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ABSTRACT

Elucidation of predictive fluidic biochemical markers to detect and monitor chemical-induced neurodegeneration has
been a major challenge due to a lack of understanding of molecular mechanisms driving altered neuronal morphology
and function, as well as poor sensitivity in methods to quantify low-level biomarkers in bodily fluids. Here, we evaluated
5 neurotoxicants (acetaminophen [negative control], bisindolylmaleimide-1, colchicine, doxorubicin, paclitaxel, and
rotenone) in human-induced pluripotent stem cell-derived neurons to profile secreted microRNAs (miRNAs) at early

and late stages of decline in neuronal cell morphology and viability. Based on evaluation of these morphological (neurite
outgrowth parameters) and viability (adenosine triphosphate) changes, 2 concentrations of each chemical were selected
for analysis in a human 754 miRNA panel: a low concentration with no/minimal effect on cell viability but a significant
decrease in neurite outgrowth, and a high concentration with a significant decrease in both endpoints. A total of 39
miRNAs demonstrated significant changes (fold-change > 1.5 or < 0.67, p value < .01) with at least 1 exposure. Further
analyses of targets modulated by these miRNAs revealed 38 key messenger RNA targets with roles in neurological
dysfunctions, and identified transforming growth factor-beta (TGF-p) signaling as a commonly enriched pathway. Of

the 39 miRNAs, 5 miRNAs, 3 downregulated (miR-20a, miR-30b, and miR-30d) and 3 upregulated (miR-1243 and miR-1305),
correlated well with morphological changes induced by multiple neurotoxicants and were notable based on their
relationship to various neurodegenerative conditions and/or key pathways, such as TGF- signaling. These datasets
reveal miRNA candidates that warrant further evaluation as potential safety biomarkers of chemical-induced
neurodegeneration.
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Neurotoxicity accounts for approximately a quarter of adverse
effects observed in clinical trials and is the third leading cause
of safety-related drug attrition (Cook et al., 2014; Monticello
et al., 2017; Walker et al., 2018). Low concordance of nonclinical
assays to predict the most common nervous system-related ad-
verse events in clinical trials has been cited as partially causa-
tive of the high clinical attrition rates from neurotoxicity
(Mead et al, 2016; Ross, 2000). Neurotoxic findings may be
missed in nonclinical studies due to: (1) a limited number of
sample timepoints for histopathology, (2) a limited number of
observations for the modified Irwin (FOB/Irwin) neurological be-
havioral assay, (3) a lack of translation of neurological findings
in nonclinical species to humans, (4) infrequent use of electro-
encephalogram to identify electrophysiological disturbances
and, (5) infrequent use of special stains for neuro-
histopathology (eg, Fluoro-Jade, Alcian blue, Toluene blue, IBA1,
GFAP) to identify discreet lesions (Mathiasen and Moser, 2018;
Moscardo et al., 2007; Nagayama, 2015; Switzer, 2011). Therefore,
elucidation of fluidic biomarkers to detect chemical-induced
neurotoxicity may improve identification of neurotoxic risk in
nonclinical studies and reduce neurotoxicity-related clinical
attrition.

Currently, no fluid-based biomarker has been validated for
diagnosis or prognosis of nonclinical or clinical chemical-
induced neurodegeneration, but scientific literature is rapidly
expanding in this area (Imam et al, 2018; Kim et al., 2020;
Meregalli et al., 2020; Walker et al., 2018). In recent exploratory
rodent or clinical studies with chemotherapeutics, increases in
serum neurofilament light (NfL) protein levels have correlated
well to severity of peripheral neuropathy. In rats treated with
chemotherapeutics cisplatin and paclitaxel (PTX) for 4 weeks,
temporal increases in serum NfL levels correlated to severity of
axonal damage in peripheral nerve tissues, decreases in nerve
fiber density measurements, and/or reductions in sensory nerve
action potential amplitude (Meregalli et al., 2020). In a clinical
trial with oxaliplatin, increases in serum NfL following 3 or 6
months of treatment correlated with severity of oxaliplatin-
induced peripheral neuropathy in patients (Kim et al., 2020).
Although it is encouraging that NfL is gaining traction as a
safety biomarker for neurodegeneration, continued exploration
of diverse markers will be beneficial to understanding the
mechanisms of chemical-induced neurodegeneration and to
building an arsenal of safety biomarkers for translational moni-
toring from nonclinical species to humans.

Although typical fluid biomarkers are protein or lipids,
microRNAs (miRNAs) are rapidly emerging as impactful targets
for fluid-based biomarker discovery due to their stability in the
blood and conservation across species (Di Pietro et al., 2021;
Imam et al., 2018). miRNAs are small noncoding RNA, approxi-
mately 18-25 nucleotides long, which are posttranscriptionally
transcribed from highly conserved intra- or intergenic regions
of the genome that regulate gene expression (Ambros et al.,
2003; Bartel, 2009; Denk et al., 2015). Mature miRNA regulates
protein synthesis by loading into RNA-induced silencing com-
plex to target messenger RNA (mRNA) using Watson-Crick base
pairing leading to either cleavage or destabilization and subse-
quent degradation or translational repression of the mRNA
(Kim, 2005a,b; Pasquinelli, 2012). Approximately 2585 unique
human miRNAs have been discovered. In an OpenArray profil-
ing of 1178 miRNAs in cerebrospinal fluid (CSF) from
Alzheimer’s disease (AD) patients, 441 miRNAs were deter-
mined to be expressed, signifying that at least 37% of those

miRNAs are expressed in the brain (Denk et al., 2015). miRNAs
hold great potential as peripheral biomarkers for neurotoxicity
since they play a vital role in neuronal cell development, prolif-
eration, differentiation, function, homeostasis, maintenance,
and apoptosis (Denk et al., 2015; Kaur et al.,, 2012; Sun and Shi,
2015).

In this study, we aimed to identify secreted miRNA bio-
markers and their associated pathways that were similarly dys-
regulated by classic neurotoxicants with diverse biological
mechanisms of toxicity. Human-induced pluripotent stem cells
(hiPSC)-derived gamma-aminobutyric acid (GABA) neurons, pre-
viously found to be sensitive to chemical treatments (Cohen
and Tanaka, 2018), were exposed to neurotoxicants (acetamino-
phen [ACET; negative control], bisindolylmaleimide-1 [BIS], col-
chicine [COL], doxorubicin [DOX], PTX, and rotenone [ROT]). The
complex effects of these toxicants on neuronal cell injury were
assessed using an integrative approach across multiple end-
points, including: (1) cell viability, measured by adenosine tri-
phosphate (ATP) analysis; (2) neuronal morphological
abnormalities, quantified by high-content imaging analysis; (3)
dysregulation of miRNA expression using a human miRNA
panel; and (4) elucidation of commonly enriched neurodegener-
ative pathways. We identified 39 secreted miRNAs that were
significantly modulated in hiPSC-derived neurons upon
chemical-induced neurodegeneration. Pathway analysis identi-
fied several processes associated with the 39 miRNAs, with
transforming growth factor-beta (TGF-B) signaling being the
pathway most commonly enriched. Of the 39 miRNAs, 5 (miR-
20a, -30b, -30d, -1234, and -1305) were most notable based on
their significant dysregulation by multiple chemicals and their
involvement in pathways related to neurological dysfunction,
including TGF-f signaling pathways. Our study demonstrated
that these 5 miRNAs are potential noninvasive biomarkers for
chemical-induced neurodegeneration.

