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Abstract
In 2013 Zhou et al. concluded that Salmonella enterica serovar Agona represents a geneti-

cally monomorphic lineage of recent ancestry, whose most recent common ancestor

existed in 1932, or earlier. The Abstract stated ‘Agona consists of three lineages with mini-

mal mutational diversity: only 846 single nucleotide polymorphisms (SNPs) have accumu-

lated in the non-repetitive, core genome since Agona evolved in 1932 and subsequently

underwent a major population expansion in the 1960s.’ These conclusions have now been

criticized by Pettengill, who claims that the evolutionary models used to date Agona may

not have been appropriate, the dating estimates were inaccurate, and the age of emergence

of Agona should have been qualified by an upper limit reflecting the date of its divergence

from an outgroup, serovar Soerenga. We dispute these claims. Firstly, Pettengill’s analysis

of Agona is not justifiable on technical grounds. Secondly, an upper limit for divergence

from an outgroup would only be meaningful if the outgroup were closely related to Agona,

but close relatives of Agona are yet to be identified. Thirdly, it is not possible to reliably date

the time of divergence between Agona and Soerenga. We conclude that Pettengill’s criti-

cism is comparable to a tempest in a teapot.

Introduction

1. Population structure of Salmonella enterica subspecies enterica
according to MultiLocus Sequence Typing (MLST)
Subspecies enterica is commonly isolated from the aqueous environment, but it also causes gas-
troenteritis and invasive disease in various mammals [1–3]. Medical microbiologists have tra-
ditionally assigned serovar designations based on serological reactivity (e.g. Typhi, Paratyphi
A, Typhimurium, Enteritidis, Agona, Soerenga) to distinctive groups of these Gram-negative
bacteria. More recently, serotyping has been replaced by sequencing seven fragments of
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housekeeping genes (MLST) [4]. Population genetic analyses of MLST data from 6,309 isolates
in 616 serovars of S. enterica subsp. enterica identified 150 discrete, monophyletic and geneti-
cally monomorphic clades of sequence types (STs), referred to as eBurst Groups (eBGs) [4]
(Fig 1). Some serovars correspond to a single eBG, whereas others do not, and instead reflect
phenotypic convergence of unrelated eBGs which express the same serological properties due
to their exchange of genes by homologous recombination. In addition, recombination and
mutation have resulted in the existence of multiple serovars within some eBGs, such as eBG4
which includes members of serovars Enteritidis, Gallinarum and Pullorum [4]. However, in
general, most isolates within an eBG or an individual ST belong to the same or closely related
serovars, which explains why serological typing often corresponds to discrete genetic
populations.

The genetic relationships between eBGs have not yet been definitively elucidated. Most
eBGs have no close relatives according to MLST [4]. Exceptionally, several eBGs show close
genetic relationships to others e.g. eBG6 (serovar Choleraesuis) and eBG20 (Paratyphi C). Fur-
thermore, a broad subset of eBGs that are preferentially isolated from the environment or from
reptiles form a network that is linked by frequent homologous recombination [5]. This subset
was originally designated as clade B [6] but is now referred to as lineage 3 [4,5].

2. Genomic studies
MLST has limited resolution because of the small fraction of the genome that is captured when
sequencing only 7 gene fragments. However, many of the insights revealed by MLST (Fig 1)
have now been substantiated by genomic analyses, which have also provided greater details.
Extensive genomic analyses have shown that eBG13 (Typhi) [7], eBG11 (Paratyphi A) [8] and
eBG54 (Agona) [9] each corresponds to a distinct, genetically monomorphic clade, as does
eBG4 (Enteritidis, Gallinarum, Pullorum) [10]. These conclusions are based on genealogies
reconstructed from single nucleotide polymorphisms (SNPs) that mark intra-clade vertical
descent, after excluding other, clustered SNPs that were acquired by homologous recombina-
tion from unrelated S. enterica, or are associated with repetitive DNA. For example, in the
genealogical tree of eBG54 (Agona) recent recombination with unrelated S. enterica has
imported 42 regions (360 kb) containing 3,164 clustered SNPs at 5/143 nodes versus only 846
non-homoplastic, mutational SNPs in the rest of the 4.2 MB core genome [9]. In this case,
recombination from external sources resulted in greater genomic divergence, but recombina-
tion can also have a convergent effect. For example, homologous recombination between the
ancestors of eBG13 (Typhi) and eBG11 (Paratyphi A) resulted in an average nucleotide diver-
gence of 0.2% over one quarter of their genomes in contrast with an average divergence of 1.2%
over the remaining three quarters [8,11]. Thus, recombination events can falsify genealogies if
they are not accounted for in phylogenetic reconstructions.

