
 1

Identifying Proteomic Prognostic Markers for Alzheimer's Disease with 1 

Survival Machine Learning: the Framingham Heart Study 2 

 3 

Yuanming Leng1*, Huitong Ding2,3*, Ting Fang Alvin Ang2,3,4, Rhoda Au2,3,4,5,6, P. Murali Doraiswamy7, 4 

Chunyu Liu1,# 
5 

 
6 

1Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA 7 

2Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 8 

Boston, MA, 02118, USA 9 

3Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, 10 

USA 11 

4Slone Epidemiology Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, 12 

USA 13 

5Departments of Neurology and Medicine, Boston University Chobanian & Avedisian School of Medicine, 14 

Boston, MA, 02118, USA 15 

6Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02118, USA 16 

7Department of Psychiatry, Neurocognitive Disorders Program, Duke University School of Medicine, Durham, 17 

NC, 27710, USA 18 

* These authors contribute equally 19 

 20 

#Correspondence: 21 

Chunyu Liu, PhD; liuc@bu.edu 22 

Crosstown Building 801, Massachusetts Avenue Boston, MA 02118, USA.  23 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.21.24314123doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.09.21.24314123
http://creativecommons.org/licenses/by-nc/4.0/


 2

Abstract 24 

Background: Protein abundance levels, sensitive to both physiological changes and external interventions, 25 

are useful for assessing the Alzheimer's disease (AD) risk and treatment efficacy. However, identifying 26 

proteomic prognostic markers for AD is challenging by their high dimensionality and inherent correlations. 27 

Methods: Our study analyzed 1128 plasma proteins, measured by the SOMAscan platform, from 858 28 

participants 55 years and older (mean age 63 years, 52.9% women) of the Framingham Heart Study (FHS) 29 

Offspring cohort. We conducted regression analysis and machine learning models, including LASSO-based 30 

Cox proportional hazard regression model (LASSO) and generalized boosted regression model (GBM), to 31 

identify protein prognostic markers. These markers were used to construct a weighted proteomic composite 32 

score, the AD prediction performance of which was assessed using time-dependent area under the curve 33 

(AUC). The association between the composite score and memory domain was examined in 339 (of the 858) 34 

participants with available memory scores, and in an independent group of 430 participants younger than 55 35 

years (mean age 46, 56.7% women).  36 

Results: Over a mean follow-up of 20 years, 132 (15.4%) participants developed AD. After adjusting for 37 

baseline age, sex, education, and APOE ε4+ status, regression models identified 309 proteins (P ≤ 0.2). After 38 

applying machine learning methods, nine of these proteins were selected to develop a composite score. This 39 

score improved AD prediction beyond the factors of age, sex, education, and APOE ε4+ status across 15 to 25 40 

years of follow-up, achieving its peak AUC of 0.84 in the LASSO model at the 22-year follow-up. It also showed 41 

a consistent negative association with memory scores in 339 participants (beta = -0.061, P = 0.046), 430 42 

independent participants (beta = -0.060, P = 0.018), and the pooled 769 samples (beta = -0.058, P = 0.003). 43 

Conclusion: These findings highlight the utility of proteomic markers in improving AD prediction and 44 

emphasize the complex pathology of AD. The composite score may aid early AD detection and efficacy 45 

monitoring, warranting further validation in diverse populations. 46 

 47 

Keywords: Alzheimer's disease; Proteomics; Prognostic markers; Risk; Survival machine learning 48 
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Introduction 50 

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that gradually impairs cognitive 51 

functions such as memory and reasoning abilities[1]. This disease significantly affects patients' ability to 52 

perform daily tasks independently [2] and imposes a considerable burden on caregivers and healthcare 53 

systems [3]. With the global population aging, the incidence of AD is rising, posing a growing threat to public 54 

health and necessitating preventive strategies and effective treatment [4]. The complex nature of AD, 55 

especially its prolonged asymptomatic phase, presents challenges for early detection but also opportunities to 56 

develop interventions aimed at modifying the disease's trajectory for secondary prevention [5, 6]. Therefore, 57 

identifying AD prognostic markers is crucial due to the disease's insidious onset and progression and the lack 58 

of effective treatments for AD [7].  59 

Plasma proteomic markers are sensitive to both internal physiological changes and external 60 

interventions[8], making them excellent candidates for tracking AD progression and response to treatment. 61 