MATERIALS AND METHODS

Cell culture. hiPSC-derived cortical GABAergic iCell Neurons
(Fujifilm Cellular Dynamics International, Madison, Wisconsin),
derived from a healthy, Caucasian, female donor over the age of
18, with a normal genetic background (https://www.fujifilmcdi.
com/icell-gabaneurons-01434-ggbn01434, accessed on January,
2022) were cultured according to the manufacturer’s protocol.
Cells were plated at a density of 10 000 live cells/well on BioCoat
Poly-D-Lysine 96-well tissue culture plates (BD Biosciences; San
Diego, California) coated with 3.3 ug/ml laminin. At 2h postplat-
ing, cells were treated with chemicals (ACET, negative control;
BIS; COL; DOX; PTX; ROT) at 0.1, 1, 10, 30, and 100 pM in 0.1% di-
methyl sulfoxide (DMSO, purchased from Sigma-Aldrich,
Calbiochem, or Wako) with 3 technical replicates per chemical
concentration per plate. Control wells were treated with 0.1%
DMSO. Chemical and control wells were incubated at 37°C for
24h prior to fixation or ATP analysis. The optimal timing for
treating cells at 2h postplating and the 24 h chemical treatment
duration were determined based on time course results from
Cohen and Tanaka (2018).

ATP analysis. ATP was analyzed using the CellTiter-Glo
Luminescent Cell Viability Assay (Promega, Madison,
Wisconsin) according to manufacturer’s recommendations, and
luminescent signal was quantified using an Envision 2104
Multilabel Reader (Perkin Elmer, Foster City, California). Data
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were analyzed using Dunnett’s test, with the level of signifi-
cance set at p <.05.

Immunocytochemistry and automated image analysis. Cultures were
fixed with 8% paraformaldyde (Alfa Aesar, Heysham, UK) in
Dulbecco’s phosphate-buffered saline (D-PBS) without Ca®" and
Mg* (Wako, Osaka, Japan) for 1h, and permeabilized with 0.3%
triton X100 (Wako) in blocking buffer containing D-PBS solution
of 10% donkey serum (Millipore, Billerica, Massachusetts) and
1% Dbovine serum albumin (Jackson Immuno Research
Laboratories, Inc., West Grove, Pennsylvania). Neurons were la-
beled with an anti-Blll-tubulin primary antibody (G712A,
Promega) at 1:200 dilution in blocking buffer overnight at 4°C,
washed with D-PBS, labeled with secondary antibody Alexa
Fluor 488-goat-antimouse (Invitrogen, Carlsbad, California) for
1h at room temperature in blocking buffer, washed with D-PBS,
and incubated with SlowFade Gold Antifade Mountant with
DAPI (Invitrogen) prior to automated image analysis.

Automated image analysis. Automated image acquisition was per-
formed on an In Cell Analyzer 6000 high-content imaging sys-
tem (GE Healthcare UK Ltd., Buckinghamshire, UK) and image
analysis of neuronal morphology parameters was quantified us-
ing the Neuronal Morphology Algorithm on the GE IN Cell
Developer Toolbox 1.9.2 (GE Healthcare) as previously described
(Cohen and Tanaka, 2018). Images were acquired with a 20x ob-
jective, across 16 image-fields per well, for all groups. Using the
Neuronal Morphology Algorithm we quantified morphological
changes of neurons, including neurite length and neurite count,
and cell density by quantifying neurons per field, following
chemical treatments. For statistical analysis of morphological
endpoints, 2 biological replicates for each set of experiments
(n=3 wells/concentration/chemical/plate), with independent
cultures, were combined for a final group size of n=6 wells/con-
centration of chemical. Data were first normalized within each
separate plate, and then pooled across biological replicates to
obtain composite profiles for each chemical concentration.
Combined data were analyzed using Dunnett’s test, with the
level of significance set at p < .05, to determine the lowest effect
concentration of each chemical with a significantly different
morphological response from control. Neurite count and neurite
length data were assessed for their correlation with the ATP
changes from the cell viability assay described earlier. For this,
we performed Pearson’s correlation analysis using R Studio Pro
Version 1.2.5033-1. Correlation coefficient and corresponding p
value were determined for each comparison.

RNA extraction from neurotoxicant-treated neuronal cell culture super-
natant. Culture supernatant from 3 technical replicates per con-
centration per plate was pooled into a single biological
replicate, and centrifuged at 2000 x g for 10min, followed by
10 000 x g for 20min at 4°C to remove cells and cell debris.
Small RNA-containing total RNA was isolated using miRNeasy
Micro Kit (Qiagen; Hilden, Germany) according to the manufac-
turer’s instructions. Briefly, 0.12ml of culture supernatant was
mixed with 0.6ml of QIAzol Lysis reagent by vortexing. After
adding 5pul of 500 pM Ath-miR-159a (synthesized by Hokkaido
System Science, Sapporo, Japan), the mixture was incubated for
5min at room temperature. Next, 120 ul of chloroform (Wako)
was added followed by vigorous mixing by hand for 15s. After
incubation for 2min at room temperature, phase separation
was performed by centrifugation at 12 000 x g for 15min at 4°C.
From the upper aqueous phase, 0.42ml was transferred to a
new tube and then 1.5-fold volume of 99.5% ethanol was added.
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The mixture was passed through an RNeasy MinElute Spin
Column by vacuum. After washing of the cartridge once with
700l of Buffer RWT and twice with 500 pul of Buffer RPE by vac-
uum, elution of total RNA was performed with 14 pl of RNase-
free water and centrifugation (8000 x g, 1min, RT). The RNA
quality and yield were analyzed using an Agilent 2100
Bioanalyzer with RNA6000 Pico Kit (Agilent Technologies, Santa
Clara, California). A centrifugal vacuum evaporator was used to
concentrate the eluent and the volume was adjusted up to 7 ul
with nuclease-free water.

