks of simvastatin
management is sufficient to cause mitochondrial respira-
tion dysfunction in muscle [43].

1.3. Adjuvant Antioxidants in Atherosclerosis. Different
antioxidant compounds have been used as adjuvant therapy
in chronic diseases (Table 1). The antioxidant N-
acetylcysteine has been reported to suppress accelerated
atherosclerotic events in mouse models with inactivated
ApoE [44]. The vitamin D analog (paricalcitol) was also
reported to improve oxidative vascular injury by suppressing
the activity of ROS-generating enzyme NADPH oxidase,
inflammatory mediators, and regulating the antioxidant
defense system in ApoE-deficient mice [45]. On the other
hand, polyphenols are common antioxidant nutrients, mainly
derived from fruits, vegetables, tea, coffee, cocoa, mushrooms,
drinks, and traditional medicinal herbs [46, 47]. The classifi-
cation of polyphenols mainly includes flavonoids (60%), phe-
nolic acids (30%), and other polyphenols, including stilbenes
(resveratrol) and ligands, attached to at least one aromatic
ring in one or more HO⋅ functional groups [46]. Flavonoids
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are the most studied group of polyphenols; they are divided
into six subclasses: flavonols, flavones, flavanones, flavanols,
anthocyanins, and isoflavones. Phenolic acids are divided

into two subclasses, benzoic acid and cinnamic acid. Stilbenes
in plants act as antifungal phytoalexins and are rare in the
human diet [47].

ARBs

Statins

Cisplatin
Doxorubicin

ROS
Nephrotoxicity
Cardiotoxicity

Metformin

MemantineLevodopa

Renin Angiotensinogen

Angiotensin

ACE

Hypertension
NADPH 
oxidase

ROS

ACEI

Cholesterol

ROS production
NAPDH oxidase

MDA

AOPP
AGEs

Oxidative DNA 
damage

O2

Cytotoxic 
quinones

NRTI

Mitochondria 
dysfunction

ROS

Methotrexate

DHFR

Inflammation

ROS
Apoptosis

Antioxidants

ROS
Cytokines

Oxidative and/or antioxidant mechanisms of action of treatments in chronic diseases
HMG-CoA

→→

→

→
→

→

→

→

→

→

→

→

→

→

→

→

→

→

Macrophage
Foam cell necrosis

ROS

C-LDL

oxLDL

→

→

→

→
→

Levodopa
Auto-oxidation

Depletion of
nucleotide

Figure 1: Oxidative and/or antioxidant mechanisms of action of treatments in chronic diseases. Description of how different drug
mechanisms affect the oxidative status. Antihypertensive and statin treatment decrease oxidative stress by restoring the endothelial
function. Antineoplastic (cisplatin, doxorubicin) and nucleoside or nucleotide reverse transcriptase inhibitor (NRTI or NtRTI) treatment
causes the most oxidative damage in patients in the long term. Methotrexate can cause increased OS and apoptosis; at the same time,
inflammation-mediated OS production decreases. Levodopa metabolism may increase cytotoxicity in the brain. Metformin and
memantine may decrease the oxidative stress.

Table 1: Antioxidant alternatives in the management of chronic diseases.

Antioxidant Chronic disease Results Reference

N-Acetylcysteine Atherosclerosis Prevents the progression of atheroma in uremic mice [44]

Paricalcitol (vitamin D) Atherosclerosis
Enalapril and paricalcitol decrease MDA and increase GSH; affords greater

protection against aortic inflammatory injury in mice
[45]

Naringin HIV infection
Naringin reverses the metabolic complications associated with NRTI by

improving OS and apoptosis in a rat model
[221]

Vitamins A, C, and E Rheumatoid arthritis
Combined administration of vitamins A, B, and C with methotrexate for 10

weeks lowers the severity score in patients with rheumatoid arthritis
[133]

Ascorbic acid and
essential oil rose

Parkinson’s disease
Ascorbic acid or essential rose decreases MDA, AGEs, and carbonyl

concentration of mice treated with levodopa
[159]

Vitamin E
Alzheimer’s disease

Vitamin E delays the progression of disease in patients with Alzheimer’s
disease

[161]

Type 2 diabetes mellitus Vitamin E increases event-free survival in type 2 diabetes mellitus patients [93]

Coenzyme Q10

Hypertension Increase SOD levels and decrease MDA in hypertensive elderly subjects [197]

Lymphoblastic leukemia
Treatment with coenzyme Q10 provides a protective effect on cardiac

function during treatment with anthracycline in patients with lymphoblastic
leukemia