Other insights fromMLST are also confirmed by sequence analyses of large numbers of
gene fragments [5,12] as well as of SNPs from whole genomes [13,14], such as a close relation-
ship between Choleraesuis and Paratyphi C, or between Enteritidis, Gallinarum and Pullorum.
The existence of the ancient lineage 3 is also confirmed, manifesting as a distinct branch in
phylogenetic trees and a distinct population in population genetic analyses, possibly due to
homogenization by frequent homologous recombination. However, these four studies differ
dramatically in their conclusions about deep branch structures other than lineage 3, and in the
serovars that are assigned to those deeper lineages. These discrepancies may reflect the fact that
only few isolates and serovars were included in each study; none cover more than a small frac-
tion of the geographical, temporal and serovar diversity that is provided by the MLST data.
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Furthermore, the individual studies are difficult to compare because except for Didelot et al.
[5], they only provide serovar designations, which correlate only imperfectly with eBGs or STs.

3. Problems with the choice of serovar Soerenga as a suitable outgroup
Pettengill [15] refers to the distances and topologies calculated by one of these analyses, that of
Timme et al. [14], which encompassed 156 isolates from 78 of the 2,500 serovars in S. enterica.
The phylogeny reconstructed by Timme et al. shows three Agona isolates clustered tightly
together, which belong to MLST STs 13 and 1215 within eBG54 according to our reanalysis of
the raw data, and confirm an association of Agona with eBG54. Timme et al. concluded that
serovar Agona was polyphyletic because their tree also included one additional Agona isolate
(strain 632182–2), which was distantly related to the other three. Our reanalysis of that genome

Fig 1. Minimal spanning tree of 150 eBGs and 1,368 STs within 6,309 isolates of S. enterica subspecies enterica. Each circle is one ST, whose radius
is proportional to the number of entries of that ST at the S. entericaMLST website (http://mlst.warwick.ac.uk/, May, 2015), and presented as a pie-chart
colored according to source of isolates, or white for isolates from other sources or with missing data. STs that differ by 1/7 MLST loci are connected by a thick
line and STs that differ by 2/7 are connected by a thin line. eBGs (groups of STs linked by thick lines) are emphasized by gray shading outside the circles.
eBGs and STs referred to explicitly in the Introduction are designated by arrows plus information about their eBG/ST designation and serovar. Lineage 3 is
the set of STs and eBGs radiating towards 08:00.

doi:10.1371/journal.pone.0134435.g001
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indicates that this exceptional isolate it is a member of ST413 within eBG62, which otherwise
contains 26 strains of serovar Mbandaka according to the MLST database (http://mlst.warwick.
ac.uk). Agona is normally monophasic, and does not express the fljB phase 2 flagellar antigen.
However, the genome of strain 632182–2 possesses an intact fljB gene, suggesting that it is
diphasic. (The sole diphasic Agona that was previously tested by MLST was also not in eBG54.)
Thus, this example provides additional support for using MLST-based eBG assignments to
interpret genomic sequences of S. enterica.