Mang studies have highlighted significant associations between specific proteins and the risk of AD, along with 62 

associations between changes in protein levels and structural brain alterations over time[9-13]. Research has 63 

also identified a relationship between proteomic markers and amyloid burden, suggesting that plasma protein 64 

testing could be used to assess brain amyloid deposition[14]. Despite these advancements, the challenge of 65 

identifying proteomic prognostic markers remains, largely due to their high dimensionality and strong 66 

correlations among proteins. Moreover, there is a significant gap concerning the long-term predictive capacity 67 

of these proteomic markers for AD. This gap highlights the need for further research to evaluate how these 68 

markers perform in predicting AD incidence at specific future time points, potentially improving early detection 69 

and timely intervention strategies for AD. 70 

Survival machine learning is particularly effective at addressing these challenges[15]. These methods 71 

are able to account for higher-order interactions and nonlinear relationships, which are crucial for selecting 72 

features based on variable importance[16]. Furthermore, survival machine learning models can incorporate 73 

time-to-event data and consider censored data. Therefore, we conducted association analysis and applied 74 

machine learning models to identify proteomic prognostic markers and constructed a weighted proteomic 75 
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composite score in a community-based cohort. We aim to identify proteomic biomarkers and construct a 76 

composite score to enhance AD prediction across various follow-up periods. 77 

 78 

Methods 79 

Study Population 80 

Initiated in 1948, the Framingham Heart Study (FHS) was a prospective cohort study based in a community 81 

setting[17]. In 1971, the study expanded to include the FHS Offspring cohort, comprising the children of the 82 

original participants and the spouses of these children [18]. Since the first Offspring exam cycle between 1971 83 

and 1975, participants have undergone 10 health examinations approximately every four to six years[19]. This 84 

study included 1,913 individuals from the Offspring cohort who participated in the fifth examination cycle 85 

between 1991 and 1995, during which their blood was collected for proteomics profiling assessments. 86 

Participants were excluded if they had prevalent AD, incident non-AD dementia (n = 62), lacked education (n = 87 

59) and APOE (n= 65) information. In analyses with machine learning, models tend to bias towards the 88 

majority class, which can lead to inflated performance metrics during training[20]. To address this imbalance 89 

and minimize potential model bias, we excluded participants who were 55 years or younger at baseline (n = 90 

869), leaving 858 participants to identify protein markers to predict AD (Figure 1). This helped balance the age 91 

differences between cases and controls without significantly reducing the number of incident AD cases. For the 92 

association analysis of the proteomic composite score and memory domain, 339 of 858 participants with 93 

neuropsychological (NP) test measures were included (Figure 1). Additionally, to validate the early detection 94 

capabilities of the proteomic composite score for AD, we incorporated a separate, younger group of 430 95 

independent participants into this analysis (Figure 1). All participants provided their written consent for genetic 96 

studies. The study protocol received approval from the Institutional Review Boards at Boston University 97 

Medical Center, Massachusetts General Hospital, and Beth Israel Deaconess Medical Center. The study 98 

adhered strictly to regulations and guidelines to ensure compliance. 99 

Proteomics Profiling 00 

Previous studies have detailed the methods of proteomics profiling[21, 22]. In brief, plasma was obtained from 01 

blood samples collected at clinical visits and preserved at -80°C[23]. The quantification of protein 02 
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concentrations with these plasma samples was conducted using the SOMAscan platform[24]. This approach 03 

leverages single-stranded DNA aptamers to identify and bind to specific proteins. The efficacy of this 04 

technology has been validated through its application in cardiovascular disease research[21, 25]. The protein 05 

profiling analysis was conducted on the samples in two distinct batches with 821 and 1,092 participants, 06 

respectively. Across the two batches, a total of 1,373 proteins were examined. Logarithmic transformations 07 

were applied to the protein measurements, followed by inverse normal transformation to achieve normality.  08 

Linear models were used to obtain residuals by regressing the transformed proteins on Plate ID to minimize 09 

batch effect. Plate ID denotes the plate in the machine on which a given sample was run. Proteins (n=245) with 10 

more than 20% missing data were excluded (Figure 1). The residuals of protein markers were combined from 11 

two batches and a total of 1,128 proteins were used for subsequent analyses. 12 

Ascertainment of AD 13 

 A participant was identified with incident AD if they were cognitively intact at the time of proteomics profiling 14 

but diagnosed with AD during the follow-up. The methodology for monitoring and diagnosing AD within the FHS 15 

has been documented in prior publications[26, 27]. In brief, each participant diagnosed with AD was confirmed 16 

by a review panel comprising at least a neurologist and a neuropsychologist in FHS. This confirmation is based 17 

on available data from neurological and neuropsychological (NP) evaluations, FHS health examinations, 18 

clinical records, and discussions with relatives[28]. The criteria for AD diagnosis follow those established by the 19 