[187]
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1.4. Oxidative Stress in Hypertension. High blood pressure is
the most common cardiovascular risk factor and contributor
to global morbidity and mortality [48]. High blood pressure
is a complex condition. Approximately 90% of cases are
classified as essential hypertension, where the precise cause
is unknown [49]. Hypertensive stimuli, including salt,
hyperactivity of the RAS system, OS, and inflammation lead
to the initial elevation of blood pressure, mainly due to cen-
tral actions and also due to endogenous hormones such as
Ang II and aldosterone, resulting in protein modification.
The altered proteins are no longer recognized as their own
(they serve as neoantigens), and the T cells are activated.
T cell derived signals promote macrophage (and other
inflammatory cells) entry into the vasculature and kidney,
resulting in the release of inflammatory cytokines. In the
vasculature, activated T cells promote vasoconstriction and
remodeling, along with promoting sodium and water reten-
tion in the kidney, causing more severe hypertension [50].
Chronic inflammation has the ability to trigger OS that is
associated with high blood pressure. Against the back-
ground of Ang II-induced hypertension, T cells express high
levels of p47phox, p22phox, and NOX2, components of
NOX2 oxidase.

Furthermore, adoptive transfer of NADPH oxidase-
deficient T cells results in decreased O2

⋅- production and
arterial hypertension in response to Ang II [51]. Ang II is
one of the main vasoactive signaling molecules involved in
ROS generation and participates in increased expression
and activity of one of the main ROS generators, NADPH
oxidase [52, 53]. The highest production of Ang II occurs
in hypertensive conditions [54]. In addition, to intrarenal
vasoconstriction, high levels of Ang II have deleterious
effects on necrotic and apoptotic changes in kidney tissue
during the reperfusion period. Ang II downregulates the
SR-BI HDL receptor in proximal tubular cells [55]. Statins
were developed to inhibit cholesterol synthesis by blocking
HMG-CoA reductase. However, within their pleiotropic
effects, these drugs are anti-inflammatory and can produce
a small reduction in systolic blood pressure in hypercholes-
terol patients. The effect is greater on patients with higher
blood pressure [56].

1.5. Oxidative Stress in Antihypertensive Treatment. First-line
management to treat high blood pressure includes
angiotensin-converting enzyme inhibitors (ACEI), angioten-
sin receptor blockers (ARB), calcium channel blockers
(CCB), and beta-blockers (BB) [57]. The control of hyperten-
sion is associated with the regulation of Ang II activation,
which contributes to decreased OS independently of antihy-
pertensive therapy [58]. Antihypertensive treatment with
ACEI has been shown to have antioxidant effects. Studies
on the effects of enalapril on OS in the kidney and heart of
rats with hypertension show that enalapril increases total
antioxidant activity and decreases LPO levels in both organs
[59, 60]. Other experimental studies show that captopril
decreases H2O2 andMDA levels in hyperglycemic conditions
[61]. Telmisartan effectively controls blood pressure and
improves fibrosis and vascular remodeling. Additionally,
telmisartan exerts protective vessel effects by inhibiting the

TGF-β1/Smad3 pathway associated with antihypertensive
and antioxidant effects [62].

The antioxidant effects of ARB and BB are very similar
to those of ACEI; olmesartan attenuates the concentration
of TBARS and H2O2 in obese mice [63]. Eight-week treat-
ment with candesartan or valsartan reduces urinary 8-
isoprostanes and 8-OHdG levels compared to treatment with
trichlormethiazide [64]. Valsartan treatment also decreases
nitrosative stress in patients with type 2 DM [65]. Medium-
term treatment with atenolol combined with thiazide hydro-
chloride decreases MDA levels and increases the concentra-
tion of SOD, GSH, and vitamins E and C [66]. Long-term
treatment with metoprolol or carvedilol has been shown to
decrease LPO levels in patients with heart failure [67]. The
reduction of BB use in OS is not limited to plasma or serum.
Studies show that carvedilol can also decrease myocardial
LPO levels in patients with dilated cardiomyopathy [68].

The CCB are an important antihypertensive group. The
dihydropyridine ring through which they can be considered
as weak antioxidants is due to their ability to react with
peroxyl radicals [69]. Amlodipine shows the ability to
reduce isoprostane concentration in patients with type 2
DM [70]. Other BCC, such as nifedipine and lacidipine,
have been shown to be protective in the formation of
LDL-oxidized lipoprotein [71].

1.6. Adjuvant Antioxidants in Arterial Hypertension. Diet is
the main source of exogenous antioxidants. Among exoge-
nous antioxidants, polyphenols, vitamins (C and E and β-
carotene), and minerals stand out. Components like Se,
Zn, Fe, Mn, and Cu favor the organism in the elimination
of excessive free radicals through adequate enzymatic pro-
teins [72]. Polyphenols can block Ang II-stimulated positive
regulation of various NADPH oxidase (NOX) subunits,
including NOX1 and p22phox (an essential component of
NOX) and associated OS [73]. Some research reveals that
systolic blood pressure in hypertensive patients improves
after eating foods rich in polyphenols [74]. The combina-
tion of dietary flavonoids and antihypertensive drug ther-
apy based on telmisartan or captopril can improve blood
pressure, lipid profile, obesity, and inflammation in young
hypertensive patients [75].