TagMan array quantitative analysis of miRNA. For each chemical
treatment and control, 3 biological replicates were performed
for miRNA quantification using TagMan Array Human
MicroRNA A + B Cards Set v3.0, which contains a primer set for
754 human miRNA sequences and was used according to the
manufacturer’s instructions (Thermo Fisher Scientific,
Waltham, Massachusetts). Synthesis of cDNA was carried out
from 6pl of RNA solution (3ul for each primer pool) with
Megaplex RT primers (pool A v.2.1 and pool B v.3.0) and
TagManTM MicroRNA Reverse Transcription Kit (Thermo Fisher
Scientific). cDNA was amplified by use of Megaplex PreAmp pri-
mers pool A v.2.1 and pool B v.3.0 and TagManTM PreAmp
Master Mix. The amplified cDNA was mixed with TagMan
Universal PCR Master Mix (No AmpErase UNG). The obtained
sample was loaded to TagMan Array Human MicroRNA A +B
Cards subjected to quantitative PCR analysis by use of 7900HT
Fast Real-Time PCR system (Thermo Fisher Scientific). Thermal
cycling condition was 2 min at 50.0°C, 10 min at 94.5°C, 40 cycles
at 97.0°C for 30s, and at 59.7°C for 1 min.

miRNA data analysis. Threshold cycle (C;) values were deter-
mined using RQ Manager 1.2 software (Thermo Fisher
Scientific), setting the normalized fluorescence threshold to 0.2.
Raw C; values > 35 were treated as below the detection limit
and were assigned a raw C; value of 35. Raw C; values were fur-
ther normalized within each plate (containing all samples be-
longing to a compound treatment) using the “mean-centered”
approach: the mean of raw C; values of each plate was calcu-
lated without values > 35 (ie, below detection limit), and the
normalized expression values were obtained by subtracting the
raw C; values from the mean C; value within the same plate. As
a result, the normalized expression value has the opposite trend
of the meaning of a C; value: the higher the expression, the
higher the normalized expression value. After normalization,
paired t tests comparing normalized expression values for the
treatment versus control were completed for all miRNAs. We
also performed multiple-testing correction by calculating the
Storey’s q values, and adjusted p values using the Benjamini-
Hochberg approach (Storey, 2002; Storey and Tibshirani, 2003),
to further assess statistical significance. To select relevant
miRNA candidates for follow-up analyses using ontology of bio-
logical pathways, we introduced an additional constraint on
strength of effect size (fold-change > 1.5 or < 0.67), and applied
an unadjusted p value < .01. These results were reported in
Supplementary Table 1. The initial risk for random chance using
the unadjusted p value was mitigated by the biological connec-
tion with the additional enrichment analysis, providing a level
of confidence that the signal was likely biological and not due to
chance. Based on these thresholds we identified 41 significant
miRNAs. We used Thermo Fisher Scientific’s annotation file to
annotate miRNA nomenclature with Assay IDs and miRBase IDs
(megaplex-pools-array-card-content.xlsx annotation file down-
loaded from the product section of Thermo Fisher Scientific
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website [www.thermofisher.com], accessed on February 18,
2017). We annotated miRNAs with mirBase Accession IDs
(miRbase v21), MetaBase Network Object IDs, and with associ-
ated Entrez Gene IDs (v.6, 2017). Thus, we were able to remap
original Thermo Fisher Scientific miRNA names to Entrez Gene
IDs and MetaBase Network Objects for enrichment and
network-based analysis. We excluded 2 miRNA IDs from the
analysis, which did not map to Entrez Gene IDs. These miRNA
names either mapped to discontinued Entrez Gene IDs or did
not map to human miRNA per Thermo Fisher annotation file.
Ultimately, 39 significant miRNAs successfully mapped to
Entrez Gene IDs and were used in subsequent pathway analyses
(Supplementary Table 1).

Pathway enrichment analysis. The 39 significant miRNAs, identi-
fied by methods described above, were clustered into 4 groups
based on fold-change values, using hierarchical clustering with
average linkage and Euclidian distance. Clusters were identified
through dynamic tree cut method using the R package
(dynamicTreeCut 1.63-1). We utilized 2 different miRNA path-
way analysis tools, mirPath v.3 and Clarivate Pathway Maps, to
determine neurodegeneration-related molecular pathways reg-
ulated by differentially expressed miRNAs.

Each of the 4 clusters was analyzed by mirPath v.3, which is
a web-based tool enabling target prediction and pathway en-
richment for miRNAs of interest (Vlachos et al., 2015; accessible
at: http://snf-515788.vm.okeanos.grnet.gr/, accessed 4 March
2021). Significant miRNAs from each cluster (input lists avail-
able in Supplementary Table 2) were uploaded into this soft-
ware. The settings for the analysis were as follows: Kyoto
Encyclopedia or Genes and Genomes (KEGG) analysis with hu-
man for species and microT-CDS (v5.0) for the database.
Pathway Union approach was utilized to identify all significant
pathways within KEGG that involve gene targets of at least 1
miRNA in the input list. The p value for each pathway was cal-
culated using Fisher’s meta-analysis method, which reflects the
probability of the pathway’s enrichment with the gene targets
of at least 1 selected miRNA in the input list. Pathways with p
values < .05 were considered significant. The list of significant
pathways for each cluster of significant miRNAs was compared
and the pathways that were commonly associated with all 4
clusters were identified.

The second approach utilized a proprietary Clarivate
Pathway Maps collection, which includes more than 1500 maps.
Each map encompasses 3-5 signaling pathways in normal or
pathological condition, curated by Clarivate scientists and
guided by experts in a particular disease area during the map
creation. The collection includes maps specific to central ner-
vous system diseases, including Huntington’s disease, multiple
sclerosis (MS), and depression, which were relevant for the pre-
sent analysis of neuronal cell toxic pathology.

As the role of miRNA in regulation of specific signaling cas-
cades is still poorly understood, miRNA signaling is sparsely
represented in the collection of pathway maps. This misrepre-
sentation may lead to incorrect interpretation of enrichment
analysis in miRNA. To avoid this bias, instead of direct enrich-
ment of miRNAs in the pathway maps, we developed 2
methods:

Method 1: Enrichment of miRNA targets in Clarivate pathway maps
instead of miRNAs themselves. Genes that are not known to be
associated with any known miRNA were excluded from the
pathway maps ontology. Targets of miRNAs were identified
in Clarivate proprietary molecular interaction network with

over 1 532 340 interactions manually curated by Clarivate sci-
entists from published experimental papers. This method
identified signaling cascades that were most affected by
changes in the input miRNA profile. The disadvantage of the
approach was potentially disproportionate contribution of
the unbalanced number of targets associated with input
miRNAs.

Method 2: Enrichment of miRNASs in the pathway maps transformed
into sets of miRNAs, which have at least 1 target gene present in the
map. The method is not affected by the bias introduced by the
unbalanced number of miRNA targets, as described earlier.
But, it may unfairly boost contribution of miRNAs with small
number of targets.

Both enrichment methods described above estimate enrich-
ment using hypergeometric distribution significance testing. As
both methods are complementary and compensate each other’s
biases, we took advantage of both methods and selected path-
ways identified as significant in both approaches with a
Benjamini-Hochberg adjusted p value < .01. The selected terms
were further ranked by cumulative p value calculated by
Fisher’'s method across both enrichment methods. For visual-
izations in this analysis, we further limited the results to the
top 20 pathway maps with p value < .001 in the results from
both methods, and clustered the pathways using hierarchical
clustering with average linkage and Euclidian distance. Clusters
were identified through a dynamic tree cut method imple-
mented in R package dynamicTreeCut.