Another feature of the Timme et al. [14] phylogeny referred to by Pettengill [15] was that
the nearest neighbor of the eBG54 Agona cluster was a strain of the extremely rare serovar
Soerenga. The MLST database only includes two Soerenga strains, one of which is in MLST
ST1659 (Fig 1) as is the isolate of Timme et al. ST1659 shares 0/7 alleles with any of the STs in
eBG54, strongly indicating that they are not closely related. According to the phylogeny of
Timme et al. (http://treebase.org/treebase-web/search/study/summary.html?id=14912), the
split between eBG54 and Soerenga is an ancient event, which occurred at 62% of the TMRCA
of all S. enterica subspecies enterica. However, we are concerned that the apparent clustering of
Agona and Soerenga is an artefact because the tree topology and branch lengths are inaccurate
near the root of subspecies enterica (Technical Appendix 2). Timme et al. calculated SNPs
identified by the 95% 25 kmer approach of kSNP2, which identifies SNPs whose flanking 12 bp
segments are identical in at least 95% of the genomes. These calculations do not account for
recombination, and kSNP2 yields inaccurate topologies for bacteria of the frequent recombina-
tion and high genetic diversity of subspecies enterica [16]. We are also skeptical about the accu-
racy of branch lengths calculated by Timme et al. because they did not implement measures to
remove clustered SNPs or homoplasies in repetitive or recombinant regions. The only filtering
that was applied was to use the kmer approach, which removes highly divergent regions but
does not address all clustered SNPs or homoplasies. Note that the number of unique (kmer)
SNPs on any of the branches indicated by Timme et al. [14] is only a very low fraction of all
SNPs, indicating that the vast majority of SNPs in the phylogeny are homoplastic, and the
branch lengths are probably highly inaccurate. For example, the branch length (0.04) from the
root of subspecies enterica to the split between eBG54 and Soerenga should include thousands
of mutations (� 0.04 � 119,750), but those branches are annotated with only 29 unique SNPs.
These combined issues raise questions about both the branching order and the branch lengths
in the tree of Timme et al. Even if taken at face value, this tree does not show a close relation-
ship between ST1659 (Soerenga) and eBG54 (Agona).

Critique of Data and Analyses Presented in Pettengill [15]

1. Underpowered and flawed analysis of data
Pettengill writes. ‘For simplicity, I ran BEAST analyses including only four samples

(Table 1) from the original publication of Zhou et al. . . ., which were arbitrarily chosen to cap-
ture the evolutionary breadth contained in that study. I also ran BEAST including the closest
known serovar to Agona, S. Soerenga, which was identified based on a large phylogeny includ-
ing 76 S. enterica ssp. enterica serovars . . . Given that the SNP matrix within Zhou et al. . . .
was not available, I downloaded the assemblies and performed a whole genome sequence align-
ment using Mugsy v.1.2.3 with default settings. . . The program ClonalFrameML v1.25 . . . was
then used to detect recombination, which can bias estimates of TMRCA and other evolutionary
dates.’

There are multiple inaccuracies and problems with these statements. Firstly, the use of only
four samples underestimates the fluctuations of population size and mutation rate within
Agona, and results in dramatic problems with dating estimates (Fig 2, Technical Appendix 3).
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Four samples are also too few for accurate detection of recombination with ClonalFrameML.
Secondly, filtering was not performed for repetitive or mobile DNA, both of which can lead to
incorrect SNP calls due to nonspecific alignments with paralogous genes. The SNPs called with
this approach were much less appropriate for dating than those used by Zhou et al. (Fig 2,
Technical Appendix 3). What is equally disturbing is that the original SNP calls of Zhou et al.
were never examined, although those SNP calls reflected state of the art detection of non-
homoplastic mutations from 73 genomes after filtering of recombinant, repetitive and mobile
DNA. Pettengill notes that the SNP matrix was not available, and we have now uploaded the
SNP matrix for the convenience of other users (http://figshare.com/articles/SNP_matrix_for_
73_Agona_genomes/1434661). However, the mutational SNPs were already listed in Supple-
mentary Dataset 4 by node position in the tree in Fig 4 of Zhou et al., which is more informa-
tive than a simple SNP matrix. It would have been readily possible to recover the tree from Fig
4 using TreeSnatcherPlus [17] and then generate a SNP matrix by applying each mutation in
Supplementary Dataset 4 to all genomes descended from the corresponding branch. Alterna-
tively, the SNP matrix could have been obtained from the authors by sending an email. Instead,
Pettengill chose to perform an underpowered, flawed de novo analysis of only four genomes.

