
sensors

Article

An Algorithm to Minimize Energy Consumption and Elapsed
Time for IoT Workloads in a Hybrid Architecture

Julio C. S. dos Anjos 1,* , João L. G. Gross 1 , Kassiano J. Matteussi 1 , Gabriel V. González 2 ,
Valderi R. Q. Leithardt 3,4 and Claudio F. R. Geyer 1

����������
�������

Citation: dos Anjos, J.C.S.; Gross,

J.L.G.; Matteussi, K.J.; González, G.V.;

Leithardt, V.R.Q.; Geyer, C.F.R. An

Algorithm to Minimize Energy

Consumption and Elapsed Time for

IoT Workloads in a Hybrid

Architecture. Sensors 2021, 21, 2914.

https://doi.org/10.3390/s21092914

Academic Editor: Geoff Merrett

Received: 15 February 2021

Accepted: 16 April 2021

Published: 21 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Informatics, UFRGS/PPGC, Federal University of Rio Grande do Sul,
RS, Porto Alegre 91501-970, Brazil; jlggross@inf.ufrgs.br (J.L.G.G.); kjmatteussi@inf.ufrgs.br (K.J.M.);
geyer@inf.ufrgs.br (C.F.R.G.)

2 Faculty of Science, Expert Systems and Applications Laboratory, University of Salamanca,
37008 Salamanca, Spain; gvg@usal.es

3 COPELABS, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal;
valderi@ipportalegre.pt

4 VALORIZA, Research Center for Endogenous Resource Valorization, Polytechnic Institute of Portalegre,
7300-555 Portalegre, Portugal

* Correspondence: jcsanjos@inf.ufrgs.br

Abstract: Advances in communication technologies have made the interaction of small devices,
such as smartphones, wearables, and sensors, scattered on the Internet, bringing a whole new set of
complex applications with ever greater task processing needs. These Internet of things (IoT) devices
run on batteries with strict energy restrictions. They tend to offload task processing to remote servers,
usually to cloud computing (CC) in datacenters geographically located away from the IoT device.
In such a context, this work proposes a dynamic cost model to minimize energy consumption and
task processing time for IoT scenarios in mobile edge computing environments. Our approach allows
for a detailed cost model, with an algorithm called TEMS that considers energy, time consumed
during processing, the cost of data transmission, and energy in idle devices. The task scheduling
chooses among cloud or mobile edge computing (MEC) server or local IoT devices to achieve better
execution time with lower cost. The simulated environment evaluation saved up to 51.6% energy
consumption and improved task completion time up to 86.6%.

Keywords: cost minimization model; energy consumption; Internet of things; mobile edge comput-
ing; scheduling algorithm

1. Introduction

An International Data Corporation (IDC) report predicts that there will be 41.6 billion
IoT devices in 2025 with a potential for data generation up to 79.4 ZB [1]. IoT applications
emerged with artificial intelligence, artificial vision, and object tracking in such a context
that requires high computing power [2,3]. They usually rely on task processing offload and
data storage to remote cloud computing (CC) data centers to boost processing time and
reduce battery energy consumption [4]. Unfortunately, those remote servers are geographi-
cally located away from the end user and IoT devices, resulting in high latency due to delay
and congestion over the communication channels [5–7]. Moreover, the use of centralized
control (provider-centric) cannot deliver proper connectivity or even support computation
closer to the edge of the network, thus becoming inefficient for highly distributed scenarios.

Mobile edge computing (MEC) can represent an option to increase the performance of
CC applications, as it denotes a network architecture designed to provide low latency with
adequate quality of service (QoS) to end users [8,9]. MEC relies on top high-speed mobile
networks such as 5G to allow fast and stable connectivity for mobile devices and users.
Thus, CC services can be deployed close to mobile devices, in the MEC layer, bringing
processing and storage closer to cellular base stations [10].

Sensors 2021, 21, 2914. https://doi.org/10.3390/s21092914 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3623-2762
https://orcid.org/0000-0003-0280-665X
https://orcid.org/0000-0002-9131-6849
https://orcid.org/0000-0002-6536-2251
https://orcid.org/0000-0003-0446-9271
https://orcid.org/0000-0002-8602-2336
https://doi.org/10.3390/s21092914
https://doi.org/10.3390/s21092914
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21092914
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21092914?type=check_update&version=2

Sensors 2021, 21, 2914 2 of 20

Nevertheless, energy consumption remains a clear issue to be overcome on mobile
device networks, such as MEC environments [11]. Most IoT sensors and mobile devices run
on batteries with limited energy capacity [12]. Furthermore, IoT devices need to handle lots
of data, which is also energy-consuming. Thus, reducing energy consumption in networks
with IoT devices is a goal worth exploring.

The state of the art presents a set of studies that use MEC to offload tasks to offer local
processing for IoT devices. Some works [4,13–17] have measured the energy consumption
for data transmission or even using dynamic voltage and frequency scaling (DVFS) tech-
niques. In contrast, this proposal enables a more detailed cost model, including energy and
time consumed during processing and the cost of data transmissions. CC is also considered
an option for processing when local resources are depleted, making the network more
reliable in stress scenarios [18].

In this work, we explore the scheduling problems in edge computing environments,
considering energetic consumption in a dynamic cost model to mitigate energy consump-
tion in MEC environments. An algorithm called the Time and Energy Minimization
Scheduler (TEMS) scheduling algorithm implements dynamic cost minimization policies
correlating the system resource allocation with the more inexpensive cost for executing
tasks. A simulator was developed for MEC evaluation with IoT devices and associated CC
resources. The TEMS algorithm gathers data about the environment and associated energy
and time costs to make decisions about the task scheduling. Code of the MEC Simulator is
available at https://github.com/jlggross/MEC-simulator.

The main contributions of this work are:

(i) The methodology covers a considerable number of energy and time metrics for
task processing and data transmissions, including the accounting of idle CPU cores
energy consumption;

(ii) The CPU processing time and energy consumption optimization using DVFS
technique;

(iii) The scheduling policies consider task processing in the IoT device itself, in a local
MEC server, and in a remote data center from CC at the same time.

The remainder of this paper is organized as follows. Section 2 discusses previous
related work found in the literature. Section 3 lists the problems in MEC environments.
Section 4 introduces the dynamic cost minimization model for the system with three
different allocation policies, local processing in the IoT device, local processing in the MEC
server, and remote CC processing. Section 5 introduces the TEMS heuristic scheduling
algorithm designed to solve the cost minimization model of the system. Section 6 details
the implementation and shows the results of the experiments using the TEMS scheduling
algorithm. Finally, Section 7 presents the conclusions.

2. Related Work

IoT integrates several technologies for gathering data in the intercommunication
world. Latency-sensitive applications need complicated processing such as that of time
series analysis. However, IoT devices enable limited computing and energy resources
to store large amounts of data and cannot perform complex task processing. The work
proposed by [19] addresses the resource allocation and routing for IoT tasks that require
efficient assignment in multicloud environments. The authors propose an energy-efficient,
congestion-aware resource allocation and routing protocol (ECRR) for IoT networks based
on hybrid optimization techniques.

Bi et al. [20] argue that task offloading leads to extra communication latency and
energy cost. The work evaluated the offloading by finding an optimal offloading scheme
that maximizes the system and seeks a balance between throughput and fairness.

Although MEC servers have been allowing intensive task computing in heterogeneous
clouds, the data transmission over the Internet incurs high levels of access delay and
jitter according to Zhao et al. [21]. This work minimizes MEC energy consumption and
satisfies task processing delay requirements. The solution uses dynamic programming to

https://github.com/jlggross/MEC-simulator

Sensors 2021, 21, 2914 3 of 20

minimize energy consumption by allocating bandwidth and computational resources to
mobile devices.

