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ABSTRACT Genome-wide association studies (GWAS) have gained central importance for the identifica-
tion of candidate loci underlying complex traits. Single nucleotide polymorphism (SNP) markers are mostly
used as genetic variants for the analysis of genotype-phenotype associations in populations, but closely
linked SNPs that are grouped into haplotypes are also exploited. The benefit of haplotype-based GWAS
approaches vs. SNP-based approaches is still under debate because SNPs in high linkage disequilibrium
provide redundant information. To overcome some constraints of the commonly-used haplotype-based
GWAS in which only consecutive SNPs are considered for haplotype construction, we propose a new
method called functional haplotype-based GWAS (FH GWAS). FH GWAS is featured by combining SNPs
into haplotypes based on the additive and epistatic effects among SNPs. Such haplotypes were termed
functional haplotypes (FH). As shown by simulation studies, the FH GWAS approach clearly outperformed
the SNP-based approach unless the minor allele frequency of the SNPs making up the haplotypes is low and
the linkage disequilibrium between them is high. Applying FH GWAS for the trait flowering time in a large
Arabidopsis thaliana population with whole-genome sequencing data revealed its potential empirically.
FH GWAS identified all candidate regions which were detected in SNP-based and two other haplotype-based
GWAS approaches. In addition, a novel region on chromosome 4 was solely detected by FH GWAS. Thus
both the results of our simulation and empirical studies demonstrate that FH GWAS is a promising method
and superior to the SNP-based approach even if almost complete genotype information is available.
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Genome-wide association studies (GWAS) have been widely applied to
identify candidate regions on chromosomes influencing complex traits
in plant (Brachi et al. 2011), animal (Goddard and Hayes 2009) and
human populations (McCarthy et al. 2008). The most commonly used

genetic variants to test genotype-phenotype associations in GWAS are
single nucleotide polymorphism (SNP) markers. Alternatively, SNPs
can be combined into haplotypes which has been popular in association
studies since the structure of human haplotype blocks was revealed
(Gabriel et al. 2002; Cardon and Abecasis 2003). Empirical studies
showed that haplotype-based GWAS was able to detect loci which
failed to be identified in single SNP-based GWAS (Trégouët et al.
2009; Pryce et al. 2010). Nonetheless, contrasting results comparing
the power of haplotype- and SNP-based GWAS were reported in
previous studies (Lorenz et al. 2010) and whether it is beneficial to
use haplotypes as variants in GWAS has to be evaluated on a case-
by-case basis (Long and Langley 1999).

Potential advantages for testing associations between phenotypes
and haplotypes, instead of SNP markers include: haplotypes may
exploit epistatic interactions among markers within the haplotype
blocks (Schaid 2004); contain more information on whether two
alleles are identical by decent (Meuwissen and Goddard 2000);
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utilize the information from evolutionary history (Durrant et al.
2004) and provide more power than single SNPs whenmultiple alleles
contribute to the trait (Morris and Kaplan 2002). There are, however,
also drawbacks when using haplotypes as variants in association
tests. Adding irrelevant markers to a possible causal genetic variant
will dilute the contrasts among haplotype allele classes (Clark 2004).
A haplotype consisting of k SNPs may have up to 2k different haplo-
type alleles, which will increase the degree of freedom and hence
reduce the power of test (Zhao et al. 2003).

Among factors affecting the power of haplotype-based GWAS
approaches, a fundamental one is how the haplotypes are constructed.
The widely used methods group SNPs by sliding-windows of fixed or
variable length (Lin et al. 2004; Huang et al. 2007), by the linkage
disequilibrium (LD) between adjacent SNPs (Barrett et al. 2005) or
by the diversity of haplotypes across samples (Zhang et al. 2002;
Anderson and Novembre 2003). Common to these methods is that
only consecutive SNPs, which are often in high LD, are combined into
haplotypes. Consequently, in many cases the haplotypes are not much
more informative than a single SNP because the SNPs in high LD
provide redundant information (Laramie et al. 2007). This may provide
one explanation for the contradicting results reported in the literature
comparing the power of haplotype- and SNP-based GWAS ap-
proaches. Other methods were developed to search for haplotypes
consisting of most informative and possibly non-consecutive SNPs
within a certain region (Laramie et al. 2007; Yu and Schaid 2007;
Abo et al. 2008; Yang et al. 2008; Dai et al. 2009; Knuppel et al.
2012). Despite their potential, the high computational burden associ-
ated with these methods restricted their use mainly to association stud-
ies for candidate gene regions.

In this study we addressed these limitations by developing a new
method of constructing haplotypes, taking epistatic effects among SNPs
intoaccount.Epistasis hasbeen identifiedas an important contributor to
the genetic variation of complex quantitative traits (Carlborg andHaley
2004; Mackay 2014). It has been reported for two- or three-locus ex-
amples that a model involving haplotype effects can be reparametrized
into one including the main and epistatic effects among markers con-
stituting the haplotypes (Conti and Gauderman 2004; Schaid 2004).
More recently this relationship between haplotype and marker effects
was formally proved in the framework of genome-wide prediction for
homozygous populations (Jiang et al. 2018). Capitalizing on these
theoretical findings, we exploited epistatic effects among markers
for constructing haplotypes and implemented this novel strategy in
haplotype-based GWAS for a large Arabidopsis thaliana population
generated by the 1001 Genomes Consortium (1001 Genomes Consor-
tium 2016). The results were compared to those obtained with two
commonly used haplotype-based GWAS methods as well as the single
SNP-based approach, and underlined the ability to detect hidden
marker-trait associations using the newly devised strategy. Moreover,
simulation studies revealed factors which determine whether the de-
veloped GWAS approach outperforms the single SNP-based method.