1.7. Oxidative Stress in Diabetes Mellitus. DM is known as an
OS disorder caused by the imbalance between the formation
of free radicals and the capacity of the body’s natural antiox-
idants. Glucose fluctuations are essential in the pathogenesis
of DM. OS plays an important role in the complications of
developing DM [76]. OS is directly influenced by fluctuations
in glucose. Postprandial glucose fluctuations or any type of
glucose oscillation cause greater OS than chronic hyperglyce-
mia. The length and severity of chronic hyperglycemia and
regularly occurring acute glucose changes are the main com-
ponents of glycemic disorders [77]. Hyperglycemia induces
ROS production. In type 2 DM, when the β cells are still
intact and functional, the presence of ROS produces OS in
the β cells, which leads to lower levels of insulin secretion
[77]. The radical O2

⋅- is a type of ROS of particular interest
in DM, because it has been shown to be elevated in in vitro
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and in vivo studies [77]. There are many sources of OS in DM
including enzymatic, nonenzymatic, and mitochondrial
pathways. The OS increase in DM occurs due to multiple
factors [78]. The most dominant oxidizing factor is the auto-
oxidation of glucose, which results in the development of
free radicals. Other factors are unbalanced cellular reductio-
n/oxidation and reduced antioxidant defenses (reduced
levels of cellular antioxidants and reduced enzyme activity
against free radicals) [79]. Due to the high levels of glucose
in DM, the generation of O2

⋅- triggers multiple pathways,
with the greater formation of polyols, higher flow of the
hexosamine pathway, and activation of the protein kinase
C isoform [80]. Mitochondria are integrative critiques of
energy production, ROS generation, signaling transduction,
and apoptosis in DM. Within the mitochondrial dynamics
highlights the importance of the fusion and fission processes
in mitochondrial homeostasis [81]. Mitochondrial fusion
appears to be beneficial because it distributes metabolites,
proteins, and DNA through the mitochondrial network.
Excessive mitochondrial fission can be harmful because it
causes fragmented mitochondria to accumulate with an
impaired electron transport chain with the ability to increase
mitochondrial ROS in cells [82]. In 2013, it was reported
that hyperglycemia induces mitochondrial fission by upreg-
ulating the expression of the dynamin-related protein 1
(Drp1) [83]. Drp1 is a cytosolic guanosine-5′-triphospha-
tase that triggers mitochondrial division by binding to fis-
sion 1 (Fis1) or to mitochondrial fission factor (Mff) in
mitochondria. Increased mitochondrial fission contributes
to DM-induced endothelial dysfunction. These studies sug-
gest that suppression of mitochondrial fission can effectively
prevent DM-induced atherosclerosis and its related cardio-
vascular complications [84].

1.8. Oxidative Stress in the Management of Type 2 Diabetes
Mellitus. Metformin is a synthetic dimethyl biguanide very
useful as a therapy for patients with type 2 DM. In addition
to reducing blood glucose, metformin reduces cardiovascular
complications in patients with DM, prevents the progression
of the thickness of the intima media of the common carotid,
and reduces the incidence of myocardial infarction in
patients with type 2 DM [85, 86]. The beneficial cardiovascu-
lar effects of metformin appear to be independent of its anti-
hyperglycemic effect because other conventional treatments
such as insulin and sulfonylureas exhibit less beneficial
cardiovascular effects. Increasing evidence has shown that
metformin inhibits mitochondrial fragmentation (fission)
in DM by activating AMPK resulting in preventing endothe-
lial damage by activating processes such as apoptosis and
inflammation [84]. In 2017, it was reported that metformin
reduced Drp1 expression and Drp1-mediated mitochondrial
fission in AMPK-dependent diabetic endothelial cells. Sup-
pressing mitochondrial fission inhibits endothelial OS,
improves endothelial function, and reduces atherosclerotic
lesions [87]. Some studies show that metformin treatment
can reduce MDA levels, increase GSH levels, and decrease
inflammatory status [88, 89]. Metformin can decrease the
production of ROS AMPK induced by decreasing ATP syn-
thesis and NADPH oxidase activity [90].

1.9. Adjuvant Antioxidants in Diabetes Mellitus. In relation
to the antioxidant state in DM, Lortz and Tiedge reported
that overexpression of the enzyme SOD and Cat could
protect the pancreatic islets from ROS and maintain insulin
production. Similarly, GPx enzyme overexpression has been
shown to protect INS-1 cells from ROS and attack by RNS
[91]. Large-scale studies have shown that intensive early glu-
cose control reduces the risk of micro- and macrovascular
complications of DM [92]. Vitamin C, vitamin E, and β-car-
otenes have traditionally been considered as ideal supple-
ments against OS and its complications in DM [80].
Milman et al. reported that vitamin E reduces cardiovascular
events after 1.5 years of supplementation [93]. Blum et al.
suggested that vitamin E supplementation in DM patients
can prevent myocardial infarction, stroke, and cardiovascular
death [94]. Akbar et al. performed a meta-analysis of 14 stud-
ies where they found that supplementation with antioxidants
does not affect plasma glucose or insulin levels. However, the
HbA1c level is significantly reduced by supplementation with
antioxidants, apparently due to having a protective effect on
DM complications [95].