The results of enrichment in Clarivate Pathway Maps were
used to visualize the frequently modulated TGF-B signaling
pathways. The top enriched pathway maps specific to TGF-p
signaling were used to reconstruct a network model, which
describes interactions between the TGF-B signaling molecules
and miRNA targets. To do this, we programmatically traced mo-
lecular signaling connections between the TGF-p signaling mol-
ecules and miRNAs involved in these pathway maps, derived
linear cascades, and combined them into a network. The layout
of the network was manually adjusted and visualized using
Clarivate proprietary Pathway Maps Creator tool. We visualized
genes known to be associated with neuronal processes, neuro-
degeneration, and neurotoxicity in the reconstructed TGF-p net-
work. We derived neurodegeneration-relevant terms from the
collection of disease biomarkers from Cortellis Drug Discovery
Intelligence (CDDI), neurotoxicity-relevant terms from Clarivate
MetaCore toxic pathologies ontology, and neurological pro-
cesses from the Gene Ontology (GO) Processes. An extensive col-
lection of CDDI neurodegeneration-relevant biomarkers was
filtered to select only gene-term annotations with the highest
trust. To do this, we selected only biomarkers which were anno-
tated and “recommended/approved” or ‘“late studies in
humans” in CDDI, which corresponds to either FDA-approved
biomarkers or biomarkers derived from studies with over 500
individuals. To identify GO processes which were potentially
relevant for neurodegeneration, we specifically identified chil-
dren of terms: “positive regulation of nervous system process,”
“regulation of nervous system process,” “negative regulation of
nervous system process,” “regulation of neuronal action
potential,” and “regulation of neuron projection regeneration.”
In addition, we selected all GO terms which contained the text
“neuro.” Genes associated with these terms were mapped on
the network.

Identification of key miRNAs via ingenuity pathway analysis. In order
to identify the most relevant targets and key miRNAs of interest
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and to better elucidate the interactions between miRNAs, tar-
gets, and the pathways, we performed further analyses using
the ingenuity pathway analysis (IPA) software (Qiagen), as out-
lined in Supplementary Figure 1. First, mature miRNA annota-
tions (within the IPA database) that corresponded to our 39
significant miRNAs were manually curated. Then, over 10 000
experimentally validated mRNA targets of the 39 significant
mature miRNAs were identified via miRNA target filter analysis.
Of those mRNA targets, we selected only those 402 mRNAs that
were associated with “neurological disease” category curated in
the IPA database. The full list of terms included in this category
is available in Supplementary Table 3. The filtered set of mRNA
targets was then assessed in the IPA Pathway tool for (1) their
roles as biomarkers for neurological diseases, or (2) their in-
volvement in neurologically relevant canonical pathways or in
the commonly significant pathways identified from mirPath
analysis. The full list of biomarker and pathway terms used in
this assessment can be found in Supplementary Table 3. We ex-
cluded mRNA targets that (1) did not display any relationships
to the selected biomarkers or canonical pathways, or (2) were
associated only with 1 specific neurological condition. For the
remaining mRNA targets, we identified the miRNAs regulating
those mRNA targets from the list of our 39 significant miRNAs.
Then the changes in the expression of the mRNA targets were
predicted based on the observed expression changes of the
miRNAs.

RESULTS

Characterizing Morphological and Cytotoxic Effects of Classic
Neurotoxicants on hiPSC-Derived Neurons
A set of classic neurotoxicants (ACET [negative control], BIS,
COL, DOX, PTX, and ROT), with known neurodegenerative
effects in vitro, in vivo, and/or in patients on nervous system tis-
sues, were evaluated in hiPSC-derived neurons for changes to
cell morphology and cell viability after 24h of exposure
(Figure 1A). Mechanisms of neurotoxicity for each chemical are
described in Supplementary Table 4. Images of the chemical re-
sponse to neurons are shared in Supplementary Figure 2.
Across all tested neurotoxicants, a decline in morphological
endpoints was observed at lower concentrations than those
that induced significant cytotoxicity. Morphological endpoints
were sensitive to detect neurodegeneration at concentrations <
1uM of COL, DOX, PTX, and ROT even with no or minimal effects
on ATP levels or neurons per field (Figure 1A). Decreases in neu-
rite count and neurite length were observed at > 0.1uM with
COL, PTX, and ROT; > 1puM with DOX, and > 10 uM with BIS. In
contrast, ATP was decreased approximately 25-100% at > 10 uM
for BIS, DOX, and ROT; and neurons per field decreased approxi-
mately 40-60% at 100puM. COL and PTX, both microtubule-
targeting agents, caused significant reductions in neurite mor-
phology endpoints with minimal effects on ATP or neurons per
field up to 100 uM. These results suggest that alteration in neu-
rite outgrowth may be a more sensitive marker for early detec-
tion of neurotoxicant insult than cell viability alone, as
described in Cohen and Tanaka (2018). No effect on any end-
point was observed with ACET, the negative control.
Furthermore, there was a significant correlation across apical
endpoints, with more extensive morphological changes corre-
lating to more extensive depletion of ATP (Figure 1B).
Altogether, our results suggest that morphological changes can
be sensitive predictors of cytotoxic effects induced by
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neurotoxicants, and that measuring cell viability alone may be
insufficient to capture neurodegenerative effects of certain
chemicals.

Secreted miRNA Analysis

Based on the evaluation of the morphological and viability
results as described in the Characterizing Morphological and
Cytotoxic Effects of Classic Neurotoxicants on hiPSC-Derived
Neurons section, 2 concentrations (low and high) of each chemi-
cal were selected for miRNA analysis (Human 754 miRNA
Panels), with the low concentration attributed to no or minimal
effect on cell viability (< 20%) but with a significant decrease in
neurite outgrowth (> 20%), and the high concentration with a
significant decrease in both endpoints, with the exception of
COL and PTX. Since COL and PTX had minimal changes in cell
viability even up to the highest concentration tested, 100 M
was selected for the high concentration of miRNA analysis.

In Figure 2, volcano plots show miRNAs significantly altered
across compound treatment groups, with significant results
emphasized in red as having an unadjusted p value < .01 and a
fold change of > 1.5 or < 0.67. Based on these stringent criteria,
the miRNA screen identified 39 secreted miRNAs that were po-
tentially related to decreases in neuronal cell morphology and
viability parameters, which we could use to delineate the pro-
gressive stages of neurodegeneration (Figure 3). ACET did not
significantly regulate any of these 39 miRNAs. The clustering (1
through 4) demonstrated in Figure 3 reflects the overall direc-
tion and intensity of change per cluster. Thus we were able to
capture the general trend of alterations in miRNA expression,
which may reflect the trend of the response to the toxicants.
Cluster 1 mainly consisted of highly downregulated miRNAs,
whereas cluster 4 included highly upregulated miRNAs.
Clusters 2 and 3 were composed of mildly dysregulated
miRNAs.