MATERIALS AND METHODS
Throughout the manuscript, a combination of (possibly non-consecu-
tive) SNPs was termed haplotype. By haplotype effect we meant to
consider the effects of all possible alleles together. When referring to a
specific allele, the term haplotype allele was used.

The baseline model for genome-wide
association mapping
A standard linear mixed model controlling the structure of genetic
relatedness or the polygenic background effects (Yu et al.2006)wasused

for genome-wide association mapping. In this study the model was
used for testing single SNP effects, epistatic effects among several SNPs
and haplotype effects. It can be uniformly described as following:

y ¼ 1nmþ Xbþ g þ e (1)

where y is a n-dimensional vector of observed phenotypic values (n is
the number of genotypes), 1n is a vector of one’s, m is a common
intercept term, b represents the effects of the variables (SNPs, inter-
actions among SNPs or haplotype alleles) being tested, X stands for
the corresponding design matrix, g is the n-dimensional vector of
genotypic effects and e is the residual term. In the model we assume
that m and b are fixed effects, g and e are random effects and
g � Nð0;s2

gKÞ, e � Nð0;s2
e IÞ, where K is a marker-derived kinship

matrix, I is the identity matrix, s2
g and s2

e are the corresponding
variance components. Distance matrix was calculated with Rogers’
distance (Reif et al. 2005) and K was equaling one minus distance
matrix. To reduce the computational load, an acceleration algorithm
was implemented in which the linear mixed model was transferred
to a simple linear model by applying eigen-decomposition to the
kinshipmatrix (Lippert et al. 2011). The significance ofbwas assessed
by t-test.

The general procedure of functional haplotype-based
GWAS (FH GWAS)
In genomic prediction, it was demonstrated that modeling haplotype
effects is equivalent to modeling main and epistatic effects among
markers within the haplotype block, except that the twomodels assume
different covariance structures for the unknown parameters (Jiang et al.
2018). The theory also applies toGWAS and in this case the twomodels
are strictly equivalent because the parameters to be tested are assumed
to be fixed effects (Equation 1) and hence without any covariance
structure. Based on this theory, we developed a new haplotype-based
GWAS approach, FH GWAS, with haplotypes based on the main and
epistatic effects among SNPs. FH GWAS consists of the following four
steps summarized in Figure 1.

Step 1: Preselecting SNPs to be combined into haplotypes: GWAS
for single SNPs is performed using the linearmixedmodel (Equation 1)
and a mild threshold without correction for multiple testing is applied
to identify candidate SNPs (e.g., P , 0.01). SNPs whose P values do
not pass the threshold are excluded in subsequent analyses.

Step 2: Constructing functional haplotypes: In this step, candidate
SNPs showing significant local epistatic effects are grouped into hap-
lotypes. First we need to determine two parameters: the window size for
searching haplotypes (denoted by w) and the number of SNPs in each
haplotype (denoted by l). Theoretically the choice of these two param-
eters can be arbitrary. But in practice one needs to consider the linkage
disequilibrium in the population, the computational load and the
power of the association test (More details were discussed in the Dis-
cussion section). Once the parameters are chosen, GWAS model
(Equation 1) is then performed for any l-tuple of SNPs within the
window size w, including the additive effects of each SNP and the
digenic epistatic effects for each pair of SNPs. That is, the entries in
the vector b include ai (1# i# l) and aaij (1# i, j# l), where ai
denotes the additive effect of the i-th SNP, aaij denotes the epistatic
effects between the i-th and the j-th SNP. In the case that l is small,
higher-order epistatic effects can also be included in the model. Next
we determine the number of significant additive and epistatic effects
(again under a mild threshold) required for grouping the l-tuple of
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SNPs into a haplotype, i.e., when there are at least s (s# l) significant
additive effects and t (t# lðl2 1Þ=2) significant epistatic effects, the
l-tuple of SNPs is combined into a haplotype. Since main as well as
epistatic effects are taken into account for haplotype construction we
coined the term functional haplotypes. Importantly, for each trait to be
analyzed in a given population, a different set of candidate SNPs and
functional haplotypes will be obtained.

Step 3: GWAS using functional haplotypes: All resulting functional
haplotypes are applied in conjunction with phenotypic data for GWAS
using the linear mixed model (Equation 1). Significant functional
haplotypes are then identified using a stringent genome-wide threshold

corrected for multiple testing, e.g., P , 0.05 after Bonferroni
(Dunn 1961) or Benjamini-Hochberg correction (Benjamini and
Hochberg 1995).