National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and 20 

Related Disorders Association (NINCDS–ADRDA)[29].  For the participants who developed AD, the follow-up 21 

duration was calculated from the baseline up to the earliest documented date of AD onset. For those who did 22 

not develop AD, the follow-up duration was terminated between the baseline and December 31 of 2022, the 23 

date of the last recorded follow-up, or the date of death, depending on which occurred first. 24 

Neuropsychological assessment 25 

The administration of the neuropsychological tests in FHS has been detailed in prior studies [30, 31]. In brief, 26 

we obtained the z-scores of six Wechsler Memory Scale (WMS) scores, including WMS Logical Memory 27 

Immediate Recall, WMS Logical Memory Delayed Recall, WMS Visual Reproductions Immediate Recall, WMS 28 

Visual Reproductions Delayed Recall, WMS Paired Associates Immediate Recall, and WMS Paired Associates 29 
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Delayed Recall [32, 33]. A z-score was calculated by subtract a score to its mean and divided by its standard 30 

deviation. The total memory domain score was the sum of the z-scores from the six WMS variables.  31 

Statistical Analyses 32 

Descriptive statistics 33 

This study conducted a comparative analysis of baseline characteristics between participants who developed 34 

AD during the follow-up period and those who did not. Continuous variables were compared using the t-test, 35 

and categorical variables were assessed using the Chi-square test to identify any significant differences 36 

between the two groups. 37 

Association Analysis and Survival Machine Learning for Identifying Proteomic 38 

Prognostic Markers 39 

The association of each protein marker with incident AD was examined using Cox proportional hazard 40 

regression models. These models were adjusted for baseline demographic factors, including age, sex, 41 

education, and APOE ε4+ status. Proteins with a P value ≤0.2 were selected for further analysis with the 42 

machine learning methods.  43 

This study evaluated the importance of proteins using two survival machine learning methods[34]: the 44 

LASSO-based Cox proportional hazard regression model (LASSO)[35] and the generalized boosted regression 45 

model (GBM) [36]. LASSO utilizes L1 regularization to induce sparsity, setting the coefficients of less important 46 

variables to zero, thus simplifying model complexity and preventing overfitting [37]. In contrast, GBM enhances 47 

model accuracy through an iterative process where each new model corrects errors from preceding ones, 48 

adeptly managing complex non-linear data patterns[38]. Both LASSO and GBM were adapted to 49 

accommodate censored data in analyzing time-to-event data. LASSO incorporates a Cox proportional hazards 50 

model, applying L1 penalties to enhance model selection and penalize less significant variables. GBM extends 51 

to survival scenarios by employing survival trees within its boosting framework. In determining protein 52 

importance, LASSO measures it by the magnitude of the coefficients, with larger values indicating a stronger 53 

impact on AD incidence[39]. GBM assesses protein importance by measuring its frequency in tree splitting and 54 

contribution to model performance, known as relative importance[40].  55 
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The survival LASSO and GBM models were developed using proteins with a P value ≤ 0.2. The 56 

proteins were initially ranked according to their importance. Beginning with the most significant protein marker, 57 

we sequentially built machine learning models, incorporating the next most important protein into each 58 

successive model. The mean Harrell’s c-index was calculated using a ten-fold cross-validation approach for 59 

each model iteration[41]. Ultimately, the final selected model for LASSO and GBM was determined by 60 

identifying the one with the fewest proteins among the top 5 models that achieved the highest mean Harrell’s c-61 

index. 62 

To minimize collinearity issue in regression model and bias in constructing a proteomic composite score, 63 

we calculated the pairwise Pearson correlation coefficients for each pair of proteins to eliminate highly 64 

correlated proteins identified by the machine learning models. For pairs where the correlation coefficient 65 

exceeded 0.3, only the protein with a more significant association with incident AD was retained as the 66 

proteomic prognostic marker.  67 

Construction of Proteomic Composite Score 68 

To explore the cumulative impact of proteins on AD development, we constructed weighted composite scores 69 

using proteins that were previously identified by the machine learning models. The weights assigned to each 70 

protein were derived from their regression coefficients, obtained using a Cox proportional hazard model that 71 

adjusted for age, sex, education, and APOE ε4+ status. For proteins that achieved nominal significance (P < 72 