Key Signaling Pathways Underlying Chemical-Induced
Neurodegeneration

The set of 39 significant miRNAs, clustered into 4 groups within
Figure 3, were analyzed for their associated pathways. First, each
cluster of miRNAs was assessed individually for their predicted
mRNA targets and KEGG pathways significantly enriched by
those targets (p value threshold < .05). miRNAs in clusters 1 and
4 were predicted to target genes within 8 significant pathways
(Supplementary Table 5). miRNAs in clusters 2 and 3 targeted 11
and 17 significant pathways, respectively (Supplementary Table
5). Although a distinctive set of pathways was associated with
each cluster (Supplementary Table 5), 3 pathways were identified
to be commonly associated with all 4 clusters of significant
miRNAs, as well as common across all 5 chemicals (Table 1).
These pathways included: TGF-p signaling, lysine degradation,
and pluripotency of stem cells. All 5 chemicals caused significant
changes in 1 or more miRNAs involved in these pathways, sug-
gesting that these pathways reflect general neurotoxicity, rather
than neurotoxic response specific to an individual chemical.

We also performed pathway enrichment analysis using the
Clarivate Pathway Maps ontology with the entire set of 39 sig-
nificant miRNAs, rather than individual clusters. The Clarivate
Pathway Maps ontology represents a collection of terms, each
of which encompasses 3-5 signaling pathways describing par-
ticular biological mechanisms. We used 2 complementary en-
richment methods, as described in Materials and Methods
section, to account for potential bias from unequal number of
targets per miRNA, and to avoid any overemphasis of miRNAs
whose targets are poorly represented in the pathway. This
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Figure 1. Effects of neurotoxic chemicals on cell morphology and viability in human-induced pluripotent stem cell (hiPSC)-neurons. A, hiPSC-neurons were exposed to
0.1-100 uM of 6 chemicals (color coded figure legend) for 24 h and analyzed for cell morphology and viability endpoints via automated imaging analysis (neurite length,
neurite count, and neurons per field) and ATP analysis, respectively. Data are presented as mean *+ SD, with color-coded asterisks * denoting significant changes com-
pared with vehicle control (Dunnett’s test, p < .05). Adapted with permission from Cohen and Tanaka (2018). B, The changes in cell morphology and viability endpoints
were assessed for the correlation across endpoints using Pearson’s correlation analysis. Each correlation plot represents log, fold changes of the different apical end-
points on each axis, and correlation coefficient (r values) and significance (p values) were included within each data plot. Each chemical and concentration were

denoted with a different shape or color, respectively.

allowed for a more robust selection of biological terms that
were significantly enriched by the targets associated with the
set of 39 significant miRNAs (Figure 4). Many of these terms
were related to immune response (involving cytokines such as
Tumor necrosis factor-alpha (TNF-0), interleukin (IL)-1, IL-3, and
IL-11) and cell cycle regulation (regulation of G1/S transition, or
role of Skp, Cullin, F-box containing (SCF) complex in cell cycle
regulation). Notably, multiple terms identified within this anal-
ysis were related to TGF-p signaling pathway, which was also
one of 3 commonly enriched KEGG pathways identified from
the cluster-based pathway analysis. Altogether, the results
across enrichment methods suggest a key role of TGF-f signal-
ing pathway as an underlying mechanism for chemical-induced
neurotoxicity.

Enrichment Emphasizes 5 miRNAs as Potential Biomarkers for
Chemical-Induced Neurodegeneration

Further pathway analysis using the IPA software was performed
to better understand the interactions of our significant miRNAs
to their mRNA targets and pathways related to neurological
dysfunctions, and ultimately to identify key miRNAs and their
mRNA targets that play a role in neurotoxicity. Based on the in-
put of the 39 significant miRNAs into the IPA, a total of 402 ex-
perimentally validated and neurologically relevant mRNA
targets were detected by the IPA miRNA Target Filter Analysis.

Using the IPA software we further explored the roles of these
mRNA targets as specific biomarkers for neurological diseases
and as key molecules in canonical pathways associated with
neurotoxicity. We further filtered the 402 targets down to 38
mRNA targets that were related to multiple neurological dis-
eases and/or functions (Figure 5). Notably, many of these targets
were those involved in TGF-f signaling, inflammatory response,
and cell cycle, which were pathways highlighted by both enrich-
ment analyses described earlier. Based on the final 38 mRNA
targets, we mapped the relationships of the mRNA targets to
their corresponding miRNAs (Figure 5). Of the original 39 signifi-
cant miRNAs, 13 of the downregulated miRNAs mapped to the
38 mRNAs highlighted in Figure 5. The details of the mRNA tar-
gets and biological relationships to neurological diseases/func-
tions associated with these 13 miRNAs were summarized in
Table 2. Of the 13 miRNAs, 3 miRNAs (miR-20a, miR-30b, and
miR-30d) were particularly notable because: (1) they were signif-
icantly altered by 3 neurotoxicants; (2) 1 or more targets were
specifically noted as potential biomarkers for various neurologi-
cal diseases; and (3) several targets were linked to the TGF- sig-
naling pathway, a common pathway highlighted across our
enrichment processes.

Focusing on these 3 downregulated miRNAs, we performed a
literature review to identify prior evidence demonstrating their
roles in neurological dysfunction. Prior studies demonstrated
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Figure 2. Volcano plots of secreted microRNAs (miRNAs) significantly altered in human-induced pluripotent stem cell-neurons by neurotoxic chemicals. For each
chemical treatment, paired t tests were evaluated for each miRNA, comparing treatment versus vehicle control (DMSO) using normalized expression values, and result-
ing p values and fold change were plotted on y- and x-axis of volcano plots, respectively. Horizontal dotted lines in the plots represent a p value of .01 and vertical dot-
ted lines represent a fold change of 0.67 or 1.5. Red dots represent miRNAs with fold change < 0.67 or > 1.5, and p value < .01, whereas blue dots represent miRNAs that
were not significantly changed. Abbreviated chemical names are followed by concentrations (uM).