2. Inappropriate claims for age estimations
He also writes. ‘I analyzed the four Agona samples contained in Zhou et al. . . . under the

best fitting model described in the paper (e.g., uncorrelated lognormal clock rate and Gaussian
Markov random fields (GMRF) tree model that allows for historical fluctuations in population
size). Under this analysis, the age of the most basal node of the Agona isolates sampled was
1927 or 88 ybp (years before present) (CI95% 57–512 ybp) (Fig 2A), which is quite similar on
an evolutionary scale to the year 1932 that was observed in Zhou et al.. . .However, the mean
estimate of the actual TMRCA (treeModel.rootHeight from the BEAST output) was nearly
three times as old (313 ybp; 95%CI: 57–295 ybp) and illustrates the difference that exists
between an estimate of the age of the most basal node in a phylogeny and an estimate of the
time at which alleles segregating in the dataset coalesce back to a single common ancestor (i.e.,

Table 1. Age estimates and Bayes Factors from BEAST analyses of 864 non-repetitive, non-recombinant, non-homoplastic core SNPs from 73
eBG54 (Agona) genomes.

Clock: Relaxed Clock Strict Clock

Model: GMRF Constant Population Size Constant Population Size

Mean MRCA 95% Confidence Interval Mean MRCA 95% Confidence Interval Mean MRCA 95% Confidence Interval

2013:

HME -5860227 -5860225 -5860298

Basal node 1932 1918–1945 1799 1618–1928 1839 1765–1894

rootHeight 1932 1917–1944 1800 1620–1927 1838 1764–1893

2015:

HME -5860231 -5860229 -5860300

Path sampling -5860609 -5860636 -5860702

Stepping-stone -5860599 -5860606 -5860665

Basal node 1931 1915–1944 1803 1635–1919 1839 1767–1894

rootHeight 1931 1916–1944 1805 1636–1920 1839 1767–1894

Note: Highest Bayes factors are indicated by bold, italic fonts. Path sampling and Stepping-stone analyses were performed along a series of 100 steps

along the path, with a chain of 1M samples per step.

doi:10.1371/journal.pone.0134435.t001
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Fig 2. Comparisons of treeModel.rootHeight estimates by BEAST with different SNP calls and different numbers of genomes. A. Distribution of
numbers of estimates of rootHeight as a percentage of all estimates in BEAST analyses according to the best model in Table 1. The numbers were from
samples taken every 1000 steps over a total of 200 million steps (4 genomes) or 50 million steps (73 genomes), after excluding the first 10 million steps as
burn-in. Mean values of rootHeight are indicated next to arrows. Inset, different scale for values of rootHeight over 500 years. B. Representation of the
individual rootHeight values for each sample over the last 40 million steps. Pettengill, 4 genomes: uses the SNP calls calculated by Pettingill [15]; Zhou, 4
genomes: uses the SNP calls for the same four genomes extracted from the core genomes in Zhou et al., [9]; Zhou 73 genomes, uses the core genome
SNPs from all 73 genomes in [9].

doi:10.1371/journal.pone.0134435.g002
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the TMRCA). Had Zhou et al. . . . correctly identified the TMRCA their incorrect estimate of
the date of emergence of Agona would have likely been hundreds of years older than what they
reported, which was based on the age of the most basal node.’

The most striking problem with these statements is that treeModel.rootHeight was nearly
three times as old as the age of the basal node. According to our experience, rootHeight and
age of the basal node are normally nearly identical when the Bayesian runs have converged. A
personal communication from O. Pybus, one of the lead authors of the BEAST software, indi-
cates that they are identical by definition. To demonstrate this, we reproduce the dating esti-
mates according to both rootHeight and basal node that were measured by Zhou et al. [9]
(Table 1). At that time, the primary tool for calculating Bayes Factors to compare the likelihood
of the three models was HME (harmonic mean estimator) which yielded very minor differ-
ences between the relaxed clock models invoking variable (GMRF) and constant population
sizes, both of which were much preferred over a strict clock model. We chose the GMRF model
for discussion in the publication because we anticipated that major increases in population size
would have resulted from the geographic expansions in the 1960’s of Agona from South Amer-
ica to the rest of the world. Since 2013, newer methods based on Path sampling and Stepping-
stone sampling models have been implemented that are more reliable than HME [18]. We
have therefore recalculated the BEAST analyses and applied these criteria to identify the best
model. Both Path Sampling and Stepping-stone sampling (Table 1) indicated that the model
favored by Zhou et al., a relaxed clock with GMRF, is much preferred to one with a constant
population size, and both relaxed clock models are much preferred to a strict clock.