Step 4: Narrowing Down candidate regions: In each region in which
significant functional haplotypes are detected in Step 3, we fitted all
significant functional haplotypes in a variable-selection model (e.g., the
stepwise linear regression model (Draper and Smith 2014) or the least
absolute shrinkage and selection operator (LASSO, Tibshirani 1996) to
select representative significant functional haplotypes. In any region
where significant functional haplotypes are found, the span of all rep-
resentative haplotypes is considered as a final candidate region.

Figure 1 The workflow for FH
GWAS.
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Two other methods constructing haplotypes
To compare FH GWAS with existing haplotype-based GWAS ap-
proaches, we considered the following two commonly-used methods
of constructing haplotypes (Figure S1).

The overlapping sliding-window approach: The sliding window
approach constructs haplotypes with a fixed window length, i.e.,
the number of adjacent SNPs (Huang et al. 2007). If the window is
moved with a certain step size which is smaller than the window length
adjacent windows are overlapping. In this study we chose the window
length to be three, which is consistent with the length of our functional
haplotypes, and the step size to be one.

The linkage disequilibrium approach: The linkage disequilibrium
(LD) approach groups SNPs into a haplotype if the LD between every
two adjacent SNPs is equal or greater than a certain threshold, which
allows physically close and non-randomly associated SNPs to be
grouped together in the same haplotype (Barrett et al. 2005). In our
study, the r2 statistic was used tomeasure LD (Hill and Robertson 1968)
and the threshold was set to 0.9. Note, that in this method the con-
structed haplotypes may have different lengths. In all cases in which
SNPs were not grouped into any haplotype, the single SNPs were
considered as haplotypes of length one.

GWAS based on haplotypes constructed via the above two
methods are referred as SWH GWAS and LDH GWAS respectively.
The significance of haplotypes was also tested using the linear mixed
model (Equation 1).

Data sets
The study was based on published data of Arabidopsis thaliana from
the 1001 Genomes Consortium (1001 Genomes Consortium 2016).
The genotypic data contained 1,134 accessions with 11,458,975 single-
nucleotide polymorphisms (SNPs). The phenotypic data that were
considered was flowering time for plants grown at two different tem-
peratures (10� and 16�), which included phenotypic values for 1,163
and 1,123 accessions respectively. Combining the genotypic and phe-
notypic data, 1,003 (970) accessions were used in the 10� (16�) data
set. In the following the two data sets were referred as data set FT10
(10�) and FT16 (16�) respectively. Only bi-allelic SNPs were consid-
ered for the analyses. After removing the SNPs with missing rate
above or equaling 0.1, the remaining missing values were imputed
with IMPUTE2 (Howie et al. 2009; Howie et al. 2012). Linkage phases
were determined by SHAPEIT (Delaneau et al. 2011). SNPs
with minor allele frequency (MAF) below 0.05 were also removed.
For subsequent analyses the resulting 756,005 and 754,656 SNPs
were used for data set FT10 and FT16, respectively.

Comparing FH GWAS with other methods using
empirical data
Wecompared the performance of FHGWASwith that of SWHGWAS,
LDH GWAS and the single SNP-based approach with the Arabidopsis
thaliana data sets described in the previous section. The genome-wide
thresholds for the different approaches were generally determined as
P, 0.05 after Bonferroni correction for multiple testing (Dunn 1961).
Thus for the SNP, SWH and LDH GWAS approaches, the thresholds
were P , 0.05/m, where m is the number of SNPs or haplotypes
constructed in total. The proportion of phenotypic variance explained
by each of the significant SNPs or haplotypes was calculated as the
adjusted R2 in a linear regression model with intercept and the test-
ing variable. For regions in which significant associations were detected

in GWAS, annotated genes were retrieved from Araport11 (Cheng
et al. 2017).

Implementation of FH GWAS: In the procedure of preselecting SNPs,
we filtered the markers with the threshold P , 0.01. Then we set the
window size for searching haplotypes to be 50 kb and the number of
SNPs in each haplotype to be three. Thus the linear mixed model (1)
was performed for any triplet of candidate SNPs within 50 kb, testing
the additive effects of each SNP, the epistatic effects for each pair of
SNPs and the three-way epistatic effects. If at least two of the additive
effects were significant with P , 0.05 and at least two of the pairwise
epistatic effects were significant with P , 0.1, the triplet of SNPs
was grouped into a functional haplotype. In the test of all functional
haplotypes, we again applied the Bonferroni correction for multiple
testing. But the threshold for FH GWAS needed further adjustment
to account for the pre-testing procedure for single SNP effects and
epistatic effects. So a more stringent threshold was determined as
P , 0.05/(m+c), where m is the number of functional haplotypes
and c is the number of tests performed in the pre-testing procedure.
To select representative significant functional haplotypes, we used
the stepwise linear regression model (Draper and Smith 2014) and
applied a bidirectional elimination procedure minimizing the Schwarz
Bayesian Criterion (Schwarz 1978).