Melatonin is an active indoleamine (derived from trypto-
phan) component with antioxidant properties secreted
mainly by pinealocytes [96, 97]. The main function of mela-
tonin is the regulation of the sleep cycle. Melatonin is also
involved in homeostasis and energy metabolism [98]. Mela-
tonin can activate brown adipose tissue, increase energy
expenditure, and have anti-inflammatory, immunomodula-
tory, and antioxidant properties [99]. Melatonin also
increases the expression of antioxidant enzymes (SOD, Cat,
and GPx) and eliminate free radicals. Melatonin is indicated
alone or in combination with other therapies for 1-3 weeks,
where it can produce clinical improvement in patients with
type 2 DM [100].

1.10. Oxidative Stress in Rheumatoid Arthritis. Increased OS
has been found in mono- and polyarthritic rats [101]. Clini-
cal evidence indicates that patients with rheumatoid arthritis
have increased LPO, protein oxidation, and oxidative DNA
damage [102]. Furthermore, ROS are positively associated
with the severity of rheumatoid arthritis [103, 104]. Inflam-
mation is the main pathophysiological mechanism of rheu-
matoid arthritis. Innate immune cells, such as neutrophils
and macrophages, produce ROS, such as O2

⋅- and H2O2
[105]. Increasing evidence supports the link between the
processes of redox reactions that produce OS and the path-
ophysiology of inflammation [106, 107]. Nuclear factor κB
(NF-κB) is the transcription factor responsible for regulating
different immune and inflammatory processes [108]. ROS
can modify NF-κB signaling in the cytoplasm and nucleus
[109]. Nuclear translocation of NF-κB can be induced by
H2O2 and can be inhibited by overexpression of the SOD2
enzyme [110, 111]. Other transcription factors involved in
cell differentiation, vascularization, and proliferation activa-
tor protein 1 (AP-1), inducible hypoxia factor (HIF-1), and
gamma-activated peroxisome proliferator receptor (PPARγ)
are also induced by ROS [112–114]. ROS participate in the
signaling of inflammation agonists. Mitochondrial ROS
induce the production of proinflammatory cytokines, IL-
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1B, IL-6, and TNF-α [115]. The inflammation process also
produces OS because polymorphonuclear neutrophils pro-
duce ROS through the NADPH oxidase enzyme pathway
[116]. Furthermore, the ROS produced by the inflammatory
cells condition a positive feedback of the inflammation [117].

1.11. Oxidative Stress in the Treatment for Rheumatoid
Arthritis. Methotrexate is a folic acid antagonist originally
used as a treatment for malignant diseases. Currently, meth-
otrexate is one of the leading medications for the treatment of
rheumatoid arthritis [118]. Methotrexate has immunosup-
pressive effects with mechanisms of action related to the
generation of ROS. The increase in ROS by methotrexate
is important for the cytotoxicity of T cells [119]. Metho-
trexate decreases enzyme levels of SOD, Cat, and total anti-
oxidant activity and promotes apoptosis by increasing
caspase-3 levels [120]. Inhibition of cellular NADPH has
been suggested as one of the mechanisms of OS generation
by methotrexate [121]. During the pentose cycle pathway,
glutathione reductase uses NADPH as a reducing agent
for cellular GSH (primary antioxidant). Decreased cellular
GSH by methotrexate leads to reduced systemic antioxidant
defense [122]. In addition, methotrexate generates mito-
chondrial dysfunction causing decreased activity of mito-
chondrial dehydrogenases, mitochondrial membrane
potential, GSH, ATP concentrations, and increased LPO
[123]. Methotrexate modifies the inflammatory response
of different cells and cytokines with proinflammatory prop-
erties [124]. However, despite experimental evidence of
methotrexate-induced OS, there is clinical evidence to sug-
gest that methotrexate may have antioxidant activity. Some
authors have shown that the management of rheumatic dis-
ease with methotrexate combined with glycosides reduces
the levels of inflammation and OS [125]. Decreased LPO
and increased GSHwere observed in a study of female patients
with rheumatoid arthritis in patients treated with methotrex-
ate compared to patients without methotrexate [126].

1.12. Adjuvant Antioxidants in Rheumatoid Arthritis. Mela-
tonin has been used as a protector from hepatorenal oxida-
tive damage caused by methotrexate. Experimental studies
have shown that the administration of melatonin reverses
the increase in MDA, the activity of myeloperoxidase, and
the decrease in GSH caused by methotrexate in the liver
and kidney [127].