The state of the art also shows that energy consumption decrease and response latency
mitigation to applications in IoT environments are questions that are difficult to solve since
the first edge computing architectures [22]. However, the strategic use of CC as a single
alternative to task processing can add high latency due to the distance of IoT devices [23].

The proposals [11,24,25] use CC as an option for task execution. Other approaches
use fog computing to allow local processing in IoT devices such as the works [14,26,27] or
without applying the CC [28]. The MEC architecture is assessed in works of [4,11,13,25].
In contrast, TEMS is a three-layer architecture that combines MEC and CC added to local
IoT computation. This approach also provides a cost model, with the energy and run time
evaluations on the fly, including the data transmission costs.

As for the parameters used in third-party cost models, the energy consumption of task
processing is used by all works mentioned. However, the energy consumption for data
transmissions is shown in the works [4,13,14]. The processing time of tasks is evaluated in
major of the works, except to [26,27] and the spent time on data transmissions is limited to
studies of [4,11,13,14,25].

Table 1. Proposal comparison.

Works

W
an

g
et

al
.[

4]

Sa
ra

ng
ie

ta
l.

[1
1]

Z
ha

ng
et

al
.[

13
]

G
ed

aw
y

et
al

.[
14

]

Pr
av

ee
n

et
al

.[
19

]

Bi
et

al
.[

20
]

Z
ha

o
et

al
.[

21
]

Bu
ie

ta
l.

[2
4]

Yu
et

al
.[

25
]

W
an

et
al

.[
26

]

W
u

et
al

.[
27

]

A
nj

os
et

al
.[

28
]

N
ar

an
jo

et
al

.[
29

]

M
uc

ch
ie

ta
l.

[3
0]

T
hi

s
w

or
k

A
rc

hi
te

ct
ur

e

IoT device X X X X X X X X X X X X X
Fog (without MEC server) X X X X X
MEC server X X X X X
Cloud X X X X X X X X X
Cluster with MicroCloud X

Pr
oc

es
si

ng Local device X X X X X X X X X X X X X
Fog X X
MEC X X X X X X X
Cloud X X X X X X X X X X X
MicroCloud X

Sp
en

tT
im

e Task sending X X X X X X X X X X
Code sending offloading X X X X X X X X X
Channel queue X X X X X X X X X
Task execution X X X X X X X X X
Data download X X X X X X

En
er

gy
co

ns
um

pt
io

n Send of data and tasks X X X X X X X X X X
Data download X X X X X X X
Data transport between
devices X X X X X X

Data aggregation X
Dynamic frequency adjust X X X X X X
Processor in running X X X X X X X X X
Sleep mode control X
Idle processor X X X X X X
Battery level X X X X X X X

A
pp

ro
ac

h Consumption minimization X X X X X X X X X X X X
Execution in the master node X X X X X
Optimization problem X X X X X X X X X X X
Latency minimizing X X X X X X X X X
Channel capacity control X
Simulation X X X X X X X X X X

Sensors 2021, 21, 2914 4 of 20

5G networks introduce designs and adaptable support to new applications.
However, it requires latency management, high energy efficiency, and long-range communi-
cation support for IoT-based applications [31]. Mucchi et al. [30] propose to add a physical
layer to the burst data transmission management with the insertion of a zero-energy symbol
for the wireless transmission when there is the send of discontinuous data (silence periods).
As a result, the system saves energy consumption from IoT devices. In this approach, the
silence produces a fine-grain granularity to energy management. The algorithms optimize
power consumption between processing and energy spent on transmission.

On the other hand, the energy consumption of the equipment in the idle state is
measured exclusively in [26,27]. Models that include the battery level of the IoT devices
are only [4,13,14]. Our proposed model uses the DVFS technique similar to [16,17] to allow
both the dynamic minimization of energy and execution time during task processing.

Naranjo et al. [29] propose an energy-maximizing solution to prolong the aliveness
of the wireless sensor networks. The proposal uses a prolong stable election protocol
(P-SEP) in a fog infrastructure to decrease energy consumption. An algorithm considers
the distance between a cluster head (grouping of IoT sensors) and fog nodes to achieve
load balancing.

Gautham et al. [32] analyzed an architecture to evaluate the code/decode of the
communication channel. In particular, TEMS determines the better communication chan-
nel between IoT devices and MEC servers. Therefore, the contribution of channel cod-
ing/decoding and error correction are included in the choice of the channel with the lower
cost.

All these variables, the execution time, energy consumption, architectures, and ap-
proaches are consolidated in Table 1. In our proposal, a monitor for battery levels of IoT
devices allows rational energy consumption. Two task policy types, critical (to deal with
deadline constraints) and regular (to deal with common executions) are explored in the
scheduling algorithm.

3. Problem Statement

A single cost model needs to evaluate deployment with all used variables for data
transmissions, such as time and energy consumption. It must determine the local to
task execution among MEC, fog, or cloud environments. This is a multiple-objective
optimization problem. Therefore, finding a minimal cost to all these system variables is an
NP-hard problem.

The solution must consider the energy consumption, such as the energy to send tasks,
energy consumption to data download, energy for the task processing, energy cost with
CPU idle, and battery level. It also requires estimating the execution time to variables,
such as time spent on task transmission, wait time in queues, task runtime, and time
spent on downloads. Simultaneously, the system must choose one among three distinct
environments to produce the best performance considering energy optimization.

Thus, the computation to solve these issues is hard to model. Deciding between
three different environments is another complex task due to needing to produce task
distributions with adequate performance and energy saving. We propose a dynamic
solution in real-time for each task using an integer linear programming (ILP) optimization
to achieve this challenge.

4. Model to Minimize Cost Dynamically

This section introduces the model to mimize cost dynamically.

4.1. Architecture and Task Processing Flow

Figure 1 exhibits the architectural scheme on three decoupled layers under a bottom-
up view:

• IoT Layer (L1): IoT device layer generates application tasks. These devices have a
limited processing capability and operate with batteries;

Sensors 2021, 21, 2914 5 of 20

• MEC Layer (L2): MEC server layer has a restricted number of CPUs and less process-
ing capability than the CC environment. MEC servers are closer to the IoT devices,
producing smaller communication delays;

• CC Layer (L3): CC data centers compose this layer. These servers have high pro-
cessing capability, are geographically distributed, and are located far from the IoT
devices. They also add high network latency due to data transmission with more
communication hops, if compared to other layers.

Figure 1. System architecture.

The model associates the cost in terms of energy consumed and elapsed time for the
allocation policy of each layer, taking into account task processing and data transmissions
costs. The DVFS technique is used to calculate processing costs, proving the best pair of
CPU core voltage and CPU core operating frequency that reduces total cost.

Finally, the TEMS scheduler seeks the best cost among all three allocation policies and
selects the lowest one. The scheduler decides between MEC and CC layers to offload a task.
Otherwise, the processing takes place on the device itself.

The rest of this section covers an extension of the cost model of our previous work
shown in [33]. First, the assumptions about the network and the architecture components
are introduced. After that, the cost models for local computing in the IoT device, local
computing in the MEC server, and remote computing in the cloud are shown. Finally, the
individual costs are combined into a final equation that represents the total cost.

Table 2 summarizes the notation used throughout the model definitions of network,
local IoT computing, MEC server, and cloud computing.

Sensors 2021, 21, 2914 6 of 20

Table 2. Notation adopted for the model description.

Description # Description

A The task set that will be executed. k An individual core.
C Commutative capacitance. P Power consumed.
Cc CPU cycles. Pi,mec The power consumed in the MEC

server.
CcT Total clock cycles. PL A CPU core set.
Costi,mec The total cost in MEC server. plj,n A core n of a mobile device j.
D A set of mobile IoT devices. PS A processor in the MEC server.
d The input data. r Data transfer rate.
d′i The return to the origin of results. S The number of MEC servers.
Ei,mec The dynamic energy consumed in

a MEC server by a task i.
sc Source code offloading.