0.05), the composite score was formulated as a linear combination of these weighted proteins.  73 

Association of Proteomic Composite Score with Incident AD and Memory Domain  74 

The association between proteomic composite score and incident AD was examined by Cox proportional 75 

hazard regression model, adjusting for age, sex, education, and APOE ε4+ status. To further validate the early 76 

detection capabilities of the proteomic composite score for cognitive decline, we assessed its association with 77 

the memory domain score in a linear regression model, adjusting for age, sex, and education. We conducted 78 

the linear models in three groups of participants to investigate the association between the memory domain 79 

scores and composite scores, adjusting for age, sex, education, and APOE ε4+ status: 339 of the 858 80 

participants with available memory domain scores (the older age group), a separate younger group of 430 81 
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independent participants (mean age 46, 56.7% women, the younger age group), and the pooled samples 82 

(n=769, the combined sample of 339 and 430 participants) (Figure 1). 83 

Assessment of AD Prediction Performance of Proteomic Composite Score  84 

We compared the capacity of the proteomic composite score in predicting AD. The base model included age, 85 

sex, education, and APOE ε4+ status as predictors. A second model added proteins with P≤0.2 to the base 86 

model. The third model incorporated proteomic prognostic markers into the base model. The fourth model 87 

included the proteomic composite score into the base model. Both LASSO and GBM were utilized to evaluate 88 

these models. The performance of these models was evaluated using a 10-fold cross-validation. The time-89 

dependent area under the receiver-operating characteristic curve (AUC) for each year during a follow-up 90 

period of 15 to 25 years was calculated to determine the model's prediction performance [42]. 91 

 92 

Results 93 

Baseline Demographics 94 

To identify proteomic prognostic markers, this study included 858 FHS Offspring participants who were 95 

cognitively intact at baseline (mean age 63±5, 52.9% women, 34.0% college or above) (Table 1). During a 96 

mean follow-up of 20 years, 132 (15.4%) incident AD cases were identified. 97 

The Association Between Proteins and Incident AD 98 

Among the 1,128 proteins evaluated, 106 proteins were associated with incident AD with nominal significance 99 

after adjusting for age, sex, education, and APOE ε4+ status (P<0.05) (Supplementary Table 1). However, 00 

none of these proteins remain significant after false discovery rate correction. Among these, 73 proteins were 01 

positively associated with incident AD, with the most significant association identified in death-associated 02 

protein kinase 2 (DAPK2). Each SD higher level of DAPK2 was associated with a 44% higher risk of incident 03 

AD (95% CI: 1.19, 1.73; P = 8.27E-05). Conversely, 33 proteins showed negative associations with AD 04 

incidence, with the strongest association for hepatocyte growth factor receptors. Each SD increase in the 05 

plasma levels of hepatocyte growth factor receptor was associated with a 27% lower risk of incident AD (95% 06 

CI: 0.60, 0.89; P = 1.66E-03).  07 
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Proteomic Prognostic Markers 08 

For the 309 proteins associated with incident AD with a significance of P<0.2, we further evaluated their 09 

predictive capacity for AD using LASSO and GBM models. Figure 2 presents the importance rankings of these 10 

proteins as determined by both models. Starting with the most significant protein, we incrementally added 11 

proteins to both the LASSO and GBM models to enhance AD prediction. Figure 2 also illustrates the mean 12 

Harrell’s c-index from ten-fold cross-validation as additional proteins are incorporated into the models. The 13 

results indicated that the GBM model achieves its highest Harrell’s c-index, 0.750, when the top 19 proteins 14 

are included. The LASSO model achieved its optimal predictive performance with a Harrell’s c-index of 0.804 15 

when 19 proteins were included. Five proteins, including GFRa-1, FCN1, Activated Protein C, Siglec-3, LIGHT, 16 

were identified by both the LASSO and GBM models. Therefore, a total of 33 proteins were identified by either 17 

LASSO or GBM. The univariate association of each of these 33 proteins with incident AD is shown in Table 2, 18 

with 6 of these proteins showing a negative association with AD. 19 

Figure 3 displays a heatmap of the Pearson correlation coefficients for the 33 proteins. Among these, 20 