that all 3 of these miRNAs were dysregulated in various neuro-
logical conditions, suggesting that these miRNAs play key roles
in neurological processes (Table 3). The expression of miR-20a
was downregulated in hiPSC-derived neurons upon exposure to
COL, PTX, and ROT, and was previously shown to be either up-
or downregulated, depending on the model or disease type. For
instance, miR-20a was upregulated in the brain of cerebral is-
chemia/reperfusion injury rat models (Yang et al, 2021),
whereas it was downregulated in the brain of equivalent mouse
models (Zhong et al,, 2020), suggesting that directionality of
miRNA response may be variable depending on the species. In
clinical studies, miR-20a was upregulated in serum samples of
multiple system atrophy and AD patients (Cheng et al., 2015;
Kume et al., 2018), whereas it was downregulated in blood sam-
ples of MS patients (Cox et al., 2010), implying diverse miRNA
regulation across different types of neurodegenerative diseases.
Notably, miR-20a inhibition in rat dorsal root ganglia (DRG) was
shown to impair neurite outgrowth, emphasizing the important
role miR-20a may play in neurodegeneration (Zhao et al., 2021).
Similarly, miR-30b and -30d were previously shown to be
dysregulated in several neurological diseases, similar to what
we observed in hiPSC-derived neurons treated with neurotoxi-
cants. Particularly, miR-30b, which was downregulated upon ex-
posure to BIS and COL in our study, was also downregulated in a
wide variety of neurological conditions, from neurodegenerative
diseases to brain tumors to psychiatric diseases. In patients,
miR-30b expression was downregulated in serum or plasma
samples from amyotrophic lateral sclerosis (ALS), MS, and AD
patients, and brain samples from Schizophrenia patients
(Brennan et al., 2019; Dong et al., 2021; Liguori et al., 2018; Perkins
et al., 2007). Such findings suggest that miR-30b may be a

universal marker for neuronal dysregulation and neurotoxicity.
Interestingly, miR-30b was found to be significantly upregulated
in hippocampal tissues of AD patients and rat models (Li et al.,
2020a; Song et al., 2019), and in plasma samples of Parkinson’s
disease patients (Brennan et al., 2019), further supporting the
fact that miRNA regulation can be differentially regulated based
on the model, disease context, or even sample matrix. In vitro,
similar to our study, inhibition of miR-30b resulted in a decrease
in neurite length of rat primary sensory neurons (Wang et al.,
2020). miR-30d, which was downregulated upon exposure to
COL and DOX in our study, was also downregulated in blood
samples of acute ischemic stroke patients and in CSF samples of
AD patients (Brennan et al., 2019; Jiang et al., 2018). In vitro, expo-
sure of methyl mercury to immortalized human neural progeni-
tor cells resulted in downregulation of miR-30d upon
neurotoxicant exposure, similar to what we observed in our
study (Wang et al., 2016). The proposed pathways of neurode-
generation associated with these 3 key downregulated miRNAs,
miR-20a, -30b, and -30d, are shown in Figures 6A and 6B.

Next, we conducted a literature search focused on the asso-
ciations between significantly upregulated miRNAs and neuro-
logically relevant pathways or processes. Of the 10 miRNAs
upregulated within cluster 4 of Figure 3, only miR-1305, miR-
601, and miR-1243 were significantly altered by at least 2 chemi-
cals and 3 or more exposure groups. We found that these 3
miRNAs were much less extensively reported on by prior re-
search, and that there were no studies demonstrating the direct
association between these miRNAs and neurological dysfunc-
tions. Although these miRNAs were not highlighted within the
IPA analysis, the literature suggested 2 miRNAs, miR-1305 and
miR-1243, as potential regulators of TGF-B signaling, implying
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P hsa-mir-1264

hsa-mir-27a
hsa-mir-185
hsa-mir-20a#
hsa-mir-1270
hsa-mir-501-5p

hsa-mir-361-5p
hsa-mir-130a
hsa-mir-1302
hsa-mir-9
hsa-mir-99b
hsa-mir-129-3p
hsa-mir-34a
hsa-mir-301a
hsa-mir-532-3p
hsa-mir-365
hsa-mir-374a
hsa-mir-30b
hsa-mir-324-3p
hsa-let-7d

hsa-mir-577
hsa-mir-664
hsa-mir-130b#
hsa-mir-410
hsa-let-7g
hsa-mir-217
hsa-mir-30d
hsa-mir-302a
hsa-mir-19b-1#
hsa-mir-1305
hsa-mir-601

hsa-mir-1243
hsa-mir-362-3p
hsa-mir-488
hsa-mir-433
hsa-mir-875-5p
hsa-mir-411
hsa-mir-190b
hsa-mir-1301

Table 1. Pathways Commonly Enriched by Messenger RNA Targets Associated With Clusters of Significantly Altered miRNAs

Pathway

miRNAs Involved

Chemicals Involved®

TGF-p signaling

Lysine degradation

Signaling pathways regulating pluripotency
of stem cells

miR-27a-3p, miR-20a-3p, miR-20a-5p, miR-
1305, miR-1243, miR-362-3p, miR-488-3p,
miR-1301-3p, miR-361-5p, miR-130a-3p,
miR-1302, miR-301a-3p, miR-374a-5p,
miR-130b-3p, miR-410-3p, miR-217, miR-
302a-5p, and miR-302a-3p

miR-27a-3p, miR-20a-3p, miR-20a-5p, miR-
1270, miR-488-3p, miR-875-5p, miR-1301-
3p, miR-324-3p, miR-1264, miR-577, miR-
130b-5p, let-7g-3p, and miR-302a-3p

miR-27a-3p, miR-20a-3p, miR-20a-5p, miR-
1305, miR-488-3p, miR-374a-5p, let-7d-5p,
miR-577, miR-664a-3p, miR-410-3p, let-7g-
5p, let-7g-3p, miR-217, and miR-302a-5p

BIS(L, H), COL(L, H), DOX(H), PTX(L, H), and
ROT(L)

BIS(L, H), COL(L, H), DOX(H), PTX(L, H), and

ROT(H)

BIS(L), COL(L, H), DOX(H), PTX(L, H), and
ROT(L)

Abbreviations: H, high dose; L, low dose.

#Chemicals with significant changes in 1 or more miRNAs involved.
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that these 2 upregulated miRNAs may be involved in neurotoxic
processes through the TGF-f pathway (Figure 6C).

For these 5 most notable miRNAs (miR-20a, miR-30b, miR-
30d, miR-1305, and miR-1243), we compared the chemical-
induced changes in their miRNA expression to the changes in
cell viability and morphology endpoints, in order to assess how
well the miRNA expression reflected the apical observations
(Figure 7). The percentage changes in the expression of the 5
miRNAs generally followed similar trends as the percentage
changes in apical endpoints, particularly the morphological
changes in neurites (decreases in neurite count and/or neurite
length). For the most part, chemicals that induced more notable
changes in the neurite count or neurite length also caused more
extensive changes in the miRNA expression. Overall, these
results suggest that alterations in levels of the 5 notable
miRNAs were reflective of morphological abnormalities in
hiPSC-derived neurons, which further supports the role of these
miRNAs as potential biomarkers for neurodegeneration.