E Energy consumption in idle time. Sl Local MEC server.
fmec Frequency of MEC server proces-

sor.
t The deadline associated with the

task.
f Processor frequency. T Total execution time.
H A set of the available wireless chan-

nels.
Ti,mec Total execution time in the MEC

server.
hi The wireless channel associated to

task i.
Vlocal Voltage in the IoT device proces-

sor.
I Mutual interference rate. Vmec Voltage in the MEC server proces-

sor.
i An individual task. WC The number of wireless channels.
j An individual mobile device.

4.2. Network Model

The network is composed of mobile IoT devices, MEC servers, and a cloud provider.
The wireless links determine the communication channels between IoT devices and MEC
servers, as in Figure 1. The system network has a finite set D = {1, 2, 3, . . . , d} of mobile
IoT devices, S = {1, 2, 3, . . . , s} of local MEC servers, and of wireless communication
channels WC = {1, 2, 3, . . . , w}. Each scheduled task has a set of the available wireless
channels (H = {h1, h2, . . . , ha}) from the IoT device to MEC and from the MEC to CC with
its correspondent bandwidth. The TEMS algorithm will choose a channel with a lower
energy consumption cost. If the task runs in the local device, it does not have an associated
channel. Coding and decoding costs are built into the channel like in the approach [32].

4.3. General Energy Consumption

Equation (1) computes the energy consumption based on the dynamic power con-
sumed during the execution. The potency is a relation ∝ CV2 f , defined in Liu et al. [34].
Each device type DT has a frequency and a commutative capacitance C associated with a
core k in the processor, which depends on the chip architecture [25]. The potency is defined
in Equation (2).

A system has a total of A = {1, 2, 3, . . . , a} tasks. Each task i is associated to a tu-
ple Ai = (Cci , sci, di, ti) composed of CPU cycles (Cc) needed to conclude an execution.
The tuple includes the source code (sc) offloading from IoT to MEC, the input data (d), and
the deadline (t) associated with the task. Offloading is an advantage in industrial applica-
tions to reduce the congestion of data transmission and save energy consumption [13].

The CPU cycles is a task property. The total execution time of a task is calculated based
on total cycles CcTi [35] where i ∈ A to a CPU core j ∈ PL in Equation (3). Each local IoT
device or MEC server can process zero or more tasks. The deadline associated represents if
a task is normal (t = 0) or if it is critical (t > 0).

Ei,DT(k) = Pi,DT(k) ∗ Ti,DT(k) (1)

where,

Pi,DT = CDT(k) ∗V2
DT(k)

∗ fDT(k) (2)

Sensors 2021, 21, 2914 7 of 20

Ti,DT =
CcTi

fDT(k)
(3)

4.4. Local Computing in the IoT Device

Each mobile device has a respective number of CPU cores (PLj = {plj,1, plj,2, . . . , plj,n}).
The energy consumption is computed in Equation (4) based on a total number of CPU
cycles (Cci), operating frequency (flocal,j,k), voltage supply (Vlocal,j,k), and on the effective
commutative capacitance (Clocal,j,k) of each core. Equation (4) computes the local dynamic
energy consumed for the IoT device in each task.

Ei,local = Pi,local ∗ Ti,local (4)

where,

Ti,local =
CcTi

flocal,j,k
(5)

Pi,local = Clocal,j,k ∗V2
local,j,k ∗ flocal,j,k (6)

Considering battery level and latency as model constraints, a device Dj must decide
whether it is more appropriate to process the task locally or remotely. As the battery level
is a critical factor in the decision, the system will appreciate a policy that reduces energy
consumption. The local cost of one task i is expressed in Equation (7).

Costi,local = ulocalT ∗ Ti,local,total + ulocalE ∗ Ei,local (7)

The coefficients ulocalT ∈ [0, 1] and ulocalE ∈ [0, 1] are weightings, where
ulocalT + ulocalE = 1. These variables represent a trade-off between execution time and
energy consumption and minimize one of the costs, according to Wang et al. [4]. The DVFS
associated overhead rate is between 0.02% to 2% in the best- and worst-case scenarios,
according to [16]. The cost overhead for this approach represents 2% in our model, built
into these trade-off coefficients.

4.5. Local Computing in the MEC Server

A local MEC server can have several CPU cores. Thus, the CPU cores available on
a local server Sj are given by PSj = {psj,1, psj,2, psj,3, . . . , psj,n}. Each core psj,k has an
operating frequency (fmec,j,k), an effective commutative capacitance (Cmec,j,k), and a supply
voltage (Vmec,j,k).

IoT devices and MEC servers cause mutual interference between each other (Ii) be-
cause they use the same wireless channel. Thus, the data transfer rate (r(hi)) to offload
task i to the channel (hi) attenuates according to Shannon’s formula [25]. The data transfer
rate is determined in Equation (8) and the mutual interference between wireless channels
bandwidth (B) is computed in Equation (9).

r(hi) = B ∗ log2

(
1 +

pj ∗ g(Sl ,j)

N + Ii

)
(8)

Ii = ∑
n∈A|{i}:hn=hi

pj′ ∗ g(S′l ,j′) (9)

For Equation (8), the variable pj is the transmission power of a mobile device j during
offloading task i to the local server, and N is the power of the thermal noise of the wireless
channel. g(Sl ,j) is the channel gain between the local MEC server and the mobile device.

In the local server, data and source code need to be sent to the application processing,
and the generated results must be sent back to the origin. Thus, the time required for an
IoT device to sent data (Equation (10)) and after to download the results (Equation (11))
from the local server can be computed as:

Sensors 2021, 21, 2914 8 of 20

Ti,mec−up(hi) =
sci + di
ri(hi)

(10)

Ti,mec−down(hi) =
d′i

ri(hi)
(11)

The total time required to complete the task execution in the local server considers
the send (Equation (10)), the download (Equation (11)), and the task execution time in
the MEC server calculated in Equation (5). The total time for a MEC server is given as in
Equation (12).

Ti,mec,total = Ti,mec−up(hi) + Ti,mec+

Ti,mec−down(hi)
(12)

The energy spent for the data communications from the local MEC server is also
calculated by (Equation (1)), which can be either the time to sent (mec-up) or download (mec-
down) data. Furthermore, the dynamic energy consumed by the MEC server is calculated
in the same fashion as that in the IoT device. Equation (13) gives the total dynamic
energy consumption.

Ei,mec,total = Ei,mec−up(hi) + Ei,mec+

Ei,mec−down(hi)
(13)

Moreover, the cost computation for the local server is expressed in Equation (14).

Costi,mec = umecT ∗ Ti,mec,total+

umecE ∗ Ei,mec,total
(14)

4.6. Remote Computing in the Cloud

The CPU cores in CC are not distinguished because they are a single shared resource
comparable to a CPU processor. It is not really a device. The CC equations are analogous
to those of the local MEC server. Data transference between MEC and CC is composed
of both the elapsed time and consumed energy to produce a total cost. The elapsed
time is expressed by (Equations (15) and (16)), while consumed energy is expressed in
Equations (17) and (18).

Ti,cloud−up =
si + di

r
(15)

Ti,cloud−down =
d′i
r

(16)

Ei,cloud−up = pwireless ∗ Ti,cloud−up (17)

Ei,cloud−down = pwireless ∗ Ti,cloud−down (18)

Note that in Equations (15) and (16), r is not dependent on hi, because transmissions
between MEC and CC are done on fiber optic cables, and there is no mutual interference
effect attenuating the data transmission rate. CC processing time (Equation (19)) and
dynamic energy consumed (Equation (20)) are calculated the same way for MEC servers.
The total elapsed time and total energy consumption for CC are as follows.