15 pairs of proteins exhibited correlation coefficients greater than 0.3. Consequently, we eliminated the less 21 

significant proteins associated with incident AD from these 15 pairs. After this filtering process, 18 proteins 22 

were retained for further analysis. 23 

Association Analysis of Proteomic Composite Score with the Memory Domain Score 24 

A multivariable Cox regression model assessed the associations between 18 proteins and incident AD, 25 

adjusting for age, sex, education, and APOE ε4+ status as covariates. In this model, 9 proteins demonstrated 26 

significance with a P value less than 0.05. Consequently, these 9 proteins were used to construct a composite 27 

score (Figure 4). In association analyses, the composite score was positively associated with the incidence of 28 

AD. Each unit increase in the composite score was associated with a 2.3 times higher risk of developing AD 29 

(HR = 2.33; 95% CI: 1.85, 2.79; P = 5.8E-15). To test if the proteomic composite score was predictive to 30 

memory score, we conducted a linear regression and found that the proteomic composite score was negatively 31 

associated with the memory domain score in the 339 (of the 858) participants with available memory scores 32 

(beta= -0.061, SE = 0.030, P = 0.046), adjusting for age, sex, education, and APOE ε4+ status (Figure 5). This 33 
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negative association was consistent in the independent 430 participants aged 55 and below (beta = -0.060, SE 34 

= 0.025, P = 0.018), in the pooled 769 samples (beta = -0.058, SE = 0.019, P = 0.003), adjusting for age, sex, 35 

education, and APOE ε4+ status (Figure 5). 36 

Performance Comparison of AD Predictive Models Across Varying Follow-Up Periods  37 

We evaluated the prediction performance of incident AD using different models over a follow-up time ranging 38 

from 15 to 25 years (Figure 6). In the GBM analysis, Model 4, which integrates age, sex, education, and APOE 39 

ε4+ status with a proteomic composite score, consistently outperforms the other models, maintaining AUC 40 

values above 0.797 throughout the period. Model 1, which includes only age, sex, education, and APOE ε4+ 41 

status, ranks as the second-best model, achieving its optimal AUC of 0.800 at the 21-year follow-up. Similar 42 

patterns are observed with the LASSO model, where Model 4 also consistently achieves the highest AUC. 43 

Additionally, Models 2 and 3 which incorporated proteins, generally remain above the performance of Model 1 44 

(optimal AUC 0.826 at 15-year follow-up). For Model 4 fitting with LASSO, the predictive performance for AD 45 

starts with an AUC of 0.83 at the 15-year follow-up, peaks at 0.84 at the 22-year follow-up, and then generally 46 

shows a declining trend in predictive performance as the follow-up period extends (mean AUC: 0.79). 47 

 48 

Discussion  49 

This study identified a set of proteomic prognostic markers for AD by utilizing association analysis and survival 50 

machine learning models. A proteomic composite score was developed from 9 selected proteins, which, when 51 

integrated with clinical risk factors, significantly enhanced the performance of models for AD prediction across 52 

various follow-up periods, reaching a peak AUC of 0.84 at the 22-year follow-up. To our knowledge, this is the 53 

first study to employ a survival machine learning-based approach to identify proteomic prognostic markers for 54 

AD, consistently achieving high predictive results from 15 to 25 years. 55 

Identifying prognostic markers capable of predicting AD risk across various follow-up periods is crucial 56 

for both understanding the disease's progression and selecting participants for clinical trials focused on 57 

preventive therapies. Proteins with their ability to reflect biological processes and responses to treatments 58 

makes them particularly valuable in tracking the gradual development of AD and assessing intervention 59 
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efficacy over time. In this study, 106 out of 1,128 proteins showed nominal significance (P < 0.05) in 60 

association with incident AD after adjusting for baseline demographics. The most significant association was 61 

observed between DAPK2 and the risk of AD. DAPK2 shares a high degree of homology with DAPK1, 62 

particularly in their catalytic domains[43]. DAPK1 is widely expressed throughout the central nervous system 63 

and its dysregulation has been linked to neurological disorders, including AD[44]. Notably, activated protein C 64 

emerged as significantly associated with an increased risk of AD, despite its known neuroprotective effects, 65 

including anti-inflammatory properties and roles in promoting blood flow and preventing brain cell death [45]. 66 