GWAS considering markers in perfect LD
SNPs in perfect LD (r2 ¼ 1) are virtually identical in GWASmodels in
the sense that they have the same estimated effects and P values. Thus
for each group of SNPs in perfect LD, we recorded their positions and
performed only one test in GWAS. This approach was termed SNPLD
GWAS. Let nLD be the number of SNPs adjusted for perfect LD, mean-
ing that SNPs in perfect LD were counted only once. Then the thresh-
old for SNPLD GWAS was P , 0.05/nLD.

For any two haplotypes consisting of three SNPs, they may share k
SNPs (k = 0, 1, 2). If the remaining 3-k pairs of SNPs are in perfect LD
respectively, the two haplotypes can be treated as identical in GWAS for
the same reason as above. Thus our FH GWAS approach can also be
adjusted by considering SNPs in perfect LD, which was termed FHLD

GWAS. Let mLD be the adjusted number of functional haplotypes
and cLD be the adjusted number of tests performed in the pre-testing
procedure. Then the new threshold for FHLDGWASwas determined as
P , 0.05/(mLD+cLD).

Decay of linkage disequilibrium
The genome-wide decay of LD in the population of data set FT10
was estimated by a non-linear regression model using Hill and Weir’s
function (Hill and Weir 1988). The same method was used to estimate
the decay of LD for the five candidate regions detected in GWAS.

Simulation study
Phenotypic data were simulated based on genotypic data of the 1,003
Arabidopsis thaliana accessions described previously (1001 Genomes
Consortium 2016). Considering computational load, the simulations
were restricted to all bi-allelic SNPs mapping to chromosome 2 regard-
less of MAF, in total 279,038 SNPs. In the simulation procedure three
SNPs were always selected within a 50 kb window and main and
epistatic effects were assigned to them. To clarify the influence of LD
andMAF on the performance of haplotype-based GWAS, three ranges
of LD (0-0.2, 0.3-0.6 and 0.7-1) between each pair of selected SNPs,
three ranges of MAF (0-0.1, 0.2-0.3 and 0.4-0.5) for the selected SNPs
and combinations thereof were considered. For each of the resulting
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nine simulation scenarios, the main effect of each SNP, the epi-
static effects between each pair of SNPs and the three-term inter-
action effect were set to account for 6%, 3% and 1% of the
explained proportion of genetic variance, respectively and the her-
itability was set to be 0.8. All remaining SNPs were required
to contribute equally to the remaining proportion of explained
genetic variance to simulate genetic background. Based on the
resulting simulated phenotypic data, association mapping was per-
formed (model 1) using the three SNPs of a particular haplotype
individually and the haplotype. For each scenario, simulations
were repeated 1,000 times.

Data availability
All data analyzed in this study have been published previously (1001
Genome Consortium 2016). Phenotypic data were downloaded
from AraPheno (https://arapheno.1001genomes.org/phenotypes/?
sort=study&page=1). Genomic data were downloaded from
the 1001 Genomes data center (http://1001genomes.org/data/
GMI-MPI/releases/v3.1/, the data ‘1001genomes_snp-short-indel_
only_ACGTN.vcf.gz’ was used in this study). FH GWAS was
implemented using R (R Core Team 2017). The source code and
sample data sets which are subsets of the original data set for
running the code can be found at https://github.com/Fangv1/
Functional_haplotype_GWAS/tree/master/. Supplemental files
are available at figshare. Supplemental material available at fig-
share: https://doi.org/10.25387/g3.8967986.

RESULTS

FH GWAS outperformed SNP-based and two other
haplotype-based GWAS approaches
In this study, data for flowering time inArabidopsis thaliana accessions
that had been cultivated at 10� and 16� were analyzed (1001 Genomes
Consortium 2016), these compilations are referred to as data sets FT10
and FT16, respectively. Data set FT10 encompassed 1,003 accessions
and after quality control 756,005 biallelic SNPs remained for subse-
quent analyses. To assess the performance of the proposed FH GWAS,
we compared its results to those of single SNP-based GWAS and two
other haplotype-based approaches in which haplotypes were either
constructed using sliding-windows (SWH GWAS) or by considering
LD of consecutive SNPs (LDH GWAS). The number of SNPs grouped
into haplotypes and number of haplotypes analyzed in GWAS varied
between the three approaches (Table S1). Applying Bonferroni correc-
tion formultiple testing (Dunn 1961) (P, 0.05) resulted in significance
thresholds of -log10P = 7.03, -log10P = 7.18 and -log10P = 6.50 for LDH,
SWH and FH GWAS, respectively. But for FH GWAS it was necessary
to apply a further correction to account for the pre-testing procedure
for single SNP effects and epistatic effects which preceded the construc-
tion of functional haplotypes (seeMaterials and Methods for details).
Implementing this correction resulted in a more stringent threshold
of -log10P = 8.29. Applying the different GWAS approaches, signif-
icant associations were found in five chromosome regions (Figure
2A-2D). Importantly, all regions that were identified by SNP-based,
LDH and/or SWH GWAS were also found by FH GWAS. Four
regions, I, III, IV and V, were identified by all methods, but region
II on chromosome 4 solely showed significant association with
flowering time using FH GWAS. For each of the significant func-
tional haplotypes detected in region II, an additional association
test was performed with only the main effects of the three SNPs
in the haplotype. We found that in all cases the –log(P) values de-
creased by three to five orders of magnitude. This clearly showed

the important contribution of epistatic effects to the overall effect of
a functional haplotype.