Ti,cloud,total = Ti,mec−up(hi) + Ti,cloud−up + Ti,cloud+

Ti,cloud−down + Ti,mec−down(hi)
(19)

Sensors 2021, 21, 2914 9 of 20

Ei,cloud,total = Ei,mec−up(hi) + Ei,cloud−up + Ei,cloud+

Ei,cloud−down + Ei,mec−down(hi)
(20)

Finally, the cost to run a single task i in the cloud is given in Equation (21).

Costi,cloud = ucloudT ∗ Ti,cloud,total+

ucloudE ∗ Ei,cloud,total
(21)

The idle energy cost of CC is not considered, since the CPU offer is virtually infinite.
Therefore, it does not make sense to account for this cost, which would cause the system to
have equally infinite cost.

For every task i, the minimum cost is chosen between all three allocation policies, one
from each layer, as in Equation (22).

Costi = min(Costi,local , Costi,mec, Costi,cloud) (22)

The total system cost, represented by Equation (23), is equal to the sum of all task
costs plus the sum of idle energy for IoT devices and MEC servers.

Costsystem =
A

∑
i=1

Costi +
A

∑
i=1

Elocali ,idle +
A

∑
i=1

Emeci ,idle (23)

4.7. Model Constraints for IoT Device Battery

A healthy battery level is essential to the proper operation of IoT devices. If the battery
level Bj of an IoT device j is below a lower safety limit (LSL), task allocation on the device
is disabled to keep the device alive with the remaining battery. If Bj reaches zero, all
tasks generated by device j are canceled. Therefore, to prevent this from happening, the
cost equations are subject to the following constraints: Bj > Ei,local , Bj > Ei,mec−up(h).
These constraints are considered in the scheduling algorithm.

5. The TEMS Algorithm

The heuristic of the scheduling algorithm for time and energy minimizing was de-
veloped to execute a dynamic cost minimization model with reduced computational cost.
Algorithm 1 exhibits the steps of TEMS. Step 1 is the configuration detection round that
forms a data set of IoT devices, MEC servers, and configuration of communication channels.
The battery levels of the IoT devices are collected, and the LSL is established. The algorithm
regards the number of cores into CPU available in each IoT device and MEC server, the
operating frequency, and operating voltages. This process could also occur in CC data
centers, but the number of CPUs is expected to be unlimited.

A loop from step 2 to step 4 repeats until all tasks are distributed across the processing
infrastructure. The scheduler observes hardware conditions, energy consumption, and
performance of application execution.

Algorithm 1: TEMS.
Result: Task mapping to the processing nodes

1 execute Step 1: Task of information collection and system setup
2 repeat
3 execute Step 2: Task allocations
4 execute Step 3: Task conclusion monitor
5 execute Step 4: New tasks and device battery level monitor
6 until user decides to keep running

Step 3 monitors the task completion status. When one task was completed, the CPU
core resources are released to turn available for new allocations in step 2. However, tasks
that use CC resources do not need to release them since CC is supposed to have unlimited

Sensors 2021, 21, 2914 10 of 20

resources, absorbing any number of tasks. Task cancellation may occur if the elapsed time
is higher than the deadline or if the IoT device runs out of battery.

Finally, in step 4, the battery level from each IoT device is collected, and after that, it
creates new tasks again. Execution continues as long as tasks are being created.

Algorithm 2 details step 2 from task allocations, which is the task allocation decision-
making process of the scheduler. Here, tasks are first classified between critical
and regular.

Algorithm 2: Task allocations
1 foreach task Ai from list of critical tasks do
2 foreach free CPU core plj,k ∈ PLj do
3 policy 1: it calculates IoT device execution time
4 foreach free CPU core psj,k ∈ PSj do
5 policy 2: it calculates MEC server execution time and transmission times
6 policy 3: it calculates CC execution time and transmission times
7 it evaluates IoT battery level and offload task to the CPU core with minimal total time
8 foreach task Ai from list of regular tasks do
9 foreach free CPU core plj,k ∈ PLj do
10 policy 1: it calculates energy consumption, execution time, and cost for the IoT

device
11 foreach free CPU core psj,k ∈ PSj do
12 policy 2: it calculates energy consumption for dynamic processing and data

transmission
13 policy 2: it calculates execution time and transmission times
14 policy 2: it calculates MEC server cost
15 policy 3: it calculates energy consumption for dynamic processing and data

transmission
16 policy 3: it calculates execution time and transmission times
17 policy 3: it calculates CC total cost
18 it evaluates IoT battery level and offload task to the CPU core with minimal cost

Three policies are defined for task execution: Policy 1, the tasks are executed in local
IoT devices; Policy 2, the tasks are offloaded from IoT devices to the MEC server and
executed in the MEC server; Policy 3, the tasks are executed in the cloud.

The time and energy consumption for task processing on the different CPU cores of the
network is calculated, as well as the time and energy consumption of the data transmissions
for MEC servers and CC data centers. Critical tasks are the first to be scheduled due to the
execution deadline. The tasks are launched from the lower to higher deadline and allocated
to produce the lowest total elapsed time considering latency and the channel bandwidth
availability. The regular tasks are ordered by creation time and allocated by the minimum
total cost. The battery level of IoT devices is continuously evaluated in lines 7 and 18 to
check if the energy constraints are respected.

Algorithm Complexity Evaluation

The algorithm complexity analysis considers the four steps in Algorithm 1.
The task of information collection and system setup occur a single time in the system
setup. This step identifies “n” mobile devices added to the network, and it has “m” pro-
cessor cores. There are a total of “n” local MEC servers with the “m” core processors and
a number of “n” wireless network channels to “n” tasks with a tuple of four variables
each. The algorithm must choose among “n” possible options with three variables each
and nine coefficients to the cost equation. Thus, for step 1, the complexity is defined in
Equation (24).

nm + nm + n + 4n + 3n + 9 =

2nm + 8n + 9 = O(nm)
(24)

Sensors 2021, 21, 2914 11 of 20

However, the smartphone currently has a limit of eight cores. Additionally, simple IoT
devices, for instance, Arduino Mega 2560, have a single core. MEC servers can be composed
of up to five Raspberry Pi IV with four cores. Thus, the processor cores number is less than
the amount of then IoT devices, i.e., m << n, and if m is a mensurable and a finite number,
then it is reasonable to think that m ≈ k and in this scenario O(nm) = O(kn) ≈ O(n).
Therefore, in step 1, the complexity is O(n).

In step 2, the task allocation has a sort function with O(nlog(n) complexity in the worst
case and O(n) in the best case. A seek is executed two times among n tasks into n local
devices and MEC servers to achieve the lower execution time and energy consumption.
This task has O(n2) complexity. The cloud allocation tasks have O(1) complexity. The TEMS
algorithm was developed with Python programming, and the Python sorting executes
three times. Thus, the complexity for step 2 is described in Equation (25).

3 O(nlog(n)) + 2 [O(n2) + O(1)] =

2 O(n2) + 3 O(nlog(n)) + 2 O(1) = O(n2)
(25)

Thus, the step 2 has a complexity O(n2).
Step 3 has n interactions of simple tasks, so O(n), and step 4 seeks the battery level in

n IoT devices, i.e., O(n).
Hence, considering all TEMS algorithm steps and exchanging these steps by respective

individual complexity as in Equation (26),

O(TEMS) = O(n) + O(n2) + O(n) + O(n) = O(n2) (26)

Therefore, the algorithm complexity is O(n2).

6. Evaluation

This section shows the evaluations and explains the simulation details and the different
experimental scenarios used.

6.1. Simulated Hardware and Software Stack

The simulated environment was designed with low, mid-range, and high processing
power devices for IoT, MEC, and CC layers, respectively. For IoT devices, we chose
Arduino Mega 2560, with five operating frequencies and corresponding supply voltages for
DVFS. The MEC servers were simulated on top of 5 Raspberry Pi 4 Model B boards, each
board with a Quad-core Cortex-A72 1.5GHZ (ARM v8) 64-bit, summing a total of 20 CPU
cores per server. These CPU cores have three operating frequencies and corresponding
supply voltages. Table 3 specifies the voltage–frequency pairs and the capacitance of the
underlying hardware architecture of IoT and MEC devices. These combined values are
used to calculate the power consumed by a device according to the selected values.