This indicates that elevated levels of activated protein C might be a compensatory response to early 67 

pathophysiological changes in AD, where the body attempts to counteract damage but may inadvertently 68 

exacerbate other underlying mechanisms that promote AD progression. Another possible reason could be the 69 

presence of other confounding factors affecting its association with AD. Conversely, hepatocyte growth factor 70 

receptor showed the most significant negative association with AD incidence, aligning with findings from other 71 

research [46]. Activation of hepatocyte growth factor facilitates stem cell differentiation and neurogenesis, and 72 

offers protection against damage in various cells, including neurons[47]. These findings not only contribute to 73 

our understanding of the biological pathways involved in AD but also underscore the complexity of the 74 

disease's pathophysiology, suggesting that both inflammatory processes and regenerative mechanisms may 75 

play crucial roles.  76 

The use of survival machine learning models to further refine the selection of proteomic markers based 77 

on their predictive relevance represents an advanced approach to handling high-dimensional data and 78 

incorporating the impact of time. Traditional methods like stepwise selection, which assume independence 79 

among predictors, may be biased given correlation among proteins. In contrast, LASSO addresses this issue 80 

by employing L1 optimization, which minimizes the total sum of coefficients, selecting one protein from a highly 81 

correlated pair. However, due to the high degree of correlation (or collinearity) among proteins, LASSO may 82 

randomly select one protein from correlated pairs, resulting in variability with each run. To minimize the issue, 83 

we implemented cross-validation to average the feature importance of each protein, providing a more stable 84 

and reliable approach to manage collinearity. Additionally, we employed the GBM, a tree-based ensemble 85 

method that uses a boosting framework to train models iteratively. Unlike methods that rely on single-variable 86 

fitting, GBM utilizes a subset of variables for each tree, enhancing its capacity to integrate and analyze proteins 87 
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collectively. This method effectively captures the complex interdependencies among proteins and enhances 88 

the model’s predictive performance for AD by leveraging multiple variables simultaneously. The ability of these 89 

models to achieve high Harrell’s c-index with a relatively small subset of proteins suggests that machine 90 

learning techniques can effectively extract key information about the relationship between proteins and AD risk. 91 

Notably, both models consistently identified a core set of five proteins, including GFRa-1, FCN1, Activated 92 

Protein C, Siglec-3, LIGHT, that share predictive relevance for AD, providing a strong validation for these 93 

findings and underscoring the robustness of these methods in identifying critical markers. This alignment with 94 

prior research further reinforces the significance of these proteins in AD. For example, GFRa-1 is implicated in 95 

neural cell survival and repair mechanisms, highlighting its potential role in AD [48]. FCN1 (Ficolin-1) has been 96 

shown to be differentially expressed in AD cases[49]. Siglec-3, expressed in myeloid cells, plays a role in the 97 

immune response of neurodegenerative diseases [50]. Tumor necrosis factor has been shown to be 98 

associated with AD[51]. 99 

Researchers have been investigating the potential of plasma proteomic profiles to predict incident 00 

AD[13, 52]. In this study, we developed a proteomic composite score from ten proteomic prognostic markers 01 

and evaluated its association with AD incidence. This score positively associated with AD risk, suggesting it 02 

could be a crucial part of a broader diagnostic framework to identify individuals at increased risk of AD before 03 

symptoms appear. Previous studies have focused on predicting AD incidence at a single future time point[13, 04 

52]. In contrast, our study extends this approach by assessing the composite score's ability to predict AD 05 

incidence over multiple follow-up periods. The enhanced predictive performance, evidenced by increased time-06 

dependent AUC values when integrating proteomic markers with baseline demographics, is particularly 07 

noteworthy. Additionally, we calculated the weighted composite scores for individuals under 55 years of age 08 

with regression coefficients obtained in the older age group and analyzed its association with memory domain 09 

scores. The consistent significant negative association with the general population indicates that the composite 10 

score is effective at detecting early changes in cognitive function. The validation of the proteomic composite 11 

score is warranted in future studies with larger sample sizes of both older and younger age groups.  12 

We recognize several limitations in our study. Our participants consisted solely of non-Hispanic whites, 13 

highlighting the need for future research in diverse ethnic and racial groups. Moreover, despite the robust 14 
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predictive performance of our selected markers across multiple follow-up times, potential confounders could 15 

still influence the association between the proteins and incident AD. Future studies should consider 16 

incorporating additional factors to address these potential confounders. This expansion is crucial for enhancing 17 

the generalizability of our findings and facilitating external validation. Moreover, similar to other high-throughput 18 