Molecular Network of TGF- B Signaling in Relation to 5 Key miRNAs
Using the pathway enrichment results from Clarivate Pathway
Maps, we constructed a network model to display the relation-
ships between TGF-B signaling, the 5 most notable miRNAs
(miR-20a, miR-30b, miR-30d, miR-1305, and miR-1243), and the
neurological pathways (Figure 8). Numerous molecules within
the TGF-pB network were shown to be targeted by at least one of
the 5 miRNAs. Two molecules that were targeted by the highest
number of miRNAs were TGF-p receptor type II and the apopto-
sis regulator BCL-2, suggesting these 2 targets are highly correl-
ative to neurodegenerative processes. Additionally, many of the
genes in the network were involved in neurological or neuro-
toxic processes (within either Clarivate MetaCore Toxic
Pathologies Ontology or the GO) or identified as biomarkers for
neurodegenerative conditions (within CDDI Database; Figure 8
and Supplementary Table 6). These results further affirm the
role of the TGF-B pathway as the underlying mechanisms of
neurotoxicity upon chemical exposure.

DISCUSSION

Pharmaceuticals, drugs of abuse, industrial chemicals, and en-
vironmental toxicants have all been associated with direct or
indirect detrimental damage to nervous tissue. Early detection
and diagnosis of chemical-induced neurodegenerative adverse
events are therefore critical for human safety. To date, there are
no validated predictive biomarkers for drug-induced neurode-
generation in patients. This is partially due to limited translat-
ability of animal models used for safety biomarker discovery to
humans (DeFelipe et al,, 2002; Roberts et al., 2015). Here, we
assessed neurotoxic chemicals of different modes of toxicities
in hiPSC-derived neurons to identify secreted miRNA bio-
markers that correlated with chemical-induced neurodegenera-
tion. We demonstrated (1) dose-dependent changes in cell
viability and morphology endpoints in hiPSC-derived neurons
following neurotoxicant exposure, and a strong correlation
across these apical endpoints; (2) the combination of these api-
cal endpoints could sensitively delineate the stages of neuro-
toxic insult and select appropriate concentrations for miRNA
screening; (3) 39 miRNAs, identified by stringent criteria for sig-
nificance, were modulated by > 1 chemical treatment; (4) 5 se-
creted miRNAs (miR-20a, -30b, -30d, -1243, and -1305) were
notable based on their relationship to key neurological mRNA
targets and pathways, and their correlation to morphological
changes induced by multiple neurotoxicants (n>2); and (5) TGF-
B signaling was a common pathway highlighted across our en-
richment analyses, which suggests a relationship of TGF-f sig-
naling to neurological dysfunction.

Neurotoxicants of different chemical classes and mecha-
nisms of action were selected to elucidate secreted miRNA bio-
markers and signaling pathways commonly reflective of
neurodegeneration (chemical mechanisms and neurological
associations highlighted in Supplementary Table 4). As
expected from the chemicals’ diverse mechanisms of action,
each chemical modulated different numbers and sets of the 39
miRNAs, but there were also miRNAs commonly identified
across multiple chemicals (Figure 3). Interestingly, many of the
miRNAs did not display dose-dependent changes, but rather,
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@@ Observed downregulation

) Predicted upregulation

—— Direct targeting —— Indirect regulation

Figure 5. Enriched messenger RNA (mRNA) targets of 13 microRNAs (miRNAs) related to neurological diseases or neurotoxicity. Ingenuity pathway analysis microRNA
Target Filter Analysis identified 38 mRNA targets (orange circles) with known association to neurological dysfunctions or pathways associated with neurotoxicity.
These mRNA targets were associated with 13 downregulated miRNAs (blue hexagons), which directly target those mRNAs (solid lines) or indirectly regulate the mRNA

expression (dashed lines).

low and high concentrations of each chemical tended to show
distinct patterns of miRNA regulation, alluding to a shift in the
pattern of miRNA regulation at progressive stages of neurode-
generation. In some cases, low and high concentrations altered
the same miRNA in the opposite direction. Similar observations
were made in a study with human neuroblastoma cells, which
showed that different sets of genes and pathways were modu-
lated by noncytotoxic versus cytotoxic concentrations of man-
ganese (Fernandes et al., 2019). Likewise, our data suggest that
low concentrations of the neurotoxicants studied may affect
miRNAs which regulate genes and pathways specific to neurite
morphology or outgrowth, whereas the high concentrations
may trigger modulations in miRNAs secondary to overt
cytotoxicity.

The combination of the IPA analyses and the literature re-
view of neurological associations for the panel of significant
miRNAs, enabled us to identify 5 most notable miRNAs as po-
tential biomarkers for chemical-induced neurodegeneration: 3
downregulated miRNAs (miR-20a, miR-30b, and miR-30d) and 2
upregulated miRNAs (miR-1305 and miR-1243). The degree of
changes in these 5 miRNAs correlated well to the extent of mor-
phological decline in the hiPSC-derived neurons following
chemical exposure, which suggests that these miRNAs can
serve as indirect measures for assessing the extent of chemical-
induced neurotoxicity. Additionally, for all 5 of these miRNAs at
least 1 chemical modulated the same miRNA at both low and
high concentrations, suggesting these miRNAs are relevant in-
dependent of stage of neurodegeneration.

The 3 downregulated miRNAs, miR-20a, -30b, and -30d, have
extensive associations to neurological diseases. These miRNAs
have been shown to be modulated in blood samples of patients
across different types of neurodegenerative diseases (Brennan
et al., 2019; Cheng et al., 2015; Cox et al.,, 2010; Diez-Planelles
et al., 2016; Dong et al., 2021; Jiang et al., 2018; Kume et al., 2018; Li

et al., 2020a; Liguori et al., 2018; Maffioletti et al., 2016; Perkins
et al., 2007). In our study, these miRNAs were secreted into the
media following neuronal dysregulation by at least 2 chemicals.
We specifically focused on secreted biomarkers in vitro, since
secreted factors would be most likely to translate to detection of
miRNAs in fluids (serum, CSF, and urine) of animals or humans.
Additionally, these miRNAs were previously shown to be al-
tered in a variety of nonclinical systems, such as human neuro-
blastoma and neural progenitor cells, and nonclinical species
including mice and rats under neurotoxic conditions (Aranha
et al., 2010; Beveridge et al., 2009; Feng et al., 2020; Jeyaseelan
et al., 2008; Jian et al., 2019; Jin et al., 2021; Liu et al., 2015; Shen
et al., 2020; Song et al., 2019; Wang and Jia, 2021; Wang et al.,
2016, 2020; Wei et al., 2015; Yang et al., 2021; Zhang et al., 2014;
Zhao et al., 2017, 2021; Zhong et al., 2020). This suggests a strong
translation of effect across species and increases our confidence
that these notable miRNAs may be predictive biomarkers of
chemical-induced neurodegeneration in nonclinical safety
studies and in humans.

Two upregulated miRNAs, miR-1305, and -1243, have been
less extensively investigated, with no prior evidence elucidating
their roles in neurological processes or dysfunctions, but the ex-
pression of these miRNAs have been confirmed in human brain
(Hiramoto et al., 2017; Ludwig et al., 2016; Qian et al., 2021; Su
et al., 2020; Zhang et al., 2017). These miRNAs were of particular
interest, because they were highly upregulated across multiple
chemicals, and shown to target mRNA molecules related to
TGF-B signaling (TGF-p2, SMAD2, or SMADA4).