For each haplotype the P value of the SNP for which the lowest
P value had been observed in single SNP-based GWAS was compared
to the one of the corresponding haplotype. The proportion of
haplotypes showing significant associations that contained at least
one SNP, which had passed the significance threshold in SNP-based
GWAS, varied between the three different haplotype-based GWAS
approaches (Figure 2E-2G). The highest proportion was found
with 90.91% for LDH GWAS and the lowest one with 29.33% for
FH GWAS (Table 1).

Accounting for linkage disequilibrium in functional
haplotype-based GWAS
Strikingly, FHGWAS identified several thousand significant haplotypes
whereas SNP-based GWAS and the other two haplotype-based GWAS
approaches revealed few significant associations (Table 1, Figure 2).
Inspection of the significant functional haplotypes in a given chromo-
some region revealed many subsets sharing one or two SNPs. For
example, nine of the 15 significant haplotypes in region II had two
SNPs in common. Moreover, the SNPs distinguishing these nine sig-
nificant haplotypes were in high LD to each other (Figure S2). This
exemplifies that many different significant functional haplotypes may
result in cases in which significant haplotypes are made up of SNPs
which are in high LD with other SNPs in the region. Taking into
account which SNPs are in perfect LD to each other it is possible to
restrict the FH GWAS analysis to those haplotypes which provide non-
redundant information regarding additive and epistatic effects, called
FHLD GWAS hereafter. In data set FT10, the number of SNP combi-
nations to be tested could be reduced in this manner from 8,932,265 to
2,460,993. Instead of 157,526 functional haplotypes in FH GWAS only
44,759 resulted in FHLD GWAS. However, owing to a less stringent
threshold of -log10P = 7.79 for FHLDGWAS compared to -log10P = 8.29
for FH GWAS the number of significant associations increased
(Table S2). Regardless whether FH GWAS or FHLD GWAS were used
multiple significant haplotypes were found in regions I to V. In addi-
tion, a single haplotype passed the significance threshold in FHLD

GWAS on chromosome 3 (Table S2, Figure 2, Figure S3).

Representative significant haplotypes narrowed down
the candidate regions
Depending on the region, the mean size of the significant functional
haplotypes, defined as the distance in base pairs between the outermost
SNPsof aparticularhaplotype, varied from10.6 to41.3kb inFHGWAS.
Moreover, the size of chromosome segments in which overlapping
significant functional haplotypes were found differed, ranging from
54.3 to 167.2 kb (Table S3). The sizes of the significant functional
haplotypes in conjunction with their high number hampered the search
for candidate genes. Variable selection methods were therefore used to
reduce the number of significant functional haplotypes (see Materials
andMethods for details). For data set FT10, two to six and two to eight
representative haplotypes were selected per region in FH GWAS and
FHLD GWAS, respectively (Table S2). Taking into account the overlaps
between all representative significant functional haplotypes of a given
region and/or the area between them, small regions with few genes were
detected (Figure 3, Figure 4, Figure S4, Table S4). In all cases a candidate
gene was identified among these genes for which a role in flowering
time control had been documented previously. FT (Kardailsky et al.
1999; Corbesier et al. 2007) represents a candidate gene for region I
on chromosome 1 (Figure 3A). DOG1 (Huo et al. 2016) and FLC
(Michaels and Amasino 1999; Li et al. 2014) are part of regions III
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and IV on chromosome 5, respectively (Figure 4). In these three areas,
the significant SNPs that were significantly associated with the trait
flowering time were also located in the candidate gene itself or in its
immediate vicinity. It is important to note that the proportions of
phenotypic variance explained by the representative significant haplo-
types were in four out of five analyzed regions higher than those de-
termined for any of the SNPs in these chromosome segments (Figure 4,
Table S5). In region V on chromosome 5, the only SNP significantly
associated with the trait flowering time mapped approximately
60 kb apart from the region with the candidate gene VIN3 (Sung
and Amasino 2004) which was indicated by the representative sig-
nificant functional haplotypes in FHGWAS (Figure 3B). In region II
that had only been detected using FH GWAS and FHLD GWAS,

CCT/CRP/MED12 (Imura et al. 2012) was identified as candidate
gene (Figure S2, Figure S4).