The data in Table 1 also show that the estimates of age and their 95% confidence limits were
almost identical between the basal node and treeModel.rootHeight for all models and all com-
parisons, negating his claim that we used the wrong BEAST parameters to estimate age as well
as his claim that the TMRCA predates the basal node. Furthermore, Pettengill’s discrepancy of
threefold is a convincing indicator of problems with his analyses, which we confirmed by inde-
pendent BEAST analyses of the SNPs he chose versus those identified by Zhou et al. (Fig 2,
Technical Appendix 3). The results in Fig 2 also show that all his date estimates are uncertain.

3. Age of eBG54 (Agona)
Pettengill also criticizes the conclusion in the Abstract by Zhou et al. that ‘only 846 single nucleotide
polymorphisms (SNPs) have accumulated in the non-repetitive, core genome since Agona evolved
in 1932.’ In the text, Zhou et al. also wrote ‘Amore sophisticated Bayesian analysis (BEAST) indi-
cated that the MRCA evolved in or before 1932 (CI95%: 1918–1945) (Table S4, Fig 4A).’, ‘An alter-
native relaxed clock model with constant population size yielded a slightly better fit (higher Bayes
factor) than the GMRFmodel, and a date for theMRCA of 1799 (CI95%: 1618–1928) (Table S4).’,
and ‘These calculations indicate that Agona is a recently evolved pathogen, which likely arose about
80 years ago. Consistent with this interpretation, Agona was first identified in 1952.‘

In retrospect, it would probably have been better had the Abstract contained the words ‘in
or before 1932’, but the text is quite clear about the broad range of confidence intervals for the
age of MRCA. The text also clearly implies that the MRCA is simply the coalescent of current
diversity, whose genetic composition may not have differed greatly from an ancestor which
existed earlier, but did not leave descendants that have survived to current times of sampling,
or whose descendants were not included in the sample.

4. Problems with calculating divergence time
Pettengill also demands that the age of divergence of eBG54 from the nearest outgroup should
have been calculated in order to estimate the date of emergence of eBG54, and he attempts to
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estimate an upper bound on the date of emergence by calculating the divergence time from
ST1659 (Soerenga). We dispute that using an arbitrary, only distantly related outgroup results
in a more accurate estimation of emergence time than is encompassed by the confidence limits
of the TMRCA for eBG54, or for most of the other eBGs that are currently known in subspecies
enterica. Firstly, our arguments in the Introduction show that close relatives to eBG54 have not
yet been identified, so all estimates of divergence time are vast overestimates. Secondly, it
remains to be demonstrated that divergence times near the root of the enterica tree can be
accurately estimated with current data and methodologies. In particular, we are very skeptical
about the abilities of any modern algorithms, including ClonalFrameML, to accurately identify
mutational changes near the root rather than recombinational changes, which are not necessar-
ily acquired according to the same clock rates. Thirdly, it is not advisable to extrapolate muta-
tion rates over a timeframe of many millennia that were calculated from a sample taken during
70 years, because short term clock rates tend to be faster than long term clock rates [19,20].
Genomic sequences of ancient DNA from subspecies enterica that existed millennia ago would
be needed to calibrate such estimates. Finally, we feel that no analysis of four eBG54 genomes
plus one ST1659 genome could provide accurate estimates of the MRCA of the ingroup as well
as the divergence time between both lineages, and that any attempt to do so should have taken
account of the different approaches needed for intra-clade coalescents versus inter-species
divergences [21,22].

Conclusions
We reject the critique by Pettengill as being unfounded and/or not capable of being currently
implemented. We also continue to claim that eBG54 derives from a common ancestor which
existed in or before 1932.