“omics” studies, batch effects could affect the reproducibility of our findings. Furthermore, although our 19 

proteomics platform is one of the most comprehensive available, it is limited to detecting only the proteins that 20 

are incorporated into the platform.  Future studies should be conducted to validate our findings in larger cohorts. 21 

This study has several advantages. First, the integration of survival machine learning with association analysis 22 

enables the selection of markers that can accommodate the complex interactions within high-dimensional 23 

proteomic data and include time-to-event information. Second, this study developed protein composite scores 24 

that are highly interpretable and easy to use. Further, we validated these composite scores by examining their 25 

association with memory domain scores in a separate younger group. This demonstrated the effectiveness of 26 

the scores in detecting early cognitive changes. We utilized time-dependent AUC to assess the predictive 27 

power of protein composite score for AD incidence risk across various follow-up periods. This method allowed 28 

us to track how the prognostic abilities of these markers evolved over time, offering a comprehensive 29 

assessment of their long-term efficacy in predicting AD progression.  30 

In summary, this study significantly advances the identification and application of AD proteomic 31 

prognostic markers through survival machine learning methods. It demonstrated the proteomic composite 32 

score's ability to predict AD risk consistently across multiple follow-up periods. Further studies involving 33 

external validation are essential to ensure the generalizability of these findings. 34 
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Table 1. Baseline characteristics of study samples 
Variable Free from AD (N=726) Incident AD (N=132) Total (N=858) P value* 

Age, years 62.6 (5.4) 65.4 (5.0) 63.0 (5.4) < 0.001 

Women, n(%) 362 (49.9%) 92 (69.7%) 454 (52.9%) < 0.001 

Education, n(%)    0.187 

    Less than high school  66 (9.1%) 15 (11.4%) 81 (9.4%)  

    High school/some college 404 (55.6%) 81 (61.4%) 485 (56.5%)  

    College or above 256 (35.3%) 36 (27.3%) 292 (34.0%)  

APOE ε4+, n(%) 147 (20.2%) 46 (34.8%) 193 (22.5%) < 0.001 

Follow-up, years 20.1 (7.2) 16.7 (6.1) 19.6 (7.2) < 0.001 

Mean (standard deviation, SD) was presented for continuous variables and count (percentages) for categorical 
variables. *Continuous variables were analyzed with the t-test, while categorical variables were examined 
using Chi-square test. 
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Table 2. Associations of 33 proteins selected by LASSO and GBM with incident AD. 

Protein name Description HR 95% CI P value 

DAPK2 Death-associated protein kinase 2 - 4355-13 (Q9UIK4) 1.44 1.19 1.73 8.27E-05 

Activated Protein C Activated Protein C - 3758-68 (P04070) 1.36 1.16 1.59 1.02E-04 

ATS15 A disintegrin and metalloproteinase with thrombospondin motifs 15 - 4533-76 (Q8TE58) 1.43 1.18 1.75 2.76E-04 

Histone H2A.z Histone H2A.z - 4163-5 (P0C0S5) 1.4 1.16 1.69 3.26E-04 

FCN1 Ficolin-1 - 3613-62 (O00602) 1.38 1.15 1.66 4.84E-04 

Met Hepatocyte growth factor receptor - 2837-3 (P08581) 0.73 0.6 0.89 1.66E-03 

LIGHT Tumor necrosis factor ligand superfamily member 14 - 5355-69 (O43557) 1.32 1.1 1.58 1.81E-03 

Ubiquitin+1 Ubiquitin+1, truncated mutation for UbB - 2846-24 (P62979) 1.3 1.09 1.55 3.51E-03 

MDHC Malate dehydrogenase, cytoplasmic - 3853-56 (P40925) 1.32 1.09 1.61 4.59E-03 

C1q Complement C1q subcomponent - 2753-2 (P02745 P02746 P02747) 0.77 0.63 0.94 9.99E-03 

Cyclin B1 G2/mitotic-specific cyclin-B1 - 5347-59 (P14635) 1.24 1.05 1.47 1.11E-02 

PTK6 Protein-tyrosine kinase 6 - 3832-51 (Q13882) 0.79 0.66 0.95 1.11E-02 

JAM-C Junctional adhesion molecule C - 2998-53 (Q9BX67) 1.27 1.05 1.54 1.15E-02 

GFRa-1 GDNF family receptor alpha-1 - 3314-74 (P56159) 1.28 1.05 1.55 1.18E-02 

VEGF sR2 Vascular endothelial growth factor receptor 2 - 3651-50 (P35968) 0.78 0.64 0.95 1.38E-02 