Table 3. Device variables for power calculation.

Hardware Voltage-Frequency Pairs Capacitance

IoT device
(5 V–16 MHz), (4 V–8 MHz),
(2,7 V–4 MHz), (2.3 V–2 MHz),
(1.8 V –1 MHz)

2.2 nF

MEC Server (1.2 V–1500 MHz), (1 V–1000 MHz),
(0.825 V–750 MHz), (0.8 V–600 MHz) 1.8 nF

For CC, we chose data centers with Intel Xeon Cascade Lake processors of 2.8 GHz
per CPU core, reaching up to 3.9 GHz with Turbo Boost on (Technical information can
be found in the data sheets of the electronic components). Here, there are no voltage or

Sensors 2021, 21, 2914 12 of 20

capacitance variables. Instead, the resulting power is used, 13.85 Watts and 24.28 Watts, for
configuration with and without Turbo Boost, respectively.

The network throughput was configured to achieve up to 1 Gbps speed and latencies
to 5 ms, for both 5G and fiber optic communications [36,37]. The simulated applications
are two vehicular applications that were described originally in Jansson ’s Ph.D. thesis [38].
Application 1 represents the image recognition of vehicle registration plates on roads.
It has a high workload and a high task creation rate. Application 2 is a vehicle-to-vehicle
communication to avoid car collisions. It is a critical-mission application with a low
workload, low data, and a hard deadline. Because of this, the task generates rates are faster,
in comparison with Application 1. Application 2 creates more tasks than Application 1 for
the same interval time, but each task has lower processing requirements. Table 4 shows the
characteristics of each application.

Table 4. Characteristics of chosen applications.

Characteristics Application 1 Application 2

Task generation rate (s) 10 0.1
Input Data (MB) 36.3 4
Result data size (bytes) 1250 625
Computational workload (Millions of CPU cycles) 2000 20
Critical tasks (% from total tasks) 10 50
Deadline for critical tasks (milliseconds) 500 100

6.2. Experiments and Results

The tested scenarios evaluated the size of data entry and results, task generation rate,
deadline of critical tasks, level of batteries for IoT devices, and use of DVFS. The main goal
is to see as the TEMS algorithm responds to energy consumption and execution overall
behavior. The results are discussed below.

6.2.1. Use of MEC Servers

This experiment evaluates behavior when varying the number of MEC servers in
the system. Application 1 is used, and the workload was configured according to the
description in Table 4. The tested scenario has 500 tasks distributed to 100 IoT devices in
two different cases, one with a single MEC server, in Figure 2a,c and another with two
MEC servers, in Figure 2b,d. Figure 2 depicts the results for the execution of Application 1
and Application 2 in both cases with 10× 106 CPU cycles. The x-axis shows the execution
time in seconds, and the y-axis indicates the number of tasks.

The energy and time coefficients were set, respectively, to 4/5 and 1/5, that is, a
high weight was given to the energy consumed so that it could be minimized. In Figure 2
from plot Figure 2a to plot Figure 2b and from plot Figure 2c to plot Figure 2d, there is
an increase in the number of MEC servers, from one to two, which made fewer tasks
be to allocated in the CC layer. This positively impacts the total energy consumed be-
cause tasks running in the MEC layer demand less energy when the workload is higher.
However, when the workload is composed of small tasks with a high transfer rate, the
scheduler tends to maintain all tasks nearest from devices due to deadline restrictions.

Table 5 shows the relationship between the number of MEC servers related to energy
consumption. When comparing cases A and B with a third case C with no MEC servers, the
reduction in energy consumption for case A was 42.51%, while for case B 44.71%. In case C,
tasks are just offloaded to the Cloud, adding too much energy consumption to the system.
Thus, the use of MEC servers helps the system to lower the total energy consumed.

Sensors 2021, 21, 2914 13 of 20

Figure 2. Task allocation for Application 1 and Application 2.

Table 5. The MEC server benefit related to the energy consumption.

Cases
Variables

A
One MEC

B
Two MEC

C
W/o MEC

ECPU(J) 2752.26 1725.18 5074.35
ETrans(s) 835.60 1725.17 1166.21
Emec(J) 3587.86 3450.35 6240.56
TCORE(s) 956.21 1225.64 347.07
TTrans(s) 199.75 159.69 290.31
TTOTAL(s) 1155.96 1385.33 637.38

TTrans = Tmec−up + Tmec−down

With Application 2, which has lower workload compared to Application 1, the allo-
cation profile changed. Most allocations took place on the device itself, regardless of the
number of MEC servers. The cause to this phenomenon is due to the low processing work-
load of Application 2. The hardware of IoT devices presents higher energy consumption
per CPU cycle. However, it does not require data transmissions, which add energy cost
and elapsed time to the system. Thus, for a small processing workload, IoT devices are the
first allocation option.

6.2.2. IoT Device Battery Energy Consumption

Figure 3 shows an experiment executed for Application 2 with 10,000 tasks, 100 IoT
devices, and 2 MEC servers. Initially, Figure 3a shows the tasks are allocated according to
their type. The x-axis shows the time in seconds, and the y-axis indicates the number of
tasks. Regular tasks run on the IoT device itself due to the lower cost among all allocation
policies, while critical tasks run on the server, as the total time is reduced compared to
the IoT device, even though the energy cost is higher. Thus, tasks are distributed for local
processing in the IoT device and in the MEC server.

Figure 3b represents the battery energy consumption of one IoT device of the sys-
tem. The x-axis indicates the time in seconds, and the y-axis shows the battery energy
consumption in Joules. At around 15 s, the battery energy consumption level reaches the

Sensors 2021, 21, 2914 14 of 20

LSL. It corresponds to 10% of the maximum battery capacity. From this moment forward,
TEMS no longer allows tasks to run on the IoT devices, causing a sudden increase in the
number of allocations to the MEC server for the newly created tasks.

(a) (b)

Figure 3. Task allocation behavior vs. IoT device battery energy consumption when the LSL is reached. (a)Task allocation in
the system. (b) Battery energy consumption of IoT devices.

Our analysis indicates that low battery levels quickly reach LSL and make IoT devices
unavailable for processing. High computational workloads also negatively affect the
battery level. Therefore, a battery with a healthy energy level and adequate task processing
workloads allows the allocation to be performed on the IoT device, without making it
unavailable due to lack of battery, contributing to total cost reduction.

6.3. Accuracy Evaluation of Energy Model

Analytic analysis of energy model accuracy is exhibited in Figure 4 considering the
experiment of Figure 3a. The x-axis shows the execution time in seconds and the y-axis
shows the accuracy. This analysis evaluates a particular case where the battery of IoT is
ideal, that is, the battery of the IoT devices is infinite. The execution profile of the Figure 3b
is compared with the ideal system, taking into account that the scheduling mechanism
must choose the lower cost for execution time.

Figure 4. Analytic analysis of energy model accuracy.

Sensors 2021, 21, 2914 15 of 20

When the computational resources of IoT devices are busy, the system only can choose
freed resources, even if they are more expensive. Thus, the scheduler can not more maintain
a lower cost for the system.

6.3.1. Variation of Input Data Size

This experiment evaluates how the costs of each allocation policy change according
to the data size for tasks from Application 1, shown in Figure 5. We built a simulation
with 500 tasks, 100 IoT devices, two MEC servers, and energy cost coefficient configured to
4/5. The x-axis shows the input sizes. Figure 5a shows 3.6 MB, 36 MB and 362 MB, and
Figure 5b shows 3.6 GB. The y-axis indicates the cost of policies.