α-Lipoic acid has been used as a protective agent against
methotrexate-induced liver OS. α-Lipoic acid is a coenzyme
of pyruvate dehydrogenase naturally located in the mito-
chondria and used as a supplement for its antioxidant prop-
erties [128]. The administration of α-lipoic acid in mice
showed decreased levels of LPO, protein carbonylation, and
HO⋅ mitochondrial caused by methotrexate. In addition, α-
lipoic acid restores antioxidant levels [129].

N-Acetylcysteine has also been shown to reverse the
effects of methotrexate in decreasing GSH, SOD, and Cat
and increasing MDA in liver samples [130]. In experimental
models of rheumatoid arthritis, the endogenous antioxidant
carnosine has been evaluated. Carnosine is a dipeptide with
properties in the regulation of homeostasis, including protec-

tion against ROS, located mainly in the skeleton, cardiac
muscle, liver, and central nervous system [131]. The combi-
nation of carnosine and methotrexate reduces the levels of
LPO and C-reactive protein in plasma compared to metho-
trexate alone [36]. Combined therapy with methotrexate
and vitamins A, C, and E has been shown to have better ben-
efits in decreasing disease markers [132].

1.13. Oxidative Stress in Neurodegenerative Diseases. OS is
associated with neurodegenerative diseases like Parkinson’s
disease [133], Alzheimer’s disease [134], multiple sclerosis
[135], and depression [136]. The main link between OS and
neurodegenerative diseases is aging. OS accumulated during
aging produces oxidative damage and gradual mitochondrial
dysfunction [137]. Animal models with Alzheimer’s disease
show reduced activity of mitochondrial complex IV in the
hippocampus [138]. Increased OS, in addition to causing
direct mitochondrial oxidative damage, also produce neuro-
toxic subproducts. ROS favor the production of β-amyloid,
a toxic peptide that participates in the neurodegenerative
progression of Alzheimer’s disease [139]. In addition, β-amy-
loid increases OS by activating H2O2 production in neocorti-
cal neurons [140]. Dysregulated activation of NADPH from
microglia cells is also associated with neurodegenerative
progress of dopaminergic neurons in Parkinson’s disease
models [141, 142]. The inflammatory and neurodegenerative
activity associated with multiple sclerosis and depression is
also linked to OS. In multiple sclerosis, an increase in the
marker of oxidative damage to DNA (8-OHdG) and carboli-
nated proteins is found together with a decrease in the GPx
enzyme [143]. On the other hand, high levels of MDA,
decreased ascorbic acid, and SOD enzyme have been found
in patients with unipolar depression [144].

1.14. Oxidative Stress in the Treatment of Neurodegenerative
Diseases. Memantine is a glutamate N-methyl-D-aspartate
receptor (NMDA) subtype antagonist used to decrease the
neurodegenerative progression of dementia in Alzheimer’s
disease [145]. Memantine decreases the neurotoxicity of
overactivation of glutamine receptors in the central nervous
system [146]. Experimental memory deficit models demon-
strate that memantine decreases protein oxidation in the hip-
pocampus and cerebral cortex and reverses recognition
memory deficit [147]. In addition, protective properties from
oxidative damage have also been attributed to DNA primar-
ily from the brain [148]. Memantine decreases levels of
advanced protein oxidation products (AOPP) and advanced
glycation end products (AGEs) in patients with prediabetes
and cognitive impairment [149]. In addition, memantine
can decrease nitrosative stress and increase antioxidant pro-
tection of nonprotein thiols in the cerebrospinal fluid [150].

Levodopa is a precursor to dopamine and is considered
very effective for the symptomatic treatment of patients with
Parkinson’s disease [151]. Levodopa is often used in conjunc-
tion with carbidopa, a peripheral decarboxylase inhibitor, to
increase the availability of levodopa by up to four times
[152]. The activity of levodopa on the generation of OS has
different postulates. On the other hand, in vitro evidence
indicates that levodopa has neurotoxic properties induced
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by the generation of ROS [153]. Excess dopamine outside the
synaptic vesicle caused by treatment with levodopa favors
metabolism via monoamine oxidase or autooxidation, lead-
ing to the production of ROS. Spontaneous autooxidation
of dopamine can produce O2 and reactive quinones [154].
However, models in lymphocyte cells have shown antioxi-
dant effects of carbidopa/levodopa and protective properties
against oxidative damage to DNA [155]. Use of the carbido-
pa/levodopa combination with other disease-related medica-
tions, such as monoamine oxidase inhibitors, has been shown
to decrease the enzymatic metabolism of dopamine and levo-
dopa by decreasing the generation of ROS [156]. This evi-
dence suggests that the pro- or antioxidant characteristics
of levodopa management are linked to fluctuations in dopa-
mine metabolism that occur with treatment [157].