FH GWAS for the trait flowering time at two different
growth temperatures
Association studies in which the trait flowering time had been com-
paratively analyzed for accessions cultivated at 10� and 16� had revealed
fewer significant SNP associations in the latter data set (1001 Genomes
Consortium 2016). It was therefore of interest to extend the perfor-
mance comparisons of SNP-based and FH GWAS to data set FT16, in
which phenotypic data for 970 accessions and 754,655 biallelic SNPs
that had passed quality control had been compiled. Two regions show-
ing significant associations were identified by SNP-basedGWAS as well

Figure 2 Association mapping
results using four different GWAS
approaches. (A-D) Manhattan
plots illustrate the results for a
single SNP-based (A) and three
haplotype-based GWAS ap-
proaches for data set FT10
(B-D). Positions of SNPs or haplo-
types on the five chromosomes
are shown on the x axis relative to
their -log10(P) values on the y axis.
Haplotypes were constructed
based on overlapping sliding-win-
dows (B), linkage disequilibrium
(C) or by using the functional hap-
lotype approach (D). Thresholds
after Bonferroni correction for
multiple testing (Dunn 1961)
(P , 0.05) are displayed as hori-
zontal dotted gray lines. Taking
into account the pre-testing pro-
cedure for single SNP main and
epistatic effects implemented in
the functional haplotype approach
a more stringent threshold resulted
that is indicated as a pale blue
dotted line in panels (D) and (G).
(E-G) Plots showing the -log10(P)
values of haplotypes on the y axis
relative to the -log10(P) values
established by SNP-based GWAS
for the most significant SNP of a
corresponding haplotype on the x
axis. The P value relationships for
SWH, LDH and FH based GWAS
are illustrated in panels (E), (F)
and (G), respectively. Thresholds
after Bonferroni correction for mul-
tiple testing (Dunn 1961) (P ,
0.05) are indicated as horizontal
dotted dark blue lines for haplo-
types and vertical dotted red lines
for single SNPs. The five regions in
which significant associations were
found were denoted with I to V
and are marked by stippled lines.
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as FH GWAS using data set FT16 (Figure S5), these corresponded
to regions III and IV that had also been found for plants cultivated at
10�. In contrast, region II on chromosome 4 was solely identified by FH
GWAS, regardless which of the two data sets was analyzed (Figure 2,
Figure S5). Significant associations in regions I and Vwere not found in
data set FT16. However, for FT16, FH GWAS detected in three addi-
tional regions located on chromosomes 1, 2 and 3 between one and
three significant haplotypes associated with the trait flowering time
(Figure S5).

The three regions, which were identified by FH GWAS in both data
sets, were analyzed in more detail. A comparison of the results revealed
that the chromosome segments in which the representative significant
functionalhaplotypeswere foundshowed largeoverlaps inbothdata sets
(TableS4) implying that the samethreecandidategenesunderlie the trait
flowering time in these regions (Figure S6). Interestingly, such congru-
ence was not observed if for example the candidate SNPs that were
considered for the constructionof functional haplotypeswere compared
in the two data sets. Although around 650 candidate SNPs were
identified in each of the two data sets, only 390 were in common.
Similar results were found by assessing the SNPs that were grouped into
haplotypes (Table S6). Although 67,865 and 57,479 functional haplo-
types had been considered in GWAS using the two data sets, only 3,606
were in commonbetween both data sets. A similar trendwas seen if only
those haplotypes were considered that had passed the GWAS signifi-
cance thresholds. None of the representative significant functional
haplotypes were identical in the two data sets (Table S6).

The influence of linkage disequilibrium and minor allele
frequencies on the power of functional haplotype-
based GWAS
Simulation studies were performed to gain insight under which cir-
cumstances FH GWAS outperforms SNP-based GWAS. Specifically, it
was analyzedhow theminor allele frequency (MAF)of theSNPsmaking
up a particular haplotype and the LD between them influenced the
results of FHGWAS, therefore threeMAFandLD ranges each aswell as
all of their combinations were considered (seeMaterials and Methods
for details). The P value distributions obtained for the haplotypes using
the nine different simulation scenarios are shown in Figure 5 side-by-
side with the results for the most significant SNPs of the different
haplotypes. Mean P values were inversely correlated with the MAF
range in FHGWAS and SNP-based GWAS, regardless which LD range
was analyzed. In scenarios in which the MAF range was kept constant,
inverse correlations were seen between the mean P values and the LD
range. Exceptionally, analysis of the highest MAF range revealed very
similar mean P values in case of FH GWAS for the three different LD

ranges. In four out of the nine scenarios tested, the mean P values
obtained for FH GWAS clearly outperformed those of SNP-based
GWAS, in each of these four scenariosmore than 96% of the haplotypes
revealed lower P values compared to the values that had been estab-
lished by SNP-based GWAS for the most significant SNPs of these
haplotypes (Table S7). This was not the case in the five scenarios in
which the lowest MAF range and/or the highest LD range were ana-
lyzed. The same trends were observed regarding the proportion of
phenotypic variance explained by the haplotypes and the most signif-
icant SNPs of the different haplotypes (Figure S7).