SOD Superoxide dismutase [Cu-Zn] - 2794-60 (P00441) 1.26 1.04 1.52 1.44E-02 

IL-15 Ra Interleukin-15 receptor subunit alpha - 3445-53 (Q13261) 1.27 1.04 1.56 1.81E-02 

PDE5A cGMP-specific 3,5-cyclic phosphodiesterase - 5256-86 (O76074) 1.24 1.02 1.49 2.37E-02 

HCG Human Chorionic Gonadotropin - 4914-10 (P01215,P01233) 1.33 1.03 1.72 2.74E-02 

Leptin Leptin - 2575-5 (P41159) 1.27 1.02 1.58 2.82E-02 
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MMP-8 Neutrophil collagenase - 2954-56 (P22894) 1.21 1 1.47 4.27E-02 

NCC27 Chloride intracellular channel protein 1 - 5013-2 (O00299) 1.19 1 1.43 4.69E-02 

KLRF1 Killer cell lectin-like receptor subfamily F member 1 - 5098-79 (Q9NZS2) 1.2 1 1.44 5.06E-02 

MMP-10 Stromelysin-2 - 3743-1 (P09238) 1.18 0.99 1.41 5.25E-02 

Triosephosphate isomerase Triosephosphate isomerase - 4309-59 (P60174) 1.18 0.99 1.42 6.40E-02 

UBC9 SUMO-conjugating enzyme UBC9 - 2877-3 (P63279) 1.19 0.99 1.44 6.48E-02 

annexin I Annexin A1 - 4960-72 (P04083) 1.18 0.98 1.43 8.11E-02 

Siglec-3 Myeloid cell surface antigen CD33 - 3166-92 (P20138) 1.16 0.97 1.38 8.83E-02 

Cyclophilin A Peptidyl-prolyl cis-trans isomerase A - 3844-2 (P62937) 1.18 0.97 1.44 1.00E-01 

MEPE Matrix extracellular phosphoglycoprotein - 3209-69 (Q9NQ76) 0.85 0.71 1.03 1.01E-01 

FGF-16 Fibroblast growth factor 16 - 4393-3 (O43320) 1.15 0.95 1.4 1.42E-01 

SHC1 SHC-transforming protein 1 - 5272-55 (P29353) 1.15 0.95 1.41 1.49E-01 

GPC2 Glypican-2 - 3315-15 (Q8N158) 0.88 0.74 1.05 1.53E-01 

Note: The association of incident AD with each protein was examined by Cox proportional hazards model adjusting for baseline age, sex, education, 

and APOE ε4+ status.  
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Figure 1. The sample selection flowchart of this study. 
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Figure 2. Protein selection by LASSO and GBM. The bar charts show the feature importance of each protein, while the blue line depict the H

c-index, illustrating how the model's predictive performance improves with the sequential inclusion of proteins. Proteins ultimately selected ar

highlighted within a green box. 
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Figure 3. The correlation of proteins selected by LASSO and GBM. The color gradient represents the 

correlation levels, where darker red indicates a higher positive correlation and lighter pink signifies a hig

negative correlation between the protein pairs selected by the two methods. 
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Figure 4. Volcano plots illustrate the HR on the x-axis and -log10(P value) on the y-axis, showing the 

association of proteins with incident AD. Proteins located above the horizontal blue line indicate the 

significance (P < 0.2) in their association with incident AD. The 9 selected proteomic prognostic markers

highlighted with blue dots. 
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Figure 5. Forest plot showing the association of memory domain score with proteomic composite score. The 

association was examined by linear regression model adjusting for baseline age, sex, education, APOE ε4+ 

status. SE: standard error. 
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Figure 6. Time-dependent AUC estimates of different models at each year of follow-up between 

15 years and 25 years. Model 1: age, sex, education, and APOE ε4+ status; Model 2: age, sex, educatio

APOE ε4+ status, and 309 proteins; Model 3: age, sex, education, APOE ε4+ status, and 9 proteomic 

prognostic markers; Model 4: age, sex, education, APOE ε4+ status, and proteomic composite score. Th

horizontal axis represents follow-up time in years and the vertical axis represents the estimated area und

ROC curve for survival at the time of interest. 
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