In addition to the 5 miRNA biomarker candidates that were
deemed notable based on our analyses, other miRNAs may also
warrant further investigation, given that more miRNAs might
have been identified as notable with a broadener set of chemi-
cals. Therefore, we expanded our literature review within the 39
significant miRNAs to include miRNAs that were modulated by
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Figure 6. Neurodegenerative pathways associated with notable down- and upregulated microRNAs (miRNAs). miRNA-messenger RNA (mRNA) associations and related
pathways were derived from ingenuity pathway analysis and/or literature review for the 3 notable downregulated miRNAs (A, B) and the 2 notable upregulated
miRNAs (C). mRNA pathways depicted here have a correlation to pathways involved in neuronal dysregulations and chemical-induced neurotoxicity.

more than 1 chemical, detailed in Supplementary Table 7.
Additionally, miR-9 and let-7, which were among the 13
miRNAs highlighted by the IPA analysis, may also warrant fur-
ther investigation. miR-9, which was significantly downregu-
lated upon exposure to COL in our study, is highly expressed in
both developing and adult brains and was shown to play key
roles in neurogenesis and neuronal differentiation
(Radhakrishnan and Alwin Prem Anand, 2016). Also, miR-9 was
identified as a potential biomarker for neurotoxicity in recent
studies by Imam et al. (2018) and Das Gupta et al. (2021). The lev-
els of miR-9a-3p and miR-9a-5p were shown to be significantly
elevated in CSF of rats exposed to the neurotoxicant trimethyl-
tin (Imam et al.,, 2018). In a separate study, miR-9 expression
was significantly elevated in plasma of both traumatic brain in-
jury patients and rodent models, correlating with the disease
severity (Das Gupta et al., 2021). Both studies support the role of

miR-9 as a predictor of neuronal injury. Similarly, let-7 family
was identified as a key salivary biomarker that could signify
traumatic brain injury in male athletes (Di Pietro et al., 2021). In
our study, 2 of let-7 family members, let-7d and let-7g, were sig-
nificantly dysregulated by exposure to COL and DOX. The circu-
lating levels of these 2 miRNAs were also shown to be
significantly altered in patients with AD, ALS, or attention-
deficit/hyperactivity disorder, suggesting their roles as signa-
tures of various types of neurological conditions (Aharon et al.,
2020; Liguori et al., 2018; Wu et al., 2015).

The collective enrichment analyses identified multiple path-
ways of interest that are regulated by our key miRNAs and may
drive chemical-induced neurodegeneration (Figure 4). Of those
pathways, TGF- signaling had the strongest association to neu-
rodegenerative processes (Figure 8). TGF-pB signaling regulates
multiple cellular processes, including cell growth, apoptosis,


https://academic.oup.com/ptep/article-lookup/doi/10.1093/ptep/pty096#supplementary-data
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Figure 7. Association between changes in microRNA (miRNA) expression and apical endpoints for notable miRNAs. The changes in the 3 apical endpoints (adenosine
triphosphate, neurite count, and neurite length) were compared with the changes in the 5 notable miRNAs (3 downregulated [A-C] and 2 upregulated miRNAs [D, E]).
The values overlayed in the heatmaps correspond to percent changes in each of the apical endpoints and miRNAs after treatment with chemicals. Abbreviated chemi-

cal names are followed by concentrations (uM).

differentiation, morphogenesis, and tissue homeostasis
(Dennler et al., 2002; Massague, 2012). Importantly, TGF-f canon-
ical (SMAD-dependent) and noncanonical signaling pathways
were shown to be involved in distinct neural or neurodevelop-
mental processes, such as neurogenesis, neuronal proliferation,
differentiation, survival, and microglial activation (Massague,
2012). A loss of TGF-p1 resulted in a widespread degeneration of
neurons and microgliosis in neonatal mice (Brionne et al., 2003).

Additionally, in vitro, in vivo, and clinical data have demon-
strated critical roles for TGF-p signaling in various neurological
injuries or disorders, including chemical-induced hippocampal
injury, traumatic brain injury, Parkinson’s, AD, and ALS
(Bruccoleri et al., 1998; Buss et al., 2008; Munoz et al., 2020; Seth
et al., 2017). For example, inhibiting TGF-p signaling prevented a
pesticide carbofuran-mediated neurotoxicity in both rat hippo-
campal neural stem cell cultures and rat hippocampal tissues
(Seth et al., 2017). Also, the imbalance of TGF-f signaling was
suggested as a key factor in the etiology and progression of ALS
(Galbiati et al., 2020; Peters et al., 2017). Altered serum levels of
TGF-p1l and proinflammatory cytokines were noted in ALS
patients (Peters et al., 2017). The reduction in TGF-p signaling at
an early stage of ALS is thought to block the neuroprotective
effects of TGF-B, whereas at later stages of the disease, the over-

activation of the TGF-p signaling promotes microglial activation
and hence proinflammatory responses which cause further
neurotoxicity (Galbiati et al., 2020). Altogether, TGF-p signaling
has a wide spectrum of roles in regulating the homeostasis of
the nervous system (Hiew et al., 2021).

Since an integral aspect of our analysis was to compare
miRNA results across studies with diverse test systems, it’s im-
portant to highlight the complexities of comparing miRNA find-
ings across studies with different patient disease backgrounds
or differences between in vivo and in vitro disease models. The
type of test system (human, in vivo, or in vitro), species, sex, ge-
netic background, chemical exposure, disease conditions, and
biological matrices could all contribute to diversity in miRNA
responses when comparing across studies (Corrales et al., 2021,
Harrill et al., 2016; Razak et al., 2013; Wang et al., 2009). We be-
lieve that an integrative approach, utilizing both chemically in-
duced and disease model miRNA data is necessary to identify
relevant miRNA biomarkers that will be useful for predictive
safety in patients. Additionally, it is important to acknowledge
the limitation of using a monoculture of hiPSC-derived neuronal
cells, which is lacking the interplay between neurons, glial, and
other cells that are important in promoting neuronal cell health
and function and in regulating miRNA signaling. Yet, using a
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relatively pure population of neurons to evaluate chemical-
induced toxicity may have less inherent variability than animal
models or patients, as tissues other than the nervous system
may be impacted and consequently affect the regulation of se-
creted miRNAs.

In summary, we have identified a novel panel of 39 secreted
miRNA biomarkers for detecting neurotoxic insults in hiPSC-
neurons. These miRNAs, along with their highly correlated tar-
gets and signaling pathways, may be important tools in develop-
ing our understanding of chemical-induced neurodegeneration
and reducing neurotoxicity-induced drug attrition. Future stud-
ies will be necessary to assess the in vitro to in vivo translation of
our miRNA biomarker candidates, which will provide insights
into the utility of our miRNAs as fluidic biomarkers to detect
neurotoxicity of drug candidates in nonclinical safety studies.

SUPPLEMENTARY DATA

Supplementary data are available at Toxicological Sciences
online.
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