DISCUSSION
We devised a haplotype-based GWAS approach, FH GWAS, for
studying complex quantitative traits which capitalizes on a novel way
in which main and epistatic effects among markers are considered to
group SNPs into haplotypes. In FH GWAS we first select SNPs with a
mild threshold for main effects and then search for combinations of
consecutive and/or non-consecutive SNPs in a genomic region of de-
fined size requiring certain significance for epistatic effects. In this way,
only those SNPs having true contribution to the haplotype effects via
additive and/or epistatic effects are combined into functional
haplotypes. Thus, FH GWAS is able to overcome the constraints of
combining redundant SNPs in high LD into haplotypes andmeanwhile
it avoidsexhaustedsearchforoptimalcombinationsofSNPswhichis too
time-consuming. It is therefore expected to be more powerful than
SNP-based and other haplotype-based GWAS approaches, which was
confirmed by the empirical analyses for the trait flowering time in
Arabidopsis thaliana using the data from the 1001 Genomes Consor-
tium (1001 Genomes Consortium 2016). Our FH GWAS approach
detected not only all regions, which were detected in the SNP-based
and the other two haplotype-based approaches, but also a new candi-
date region on chromosome 4 for plants cultivated at 10� and 16�
(Figure 2, Figure S5). The FHGWAS approach can be generally applied
to any quantitative trait in any homozygous species for which popula-
tions with appropriate SNP coverage and of suitable size are available. If
multiple traits are studied, the functional haplotypes have to be con-
structed for each trait separately as the tests of marker main and epi-
static effects are trait-dependent. Thus, FH GWAS enhances the power
of GWAS in a way that is tailored for each trait, however, it has a higher
computational load than other haplotype-based GWAS approaches in
which solely consecutive SNPs are considered for haplotype
construction.

On the implementation of functional haplotype-
based GWAS
The first step of FH GWAS is a mild preselection of SNPs according to
their main effects in order to reduce the computational load for the
remaining steps. Thus, it is necessary for high density SNP data sets
generated for example by whole genome sequencing projects as used in
this study (1001 Genomes Consortium 2016). Theoretically, the signif-
icance of a haplotype effect can be solely a result of significant epistatic
effects, or cumulative (non-)significant main and epistatic effects
among the SNPs. The preselection of SNPs is therefore dispensable
and can be omitted if the computational load is acceptable.

In the second step of the procedure, the construction of functional
haplotypes, there are two important parameters to be determined,
namely the size of the window in which the functional haplotypes
are constructed and the number of SNPs to be grouped into haplotypes.
The window size is essentially determined by the extent of LD in the
population,however, genedensityshouldalsobeconsidered.Atoosmall
window size leads to high LD among markers within the window,

n■ Table 1 Summary of significant associations in different
genome-wide association studies obtained for the trait flowering
time for Arabidopsis thaliana accessions using data set FT10

SNP
GWAS

SWH
GWAS

LDH
GWAS FH GWAS

Number of significant
assocations

SNP Ha Hb Ha Hb Ha Hb

I (Chr1) 4 7 4 3 0 71 61
II (Chr4) 0 0 0 0 0 15 15
III (Chr5) 1 2 1 2 1 701 565
IV (Chr5) 5 6 1 5 0 19030 13900
V (Chr5) 1 5 2 1 0 4952 2963
Total 11 20 8 11 1 24769 17504

Ha refers to all significant haplotypes.
Hb represents significant haplotypes which did not contain any significant SNP.
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reducing the advantage of haplotypes according to the results of the
simulation study (Figure 5), whereas a too large window size may yield
functional haplotypes that span large regions on the chromosome in-
volvingmany candidate genes. For theArabidopsis thaliana population
considered in this study, the window size was set to be 50 kb, where the
LD (measured as r2) decayed to 0.03 (Figure S8A). On average 22 genes
mapped to intervals of this size in the Arabidopsis thaliana Col-0 ge-
nome (Arabidopsis Genome Initiative 2000). Interestingly, in the re-
gion with the steepest LD decay (Figure S8B), region I, median and

mean haplotype sizes were substantially smaller than in the other four
regions (Table S3).

The number of SNPs in each haplotype is directly relevant to the
power of association test, which decreases as the number of haplotype
alleles increases. Usually only a small number of SNPs can be afforded
unless the population size is very large, because the number of haplotype
alleles grows exponentially with an increasing number of SNPs consti-
tuting the haplotype. It is also limited by the computational load
because allowing more SNPs in a haplotype results in more possible

Figure 3 Details of significant as-
sociations for the trait flower-
ing time revealed by SNP-based
and functional haplotype-based
GWAS in two chromosome re-
gions. Panels (A) and (B) refer to
the analysis of data set FT10 for
regions I and V, respectively. SNP
positions on the different chromo-
somes are shown on the x axis
relative to the corresponding
-log10(P) values on the y axis.
The depicted regions reflect the
chromosome segments for which
overlapping functional haplotypes
had been obtained, but only
those functional haplotypes are
shown which passed the stringent
adjusted significance threshold of
-log10(P) = 8.29 as gray or pink
lines. Pink lines highlight repre-
sentative significant functional
haplotypes. The positions of the
first and third SNP of a particular
haplotype on the chromosome
mark the beginning and end of
the line, respectively. A colored
triangle indicates the SNP of a
haplotype for which the lowest P
value was observed by SNP-
based GWAS. P values ranging
from 1 · 1024 to 1 · 1022, 1 ·
1026 to 1 · 1024, 1 · 1028 to
1 · 1026 are represented as black,
orange and green triangles, re-
spectively. Blue triangles repre-
sent P values smaller than 1 ·
1028. The translucent pale blue
and red dots correspond to the
P values of SNPs obtained in sin-
gle SNP-based GWAS, red dots
represent those SNPs that were
part of significant functional hap-
lotypes. Below the x axis the cod-
ing regions of genes in the region
are shown as gray boxes, 59-
regions are indicated as red lines.
Two vertical pink dashed lines are
used to mark the position of the
coding region of the candidate
gene. The red and blue horizon-
tal stippled lines correspond to
the significance thresholds for
single SNP-based and FH GWAS,
respectively.
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combinations of SNPs to be tested. Thus in this study the number of
SNPs in each haplotype block was set to be three.