As shown in Figure 5, when the data entry size increases, MEC and CC policies
have cost increments. The IoT execution cost in devices remains the same, as no data
transmissions are carried out. When data entry size scales, allocation policies that require
data transmissions become costly, and allocation on the IoT device itself turns increasingly
advantageous. This increase in cost for MEC and CC policies is quite evident in Figure 5b,
for inputs of 3.6 GB, even the cost scale had to be adjusted to represent the values better.
Therefore, it is crucial to design applications so that data transfers over the network are
not too large per task, avoiding high data transmission costs. An approach to do this is to
create more tasks with lower data size.

(a) (b)

Figure 5. Cost policies for input data size variation in Application 1. (a) Cases A, B and C. (b) Case D.

We also designed two other cases, one with 5000 tasks and 362MB per task and another
with 500 tasks, Figure 5a, and 3.6 GB per task, with roughly 1.8 TB in total each. The system
energy consumption and the total elapsed time for the 500 tasks case were 59,160.92 Joules
(J) and 14,515.21 s. For the experiment with 5000 tasks, the costs were 45,011.49 J and

Sensors 2021, 21, 2914 16 of 20

10,305.94 s, that is, a decrease of 23.92% and 29%, respectively. Therefore, tasks should
preferably not be super data-intensive, if dependent on MEC or CC, as data transmissions
add additional energy and time expenses.

6.3.2. Impact of Energy and Time Coefficients in the Schedule Policy Choices

This experiment used Application 2 in four different scenarios. Each case with
500 tasks, 100 IoT devices, and one MEC server. The energy coefficients were set to 1/5,
2/5, 3/5, 4/5 and the time coefficients to 4/5, 3/5, 2/5 and 1/5.

Table 6 lists the minimum costs identified by the system task scheduler for each case.
The lowest calculated cost was the same for C2 and C3, with MEC as an offloading option.
C1 case had the lowest calculated cost among all coefficient pairs. In these three cases
the time coefficient had high values, and MEC was chosen because task execution got the
lowest processing times. For C4, the allocation took place on the IoT device itself, with
DVFS configured at 8 MHz and 4 V. Now, energy has a high-value coefficient, which made
the scheduler choose the policy that provided the lowest energy cost, reducing total cost.

Table 6. Cost coefficients for energy and time variation for Application 2.

Case uEuEuE uTuTuT
Cost
10−310−310−3

ETotalETotalETotal
mJ

TTotalTTotalTTotal
ms

Freq.
MHz

Voltage
V Policy

C1 1/5 4/5 18.59 145.50 33.36 1,500 1.20 MEC
C2 2/5 3/5 25.97 142.76 34.69 750 0.83 MEC
C3 3/5 2/5 33.18 142.76 34.69 750 0.83 MEC
C4 4/5 1/5 35.44 70.40 250.00 8 4.00 IoT

To reduce energy consumption, the best option is to use 4/5 as an energy coefficient.
With this configuration, the minimization of energy consumption is prioritized, saving
up to 51.6% compared to the other cases. Alternatively, to reduce task completion time,
coefficients from C1, C2, and C3 cases are better, with a reduction of up to 86.6% compared
with the C4 case. For C1 to C3 cases, a considerable reduction in total elapsed-time
was perceived. It because the task launches in the IoT devices caused the increase the
time execution.

6.3.3. Impact of Task Generation Rate

This experiment executes four scenarios, with task generation rates of 0.05, 0.1, 0.2, and
0.3 s, using Application 2. All scenarios were configured with 500 tasks, 100 IoT devices
and 1 MEC server. Figure 6 shows that small task generation rates flood the network
with tasks, rapidly consuming all local resources. The x-axis shows the execution time in
seconds, and the y-axis indicates the number of tasks. Remembering, 50% are critical tasks,
and 50% are regular tasks.

The critical tasks are immediately launched to IoT devices with a 0.05 s task generation
rate. However, as IoT processing is slowest than CC and MEC server, the tasks have a slow
time completion. In contrast, regular tasks are launched to MEC and CC. As a result, the
local network reaches an overhead quickly. With a 0.1 s task generation rate, critical tasks
are completed in a more balanced fashion in IoT devices. The MEC servers can execute
more tasks in comparison with CC.

More critical tasks can be executed in MEC servers with 0.2 s of task generation
rate. Thus, CC resources are little-used in comparison to before generation task rates.
Task generation rates should be designed with a time interval that favors local resource
usage. It may help reduce total costs depending on the application and the costs of each
allocation policy, as with the 0.3 s generation task rate shown in Figure 6.

Sensors 2021, 21, 2914 17 of 20

Figure 6. Task allocation for different task generation rates.

By configuring deadlines with very restrictive time limits, the experiments showed
that critical tasks were canceled because the scheduler could not find an allocation policy
to achieve task completion. Deadlines must be appropriately configured to have sufficient
time allocation to process and complete the task correctly and avoid this behavior.

6.3.4. Using the DVFS Technique

With DVFS enabled, total energy consumption decreased by 13.74%, while total time
increased by 28.32% compared to DVFS off. This demonstrates the effectiveness of the
proposed model and the scheduling algorithm in minimizing the total energy consumption.
Although the whole the time may have been longer in the approach with DVFS, it is not a
problem because tasks were completed within the time limit imposed by the deadline.

Challenges about the time complexity of the DVFS technique have already been
discussed by Chen et al. [16]. Our model addresses this problem by limiting the possible
voltage–frequency pairs used to calculate dynamic power for task execution, allowing
results to be obtained in feasible execution time.

Sensors 2021, 21, 2914 18 of 20

7. Conclusions

Energy and time reduction are mostly needed for environments where large volumes
of data and mobile devices are connected to the Internet with restricted QoS requirements
and battery limitations. The TEMS algorithm chooses the most suitable allocation options
in the system, reducing energy waste and elapsed time. Adequate coefficients allowed a
decrease of energy consumption up to 51.6% and an execution time reduction up to 86.6%,
ending critical tasks inside the deadline. Thus, the system becomes more sustainable, and
the user experience is more satisfying.

The experiments exhibit that MEC server energy consumption is more efficient for
applications when occurs task offloading from local IoT to MEC high workload applications
and consequently saves battery energy. This is explained because IoT is closer to MEC than
cloud. However, when there are high data transfer rates and a high number of tasks, the
local processing policy in IoT devices can reduce energy consumption up to 23%, with a
decrease in the task execution time of 29%.

The use of MEC servers helps increase the battery life of the IoT devices and enables
agile task execution. Moreover, using the DVFS technique caused exciting results, sup-
porting the energy consumption decrease. This work allowed contributions such as the
TEMS algorithm and combining data transmission to the cost model. The model also
considers idle costs, data transmission rate interference, using the DVFS technique, and
the interaction with the CC layer to provide computational resources whenever the local
network becomes overloaded.

As future works, we can indicate the progression of the system cost model to more
fine grain, with the insertion of new variables and new environments to explore applica-
tions in different scenarios such as industry, healthcare, aviation, and mining. Another
consideration is to evaluate new IoT applications in general cases to improve real-time
dynamic mechanisms. We will evaluate finer coefficient controls to achieve the minimum
energy consumption and the measured consumption to compare our solution with real
world systems.