Technical Appendix

1. Inappropriate simulations
Pettengill [15] performs simulations of the coalescent process for a sample of ten individuals
from one population and one individual from a second population (outgroup). One set of sim-
ulations was performed assuming a deep divergence time, in which case the sequences from
the first population coalesced much more recently with each other than with the outgroup. A
second set of simulations was also performed assuming a much more recent divergence time,
in which case intra-population and inter-population coalescent times overlapped. These obser-
vations are explained as reflecting the time needed for complete lineage sorting, and used to
justify the concept that including an outgroup is necessary to reliably calculate divergence
times within a population of interest. Although correct from a theoretical population genetic
perspective, these analyses and conclusions are inappropriate for dating Agona.

Pettengill used the program ms in its default mode, which performs simulations assuming a
constant population size, and used an island model (parameter–I) of complete spatial separa-
tion between the two populations. Instead, most recent estimates of the ages of bacterial patho-
gens have needed to invoke dramatic changes in population size [8,23,24]. In addition, many
genetically monomorphic bacterial populations, such as serovar Agona, are both clonal and
undergo epidemic spread. These populations can undergo very dramatic, repeated bottlenecks,
which reduce the effective population size to only a single cell [25], and frequently result in
death of lineages, aspects that are not adequately accounted for by classical population genetic
algorithms [23,26], including the simulations performed by Pettengill.
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2. Estimation of the accuracy of the topology of Timme et al. [14]
According to Hall [16], topologies based on kSNP2 become inaccurate when recombination
rates and genetic diversity are high. Didelot et al. [5] calculated that the average frequency of
recombination events per nucleotide substitution (ρ/θ) in subspecies enterica ratio was 0.37
(CI95% 0.33–0.41). In order to estimate genetic diversity within the dataset of Timme et al., we
aligned all 156 genomes from that analysis against a reference genome (Choleraesuis str.
SC-B67). For consistency with the kSNP analysis, we did not filter repetitive regions or mobile
elements. A total of 561,132 SNPs were identified in 3,897,271 bps that are present in at least
95% of genomes, which equals a genetic diversity of 14.4%. According to the simulation by
Hall, the topology of>50% of the branches inferred by kSNP2 is expected to be inaccurate for
these values of diversity and recombination rate. We would anticipate that the tips of the tree,
which have the strongest signals are least likely to be inaccurate whereas branches near the root
are most likely to be wrong.

3. Accuracy of rootHeight versus SNP calling and numbers of genomes
It seemed intuitive to us that calling SNPs without excluding repetitive and/or homoplastic
DNA would cause problems with genealogies and dating. It also seemed intuitive that the anal-
ysis of only four genomes would be less accurate than an analysis of 73. Finally, we did not
expect ClonalFrameML to be as accurate in identifying recombinant segments with only four
genomes as it would be with 73. However, we were unable to identify a citation which strongly
supported these intuitions. We have therefore reanalyzed the SNPs from four genomes from
Pettengill [15] who had attempted to remove recombinant regions with ClonalFrame ML but
did not exclude repetitive/homoplastic SNPs. These SNPs were subjected to BEAST analyses
using the relaxed clock GMRF model, which has the highest Bayes factors in Table 1 (Fig 2),
with similar results between two independent runs,. We also performed two runs on the same
four genomes, but using the SNPs in the core genome according to Zhou et al., in which recom-
binant/homoplastic segments had been removed after comparisons of all 73 genomes, and
which also excluded repetitive DNA. The results showed that treeMode.rootHeight is
extremely heterogeneous with the SNPs called by Pettengill, and forms a bimodal distribution
(Fig 2). SNPs called by Zhou et al. yielded a tighter, monomodal distribution of rootHeight.
However, in both datasets, the distributions of rootHeight are highly asymmetrical, with a very
dramatic tail extending up to ~1 million years. This long tail also resulted in estimated mean
rootHeights of>200 years, which is much greater than the single peak found with the Zhou
et al. data or the two peaks found for Pettengill’s SNPs. In contrast, the original analysis of 73
genomes yielded a very tight, symmetrical distribution, did not include any values greater than
130 years, and estimated mean rootHeight as 78 years, which was very similar to the peak
value. These observations were not due to lack of convergence because the effective sample size
(ESS) was high for all analyses (four genomes:>5,000; 73 genomes:>400). Instead, they cast
grave doubts on the validity of Pettengill’s approach to dating the age of Agona, and indicate
that dating should be based on non-recombinant, non-repetitive core SNPs from larger num-
bers of genomes.
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