1.15. Adjuvant Antioxidants in Neurodegenerative Diseases.
Some natural antioxidants have been used to enhance the
antioxidant effects of pharmacology therapy. An experimen-
tal study reveals that the administration of ascorbic acid or
rose oil can help to decrease the levels of oxidative damage
to lipids or proteins induced by levodopa [158]. Studies show
that the administration of vitamin E decreases the toxic
effects of β-amyloid and improves cognitive development,
decreases neuronal damage, and slows the progression of
Alzheimer’s disease [159, 160]. Green tea epigallocatechin
gallate esters have inhibitory properties of amyloidosis and
β-amyloid production both in vitro and in vivo [161]. Mela-
tonin is another natural component that has been shown to
have neuroprotective effects. In Parkinson’s disease models,
melatonin contributes to decreased dopamine production
and decreases the LPOs and nitrites in the cytosol [162]. Mel-
atonin has also been observed in clinical studies to improve
sleep disorder in patients with Parkinson’s disease, but not
to improve motor symptoms [163, 164].

1.16. Oxidative Stress in Cancer. ROS have the ability to dam-
age DNA and promote the development of carcinogenesis
[165]. OH⋅ is the main ROS that attacks the mitochondrial
and nuclear DNA strands producing different hydrolyzed
base products such as 8-OHdG and 8-oxodG [166]. Cells
can repair DNA damage by different enzyme mechanisms
[167]. However, when DNA damage cannot be repaired,
mutations related to base modification or deletion occur,
leading to carcinogenesis [168]. The risk of poor DNA repair
increases with the number of oxidative lesions that occur in
DNA. Aging contributes to the accumulation of oxidative
damage and decreased DNA repair [169]. Consequences of
oxidative DNA damage include chromosomal abnormalities,
blocking of DNA replication, and cytotoxicity [170, 171].
While oxidative damage to DNA is primarily caused by a
direct free radical attack on DNA, free radical reaction with
other cellular components may also contribute to mutagenic-
ity [172]. LPO have carcinogenic capabilities [173]. MDA can
react with guanine bases and form adducts [174]. All the
mechanisms for the development of carcinogenesis caused
by OS are still unknown. New mechanisms point to OS abil-
ity to alter the expression of genes and proteins involved in
signaling cell growth and proliferation [175].

1.17. Oxidative Stress and Antineoplastic Drugs. Antineoplas-
tic drugs have shown increased production of OS during the
application of chemotherapy in cancer patients. Antineoplas-
tic drugs promote the elevation of LPO and reduction of vita-
mins E and C and β-carotene [176].

Doxorubicin is a broad-spectrum anthracycline widely
used in solid tumors [177]. Its mechanism of action is not
completely known, but it consists of the inhibition of DNA
and RNA synthesis, interfering with the activity of the
enzyme topoisomerase II and the generation of ROS [178].
Doxorubicin has a quinone chemical structure that acts as
an electron acceptor, producing a semiquinone radical that
reacts with oxygen to form O2

⋅- and H2O2 [179]. The release
of these free radicals increases OS causing DNA damage and
cell death [180]. Despite the strong antineoplastic effects of
doxorubicin, its use is limited due to its cardiotoxic capacity
[181]. The main cardiotoxicity mechanisms of doxorubicin
are OS and mitochondrial dysfunction [182]. Experimental
evidence shows that treatment with doxorubicin increases
OS in cardiac myocytes, causing accumulation of irreversible
cardiotoxicity [183]. Doxorubicin increases the production
of O2

⋅- and NO⋅ by joining the eNOS reductase domain
[184]. eNOS is the major NOS isomorphism involved in the
development of left ventricular dysfunction induced by
doxorubicin [185]. Some studies have proposed using antiox-
idants to decrease the cardiotoxicity of doxorubicin. The car-
dioprotective effects of coenzyme Q10 have been evaluated in
pediatric patients on anthracycline therapy. Patients receiv-
ing coenzyme Q10 were reported to show benefits in cardiac
function [186].

Cisplatin is one of the main representatives of the drugs
in the group of coordination complexes with platinum used
for several decades to treat different types of cancer [187].
Cisplatin anticancer activity consists of the ability of plati-
num to form covalent adducts with nuclear DNA. These
cisplatin-DNA junctions form crosslinks between the outer
and inner strands causing the strands of nuclear DNA to
break. DNA damage ends up, causing cellular apoptosis
[188]. Like other cancer drugs, the use of cisplatin is also
limited by its side effects. One of the main toxic effects is
nephrotoxicity [189]. OS represents an important mecha-
nism of tissue damage from the use of cisplatin. Cisplatin-
induced nephrotoxicity is associated with mitochondrial
damage represented by decreased GSH, oxidative damage
of lipids and mitochondrial proteins, and increased apopto-
sis [190]. MDA has been proposed as a predictor of the
development of cisplatin-induced kidney failure [191].
Increased liver concentrations of LPO products are also
related to cisplatin-induced hepatotoxicity [192]. High doses
of cisplatin cause mitochondrial OS and damage to liver
energy metabolism [193].