Author Contributions: Conceptualization, J.C.S.d.A., J.L.G.G., and K.J.M.; methodology, J.C.S.d.A.,
J.L.G.G., and C.F.R.G.; simulator, J.L.G.G.; validation, J.C.S.d.A. and J.L.G.G.; writing—original
draft preparation, J.C.S.d.A., K.J.M., J.L.G.G., and V.R.Q.L.; writing—review and editing, G.V.G. and
J.C.S.d.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work has partially supported by PROPESQ-UFRGS-Brasil and Junta De Castilla y
León-Consejería de Economía Y Empleo: System for simulation and training in advanced techniques
for the occupational risk prevention through the design of hybrid-reality environments with ref. J118.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: “SmartSent” (#17/2551-0001 195-3), CAPES (Finance Code 001), PNPD program,
CNPq, PROPESQ-UFRGS-Brasil and FAPERGS Project “GREEN-CLOUD—Computação em Cloud
com Computação Sustentável” (#16/2551-0000 488-9). Proyeto Uso de algoritmos y protocolos de
comunicación en dispositivos con énfasis en la privacidad de los datos.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 2914 19 of 20

Abbreviations
The following abbreviations are used in this manuscript:

IDC International Data Corporation;
QoS Quality of Service;
DVFS Dynamic Voltage and Frequency Scaling;
ILP Integer Linear Programming;
CPU Central Processing Unit;
LSL Lower Safety Limit;
ARM Advanced RISC Machines.
Symbols
B Bandwidth from a wireless channel;
DT Device type;
g The channel gain;
ulocalT Execution time weighting for a local server;
ulocalE Energy consumption weighting for a local server;
umecT Execution time weighting for a MEC server;
umecE Energy consumption weighting for a MEC server;
uCloudT Execution time weighting for the Cloud;
uCloudE Energy consumption weighting for the Cloud.

References
1. Reinsel, D.; Gantz, J.; Rydning, J. The Digitalization of The World: From Edge to Core; us44413318 ed., IDC White Paper; Seagate Inc.:

Framingham, MA, USA, 2018; Volume 1, pp. 1–28.
2. Chen, T.Y.H.; Ravindranath, L.; Deng, S.; Bahl, P.; Balakrishnan, H. Glimpse: Continuous, Real-Time Object Recognition on

Mobile Devices. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, SenSys ’15, Seoul, Korea,
1–4 November 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 155–168. [CrossRef]

3. Matteussi, K.J.; Zanchetta, B.F.; Bertoncello, G.; Dos Santos, J.D.D.; dos Anjos, J.C.S.; Geyer, C.F.R. Analysis and Performance
Evaluation of Deep Learning on Big Data. In Proceedings of the 2019 IEEE Symposium on Computers and Communications
(ISCC), Barcelona, Spain, 29 June–3 July 2019; pp. 1–6. [CrossRef]

4. Wang, C.; Dong, C.; Qin, J.; Yang, X.; Wen, W. Energy-efficient Offloading Policy for Resource Allocation in Distributed Mobile
Edge Computing. In Proceedings of the 2018 IEEE Symposium on Computers and Communications (ISCC), Natal, Brazil, 25–28
June 2018; pp. 00366–00372. [CrossRef]

5. Matteussi, K.J.; Geyer, C.F.R.; Xavier, M.G.; Rose, C.A.F.D. Understanding and Minimizing Disk Contention Effects for Data-
Intensive Processing in Virtualized Systems. In Proceedings of the 2018 International Conference on High Performance Computing
Simulation (HPCS), Orleans, France, 16–20 July 2018; pp. 901–908. [CrossRef]

6. Aijaz, A. Towards 5G-enabled Tactile Internet: Radio resource allocation for haptic communications. In Proceedings of the 2016
IEEE Wireless Communications and Networking Conference Workshops (WCNCW), IEEE Computer Society, Doha, Qatar, 3–6
April 2016; pp. 145–150. [CrossRef]

7. Sales Mendes, A.; Jiménez-Bravo, D.M.; Navarro-Cáceres, M.; Reis Quietinho Leithardt, V.; Villarrubia González, G. Multi-Agent
Approach Using LoRaWAN Devices: An Airport Case Study. Electronics 2020, 9, 1430. [CrossRef]

8. Haouari, F.; Faraj, R.; AlJa’am, J.M. Fog Computing Potentials, Applications, and Challenges. In Proceedings of the 2018
International Conference on Computer and Applications (ICCA), Beirut, Lebanon, 25–26 August 2018; pp. 399–406. [CrossRef]

9. Silva, L.A.; Leithardt, V.R.Q.; Rolim, C.O.; González, G.V.; Geyer, C.F.R.; Silva, J.S. PRISER: Managing Notification in Multiples
Devices with Data Privacy Support. Sensors 2019, 19, 3098. [CrossRef] [PubMed]

10. Yu, Y. Mobile edge computing towards 5G: Vision, recent progress, and open challenges. China Commun. 2016, 13, 89–99.
[CrossRef]

11. Sarangi, S.R.; Goel, S.; Singh, B. Energy Efficient Scheduling in IoT Networks. In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing, SAC ’18, Pau, France, 9–13 April 2018; Association for Computing Machinery: New York,
NY, USA, 2018; pp. 733–740. [CrossRef]

12. Leithardt, V.; Santos, D.; Silva, L.; Viel, F.; Zeferino, C.; Silva, J. A Solution for Dynamic Management of User Profiles in IoT
Environments. IEEE Lat. Am. Trans. 2020, 18, 1193–1199. [CrossRef]

13. Zhang, G.; Zhang, W.; Cao, Y.; Li, D.; Wang, L. Energy-Delay Tradeoff for Dynamic Offloading in Mobile-Edge Computing
System With Energy Harvesting Devices. IEEE Trans. Indust. Inform. 2018, 14, 4642–4655. [CrossRef]

14. Gedawy, H.; Habak, K.; Harras, K.A.; Hamdi, M. Awakening the Cloud Within: Energy-Aware Task Scheduling on Edge IoT
Devices. In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops), Athens, Greece, 19–23 March 2018; pp. 191–196. [CrossRef]

http://doi.org/10.1145/2809695.2809711
http://dx.doi.org/10.1109/ISCC47284.2019.8969762
http://dx.doi.org/10.1109/ISCC.2018.8538612
http://dx.doi.org/10.1109/HPCS.2018.00144
http://dx.doi.org/10.1109/WCNC.2016.7564661
http://dx.doi.org/10.3390/electronics9091430
http://dx.doi.org/10.1109/COMAPP.2018.8460182
http://dx.doi.org/10.3390/s19143098
http://www.ncbi.nlm.nih.gov/pubmed/31337032
http://dx.doi.org/10.1109/CC.2016.7405725
http://dx.doi.org/10.1145/3167132.3167213
http://dx.doi.org/10.1109/TLA.2020.9099759
http://dx.doi.org/10.1109/TII.2018.2843365
http://dx.doi.org/10.1109/PERCOMW.2018.8480266

Sensors 2021, 21, 2914 20 of 20

15. Skarlat, O.; Schulte, S.; Borkowski, M.; Leitner, P. Resource Provisioning for IoT Services in the Fog. In Proceedings of the 2016
IEEE 9th International Conference on Service-Oriented Computing and Applications (SOCA), IEEE Computer Society, Macau,
China, 4–6 November 2016; pp. 32–39. [CrossRef]

16. Chen, Y.L.; Chang, M.F.; Yu, C.W.; Chen, X.Z.; Liang, W.Y. Learning-Directed Dynamic Voltage and Frequency Scaling Scheme
with Adjustable Performance for Single-Core and Multi-Core Embedded and Mobile Systems. Sensors 2018, 18, 3068. [CrossRef]
[PubMed]

17. Jin, X.; Goto, S. Hilbert Transform-Based Workload Prediction and Dynamic Frequency Scaling for Power-Efficient Video
Encoding. IEEE Trans. Comput. Aided Des. Integrat. Circuits Syst. 2012, 31, 649–661. [CrossRef]

18. Anjos, J.C.S.; Matteussi, K.J.; De Souza, P.R.R.; Grabher, G.J.A.; Borges, G.A.; Barbosa, J.L.V.; González, G.V.; Leithardt, V.R.Q.;
Geyer, C.F.R. Data Processing Model to Perform Big Data Analytics in Hybrid Infrastructures. IEEE Access 2020, 8, 170281–170294.
[CrossRef]