Functional haplotypes boosted power of GWAS by
exploiting statistical epistasis
The construction of functional haplotypes rests upon interaction effects
among markers, which was termed statistical epistasis in quantitative

genetics (Moore and Williams 2005). In general, the estimation of
statistical epistasis is not directly relevant to biological mechanisms of
gene interactions (Carlborg and Haley 2004), although some simula-
tion studies showed that various functional dependency patterns of
genes could result in significant statistical epistasis (Gjuvsland et al.
2007). As we observed many significant functional haplotypes consist-
ing of SNPs with non-significant main effects even in the region where

Figure 4 Proportions of explained
phenotypic variance for the trait
flowering time obtained by SNP-
based and functional haplotype
based GWAS in two different chro-
mosome regions. Details for re-
gions III and IV are illustrated for
data set FT10 in panels (A) and (B),
respectively. SNP positions on
chromosome 5 and percentages
of adjusted R2 values are shown
on the x and y axes, respectively.
Chromosome segments are illus-
trated for which overlapping
functional haplotypes had been
obtained, but only significant func-
tional haplotypes are displayed as
gray or pink lines. Representative
significant functional haplotypes
are indicated by pink lines. The be-
ginning and end of the individual
lines represent the chromosome
positions of the first and third SNP
of a particular haplotype, respec-
tively. The SNP for which the lowest
P value of a given significant func-
tional haplotype was obtained is in-
dicated as a colored triangle. Black,
orange and green triangles repre-
sent P values ranging from 1 · 1024

to 1 · 1022, 1 · 1026 to 1 · 1024,
1 · 1028 to 1 · 1026, respectively.
Blue triangles mark P values smaller
than 1 · 1028. Percentages of R2

determined for SNPs are displayed
as translucent pale blue or red dots,
those SNPs that were part of signif-
icant functional haplotypes are
depicted in red. The coding re-
gions of genes are shown as gray
boxes and red lines represent 59-
regions. The position of the coding
region of the candidate gene is
marked by two vertical pink dashed
lines.
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SNPs with strong main effect were detected (Figure 3B), a variable-
selection algorithm was applied to select representative haplotypes.
This step was of crucial importance to narrow down the regions,
which needed to be inspected for the presence of candidate genes.
In each candidate region, detailed analyses of the representative
haplotypes revealed several distinct two- or three-locus genotype-
phenotype patterns. Moreover, although three of the candidate
genes were identified in two different data sets, none of the repre-
sentative significant functional haplotypes were identical in these
two data sets (Table S5). These findings made it unlikely that the
statistical epistasis exploited by the significant haplotypes
reflected a biological mechanism of gene interactions but also
revealed that the cumulative statistical epistatic effects among
SNPs in haplotypes indeed enhanced the power of FH-GWAS.
Hence, the approach is useful for detecting new candidate re-
gions, which cannot be detected using SNP-based or other hap-
lotype-based GWAS approaches. Previously, haplotype-based
methods were used to boost power in GWAS mainly for incom-
plete genotype data (McCarthy et al. 2008), whereas our study
showed that FH GWAS is a promising method even if almost

complete genotype information is available such as whole-ge-
nome sequencing data.

Further development of functional haplotype-
based GWAS
In this study, FH GWAS was applied to an Arabidopsis thaliana pop-
ulation consisting of pure homozygous lines. Hence, the haplotype
phase was known and only the additive-by-additive epistasis was con-
sidered in the construction of functional haplotypes. A generalization of
the FH GWAS method for heterozygous populations is possible as
algorithms inferring haplotype phases (Browning and Browning
2011) can be applied if the haplotype phase is unknown. It may,
however, be necessary to consider other types of epistasis, additive-
by-dominance and dominance-by-dominance, when constructing
functional haplotypes. Note, that in these cases the relationship be-
tween haplotype effects andmarker epistatic effects was only illustrated
in two- or three-locus examples but not formally proved in general case
(Conti and Gauderman 2004; Schaid 2004; Jiang et al. 2018). Thus,
further theoretical and empirical studies are needed to develop an
optimal strategy of FH GWAS for heterozygous populations.

Figure 5 Comparison of P value distributions for FH GWAS and SNP-based GWAS obtained for nine different simulation scenarios. The
violin plots show the distributions of P values after 1,000 simulation runs. Plots are arranged in order of decreasing MAF and increasing
LD range. The y axis corresponds to the -log10(P values). ‘A’ represents the P values of haplotypes and ‘B’ the P values of the most
significant SNPs of the particular haplotypes. The black vertical line corresponds to the 95% confidence interval and the black vertical
box represents the interquartile range. The white and red dots mark the median and mean values, respectively. The latter values are
indicated in the plots.
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