1.18. Adjuvant Antioxidants in Cancer. Coenzyme Q10
(ubiquinone) is not FDA approved to treat any medical
condition. However, it is widely available over the counter
as a dietary supplement. Chronic diseases like cancer, neu-
rodegenerative disease, fibromyalgia, DM, mitochondrial
diseases, muscle diseases, and heart failure are associated
with decreased circulating levels of coenzyme Q10 [194].
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Coenzyme Q10 is a fat-soluble vitamin-like molecule that
occurs naturally in every cell membrane in our bodies. It
is a normal part of our diet, but it is also synthesized
endogenously. It is essential for the proper transfer of elec-
trons within the mitochondrial respiratory chain and the
production of adenosine triphosphate (ATP) [195]. Coen-
zyme Q10 has the ability to increase the production of
key antioxidants such as SOD. The coenzyme Q10 reduces
LPO levels by reducing prooxidant compounds and is capa-
ble of improving blood flow and protecting blood vessels
through the preservation of NO⋅ [196]. Coenzyme Q10 is
safe as a dietary supplement. Toxicity is unlikely, even up
to a daily intake of 1,200mg/day. The typically studied
doses have been from 100 to 200mg/day [197].

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a poly-
phenolic phytoalexin present in a variety of plant species
such as peanuts, grapes, berries, and red wine [198]. Preclin-
ical studies have shown that resveratrol has protective effects
in various disease models, such as DM and cancer [199]. Res-
veratrol in vitro systems have been shown to directly remove
a variety of oxidants, including the OH⋅ radical, O2

⋅-, H2O2,
and ONOO-. In a cell-free system using the Fenton reaction
as the OH⋅ source, resveratrol (at concentrations ≥ 300μM)
has been shown to act as a scavenger rather than an inhibitor
of the Fenton reaction. The calculated reaction rate of resver-
atrol of OH⋅ (9:45 × 108M−1·s−1) is significantly less than
that of well-established antioxidants, including ascorbate
(1:2 × 1010M−1·s−1), glutamate (GSH) (1:5 × 1010M−1 S−1),
and cysteine (1:3 × 1010M−1·−1). The property which has
been proposed to remove OH⋅ of resveratrol is due to its phe-
nolic groups [200]. Resveratrol (at concentrations ≥ 100μM)
has been shown to remove the radical O2

⋅- directly in a non-
enzymatic, cell-free system (potassium O2

⋅- system) [201].
Resveratrol (10μM) increases mitochondrial mass and mito-
chondrial DNA and regulates constituents of the electron
transport chain and mitochondrial biogenesis factors in cul-
tured coronary artery endothelial cells in humans [202]. Very
high doses of resveratrol (up to 3000mg) have been used in
some clinical trials. However, low doses (5mg in humans
or 0.07mg·kg−1 in mice) have been shown to have even supe-
rior chemopreventive efficacy against cancer at high doses
(1000mg in humans or 14mg·kg−1 in mice) [203].

1.19. Oxidative Stress in Antiretroviral Therapy. The intro-
duction of highly active antiretroviral therapy (HAART)
has reduced the morbidity and deaths associated with human
immunodeficiency virus infections (HIV) [204]. Drugs clas-
sified as nucleoside or nucleotide reverse transcriptase inhib-
itors (NRTI or NtRTI), nonnucleoside reverse transcriptase
inhibitors (NNRTI), protease inhibitors (IP), integrase inhib-
itors, and fusion inhibitors/entry are traditionally used in the
treatment of HIV infections. Current HAART administra-
tion guidelines recommend the combination of two NRTIs,
an NNRTI, or a protease/integrase inhibitor, depending on
the patient’s efficacy and tolerability. NRTIs (abacavir,
didanosine, lamivudine, stavudine, zidovudine, and emtrici-
tabine) act as false substrates that sabotage the lengthening
of the viral cDNA chain, inhibiting viral reverse transcriptase
activity by limiting viral replication [205]. NRTIs are associ-

ated with hepatotoxicity, such as steatosis, steatohepatitis,
disorders of lipid regulation, enlarged liver, and abnormal
liver functions [206], although the specific mechanisms
through which complications of NRTIs occur have not yet
been clearly defined. NRTIs have been shown to inhibit γ-
DNA polymerase, leading to mitochondrial DNA depletion
and mitochondrial toxicity, leading to impaired oxidative
phosphorylation and oxidative damage to cellular machin-
ery, along with delayed cell cycle progression resulting in
apoptotic cell death [207]. These effects have been attributed
to the binding of NRTI-triphosphate (the active metabolite of
most NRTIs after intracellular phosphorylation) to replicat-
ing mitochondrial DNA that causes the termination of viral
chain elongation [208]. The marked increase in MDA, end
products of LPO, and protein carbonyls has been associated
with the administration of NRTI, together with a decrease
in the activity of enzymatic antioxidant proteins as a conse-
quence of the disorder of the oxidative phosphorylation pro-
cess [209]. Known metabolic complications of NRTI
administration include lipodystrophy, dyslipidemia, hepato-
toxicity, hepatomegaly, metabolic syndrome, increased lactic
acid, and cardiomyopathy [210]. Oxidative cell damage
caused by mitochondrial toxicity is one of many scientific
mechanisms that underline the development of complica-
tions from NRTI [211].