19. Praveen, K.; Prathap, P.J. Energy Efficient Congestion Aware Resource Allocation and Routing Protocol for IoT Network using
Hybrid Optimization Techniques. Wirel. Pers. Commun. 2021, 117, 1187–1207. [CrossRef]

20. Bi, R.; Liu, Q.; Ren, J.; Tan, G. Utility aware offloading for mobile-edge computing. Tsinghua Sci. Technol. 2021, 26, 239–250.
[CrossRef]

21. Zhao, T.; Zhou, S.; Song, L.; Jiang, Z.; Guo, X.; Niu, Z. Energy-optimal and delay-bounded computation offloading in mobile
edge computing with heterogeneous clouds. China Commun. 2020, 17, 191–210. [CrossRef]

22. Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. The Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervas.
Comput. 2009, 8, 14–23. [CrossRef]

23. Alkhalaileh, M.; Calheiros, R.N.; Nguyen, Q.V.; Javadi, B. Data-intensive application scheduling on Mobile Edge Cloud
Computing. J. Netw. Comput. Appl. 2020, 167, 1–12. [CrossRef]

24. Bui, N.H.; Pham, C.; Nguyen, K.K.; Cheriet, M. Energy efficient scheduling for networked IoT device software update.
In Proceedings of the 2019 15th International Conference on Network and Service Management (CNSM), IEEE, Halifax, NS,
Canada, 21–25 October 2019; pp. 1–5. [CrossRef]

25. Yu, H.; Wang, Q.; Guo, S. Energy-Efficient Task Offloading and Resource Scheduling for Mobile Edge Computing. In Proceedings
of the 2018 IEEE International Conference on Networking, Architecture and Storage (NAS), Chongqing, China, 11–14 October
2018; pp. 1–4. [CrossRef]

26. Wan, J.; Chen, B.; Wang, S.; Xia, M.; Li, D.; Liu, C. Fog Computing for Energy-Aware Load Balancing and Scheduling in Smart
Factory. IEEE Trans. Ind. Inform. 2018, 14, 4548–4556. [CrossRef]

27. Wu, H.; Lee, C. Energy Efficient Scheduling for Heterogeneous Fog Computing Architectures. In Proceedings of the 2018
IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 23–27 July 2018; Volume 1,
pp. 555–560. [CrossRef]

28. Anjos, J.C.S.; Matteussi, K.J.; De Souza, P.R.R.; da Silva Veith, A.; Fedak, G.; Barbosa, J.L.V.; Geyer, C.R. Enabling Strategies
for Big Data Analytics in Hybrid Infrastructures. In Proceedings of the 2018 International Conference on High Performance
Computing Simulation (HPCS), Orleans, France, 16–20 July 2018; pp. 869–876. [CrossRef]

29. Naranjo, P.G.V.; Shojafar, M.; Mostafaei, H.; Pooranian, Z.; Baccarelli, E. P-SEP: A prolong stable election routing algorithm for
energy-limited heterogeneous fog-supported wireless sensor networks. J. Supercomput. 2017, 73, 733–755. [CrossRef]

30. Mucchi, L.; Ronga, L.S.; Jayousi, S. Energy Efficient Constellation for Wireless Connectivity of IoT Devices. Sensors 2020, 20, 3991.
[CrossRef] [PubMed]

31. Ahad, A.; Tahir, M.; Aman Sheikh, M.; Ahmed, K.I.; Mughees, A.; Numani, A. Technologies Trend towards 5G Network for
Smart Health-Care Using IoT, A Review. Sensors 2020, 20, 4047. [CrossRef] [PubMed]

32. Gautham, T.S.V.; Thangaraj, A.; Jalihal, D. Common architecture for decoding turbo and LDPC codes. In Proceedings of the 2010
National Conference On Communications (NCC), Chennai, India, 29–31 January 2010; pp. 1–5. [CrossRef]

33. Gross, J.L.G.; Matteussi, K.J.; dos Anjos, J.C.S.; Geyer, C.F.R. A Dynamic Cost Model to Minimize Energy Consumption and Processing
Time for IoT Tasks in a Mobile Edge Computing Environment; Service-Oriented Computing; Kafeza, E., Benatallah, B., Martinelli,
F., Hacid, H., Bouguettaya, A., Motahari, H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 12571,
pp. 101–109. [CrossRef]

34. Liu, Y.; Yang, H.; Dick, R.P.; Wang, H.; Shang, L. Thermal vs Energy Optimization for DVFS-Enabled Processors in Embedded
Systems. In Proceedings of the 8th International Symposium on Quality Electronic Design (ISQED’07), San Jose, CA, USA, 26–28
March 2007; pp. 204–209. [CrossRef]

35. Tanenbaum, A.S.; Austin, T. Structured Computer Organization, 6th ed.; Prentice Hall: Hoboken, NJ, USA, 2012.
36. Gupta, A.; Jha, R.K. A Survey of 5G Network: Architecture and Emerging Technologies. IEEE Access 2015, 3, 1206–1232.

[CrossRef]
37. Brogi, A.; Forti, S.; Ibrahim, A. Deploying Fog Applications: How Much Does It Cost, By the Way? In Proceedings of the 8th

International Conference on Cloud Computing and Services Science, Madeira, Portugal, 19–21 March 2018; SciTePress: Setubal,
Portugal, 2018; Volume 1, pp. 68–77. [CrossRef]

38. Jansson, J. Collision Avoidance Theory with Application to Automotive Collision Mitigation. Ph.D. Thesis, Department of
Electrical Engineering Linköping University, Linköping, Sweden, 2005.

http://dx.doi.org/10.1109/SOCA.2016.10
http://dx.doi.org/10.3390/s18093068
http://www.ncbi.nlm.nih.gov/pubmed/30213128
http://dx.doi.org/10.1109/TCAD.2011.2180383
http://dx.doi.org/10.1109/ACCESS.2020.3023344
http://dx.doi.org/10.1007/s11277-020-07917-8
http://dx.doi.org/10.26599/TST.2019.9010062
http://dx.doi.org/10.23919/JCC.2020.05.015
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1016/j.jnca.2020.102735
http://dx.doi.org/10.23919/CNSM46954.2019.9012742
http://dx.doi.org/10.1109/NAS.2018.8515731
http://dx.doi.org/10.1109/TII.2018.2818932
http://dx.doi.org/10.1109/COMPSAC.2018.00085
http://dx.doi.org/10.1109/HPCS.2018.00140
http://dx.doi.org/10.1007/s11227-016-1785-9
http://dx.doi.org/10.3390/s20143991
http://www.ncbi.nlm.nih.gov/pubmed/32709090
http://dx.doi.org/10.3390/s20144047
http://www.ncbi.nlm.nih.gov/pubmed/32708139
http://dx.doi.org/10.1109/NCC.2010.5430239
http://dx.doi.org/10.1007/978-3-030-65310-1_8
http://dx.doi.org/10.1109/ISQED.2007.158
http://dx.doi.org/10.1109/ACCESS.2015.2461602
http://dx.doi.org/10.5220/0006676100680077

	Introduction
	Related Work
	Problem Statement
	Model to Minimize Cost Dynamically
	Architecture and Task Processing Flow
	Network Model
	General Energy Consumption
	Local Computing in the IoT Device
	Local Computing in the MEC Server
	Remote Computing in the Cloud
	Model Constraints for IoT Device Battery

	The TEMS Algorithm
	Evaluation
	Simulated Hardware and Software Stack
	Experiments and Results
	Use of MEC Servers
	IoT Device Battery Energy Consumption

	Accuracy Evaluation of Energy Model
	Variation of Input Data Size
	Impact of Energy and Time Coefficients in the Schedule Policy Choices
	Impact of Task Generation Rate
	Using the DVFS Technique

	Conclusions
	References