On the other hand, active HIV infection in the central
nervous system is undoubtedly a factor that contributes to
the development of cognitive deficit [212]. Stopping viral
replication in brain tissue and the rest of the body is essen-
tial for prevention. However, the potential of antiretroviral
treatments to contribute to this degenerative condition has
not been fully explored in clinical studies or in experimen-
tal models. NRTI are essential drugs in most combination
antiretroviral therapy (cART) regimens. The most common
side effects of these medications that limit clinical use are
myopathy, lactic acidosis, and peripheral neuropathy. All
of which are closely related to mitochondrial toxicity. The
implementation of cART has dramatically increased the
survival rate of people infected with HIV and has almost
completely prevented severe dementia associated with the
virus [213, 214]. The putative molecular mechanism that
governs NRTI-mediated mitochondrial toxicity is the spe-
cific inhibition of mitochondrial polymerase γ (pol γ)
[215]. Because pol γ is the primary DNA polymerase in
mitochondria, inhibition of pol γ is expected to lead to
reductions in mtDNA synthesis and subsequently to reduc-
tions in the supply of critical protein subunits of respiratory
complexes of the electron transport chain. Deficiencies in
these proteins should cause decreased ATP production and
accumulation of orphan respiratory complex subunits
encoded by nuclear DNA. Despite the high correlation
between pol γ inhibition in vitro and the severity of clinical
side effects, studies in cell culture have shown that mito-
chondrial dysfunction can occur in cardiac myocytes or
hepatocytes independent of mtDNA depletion [216]. When
NRTI interfere with the action of mitochondrial DNA poly-
merase, mitochondrial replication is inhibited. This gradu-
ally reduces mitochondrial function in various tissues that
is evident primarily in metabolically active organs such as
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the heart and liver, resulting in cardiotoxicity and heap
toxicity [208].

1.20. Natural Antioxidants in HIV. Common HIV antioxi-
dants such as vitamins C and E, uridine, and carnitine have
been investigated to prevent or reverse complications from
NRTI management with minimal success [217]. Therefore,
further research is needed for alternative antioxidants that
may be more effective in controlling complications of NRTI.
Dietary and nutritional therapies are viable options that have
not been vigorously applied. The beneficial effects of some
currently available antioxidants have been used in animal
models, but large-scale validated clinical trials are still lacking
[218]. Plant-derived flavonoids such as naringin (4′,5,7-tri-
hydroxyflavone 7-rhamnoglycoside) are commonly found
in citrus. Naringin has been recommended as beneficial to
reduce the risk of DM and CVD in predisposed populations
[219]. The antioxidant capacity of naringin has been demon-
strated through its action in the elimination of free radicals,
antiapoptosis, antihyperglycemic, antimutagenic, anticancer,
anti-inflammatory, and cholesterol-lowering agents [220].
HIV causes symptoms that are similar to those of NRTI-
induced metabolic complications. In 2015, the authors
reported an experimental study in mice where naringin
reversed the metabolic complications associated with NRTI
by improving OS and apoptosis. This evidence implies that
naringin supplementation could mitigate lipodystrophy and
dyslipidemia associated with NRTI therapy [221]. Naringin
is a cheap and readily available dietary flavonoid in most cit-
rus fruits with proven antioxidant and antiapoptotic proper-
ties that have shown favorable effects in animal models
in vitro, in vivo, and ex vivo. The mechanism by which narin-
gin improves metabolic complications possibly implies its
antioxidant and/or antiapoptotic effects [222]. The mecha-
nism of action is worth further investigation in patients
treated with NRTI through well-conducted clinical studies,
where naringin is administered at different doses.

2. Conclusions

OS is closely linked with the pathological mechanisms of dif-
ferent chronic diseases. The role of pharmacological therapy
on OS depends both on the chemical characteristics of the
active molecules and on the consequences of the mechanisms
of action. Medicines such as CCB have a dihydropyridine
ring that gives them antioxidant structural characteristics.
On the other hand, other antihypertensive drugs show bene-
ficial antioxidant activity as a result of regulating the antihy-
pertensive mechanism to normal. Immunosuppressive and
antiretroviral drugs are the treatments that cause the most
oxidative damage in patients in the long term, and antioxi-
dant management alternatives are very limited in experimen-
tation or with insufficient results to treat these pathologies.
The investigation of the oxidative mechanisms of these
pathologies and of the conventional medicines used to treat
them will allow a better understanding, monitoring, or selec-
tion of alternative antioxidant medicines according to the
health condition of each patient to decrease oxidative
damage.

GSH: glutathione; SOD: superoxide dismutase; MDA:
malondialdehyde; AGEs: advanced glycation end products;
NRTI: nucleoside reverse transcriptase inhibitors.
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