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Abstract: Based on the chemical structure and the known chemical synthesis of the marine 

sponge alkaloid ageladine A, we synthesized the ageladine A-derivative 4-(naphthalene-2-

yl)-1H-imidazo[4,5-c]pyridine trifluoroacetate (LysoGlow84). The two-step synthesis 

started with the Pictet-Spengler reaction of histamine and naphthalene-2-carbaldehyde to  

a tetrahydropyridine intermediate, which was dehydrogenated with activated manganese 

(IV) oxide to LysoGlow84. Structure and purity of the synthesized LysoGlow84 were 

confirmed by NMR spectroscopy and mass spectrometry. The fluorescence intensity emitted 

by LysoGlow84 depended strongly on the pH of the solvent with highest fluorescence 

intensity recorded at pH 4. The fluorescence maximum (at 315 nm excitation) was 
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observed at 440 nm. Biocompatibility of LysoGlow84 was investigated using cultured rat 

brain astrocytes and the marine flatworm Macrostomum lignano. Exposure of the 

astrocytes for up to 6 h to micromolar concentrations of LysoGlow84 did not compromise 

cell viability, as demonstrated by several viability assays, but revealed a promising 

property of this compound for staining of cellular vesicles. Conventional fluorescence 

microscopy as well as confocal scanning microscopy of LysoGlow84-treated astrocytes 

revealed co-localization of LysoGlow84 fluorescence with that of LysoTracker® Red DND-99. 

LysoGlow84 stained unclear structures in Macrostomum lignano, which were identified as 

lysosomes by co-staining with LysoTracker. Strong fluorescence staining by LysoGlow84 

was further observed around the worms’ anterior gut and the female genital pore which 

were not counterstained by LysoTracker Red. Thus, LysoGlow84 is a new promising dye 

that stains lysosomes and other acidic compartments in cultured cells and  

in worms. 

Keywords: ageladine A derivative; fluorescence; live imaging; lysosomes; new dye 

 

1. Introduction 

Fluorescent small molecules are present in the bright, dark and twilight zones of the oceans, 

produced by and transported in many different organisms. They fulfill manifold ecological and 

behaviorally relevant purposes in marine organisms [1]. Aquatic species mostly emit fluorescence in 

the blue/green wavelength range, as 470 nm light travels the longest distance and blue/UV light 

reaches deep into open waters, due to the physical properties of light scattering and transmission in 

water [2]. This is why many marine fluorescent compounds have similar optical properties with 

conspicuous blue light fluorescence. 

The fluorescing alkaloid ageladine A (Figure 1) was initially isolated from the sponge Agelas in 

search for angiogenesis inhibitors. The chemical structure of ageladine A was identified as brominated 

pyrrole-imidazole alkaloid [3]. Ageladine A shows a pH-dependent fluorescence with an emission 

maximum in the blue wavelength range [4,5] and has successfully been used to stain acidic vesicles in 

mouse hippocampal neurons [6]. The successful chemical synthesis of ageladine A was reported  

in 2006 by Karuso and Weinreb [7,8]. We have based our synthesis on the one published by Karuso [7] 

and modified by Ando [9], to generate a set of structurally related derivatives of ageladine A and to 

investigate such derivatives as potentially useful tools for fluorescence staining of cellular compartments 

with different pH milieus. 

Lysosomes are small cellular vesicles which contain hydrolyzing enzymes such as lipases, proteases 

and nucleases. These organelles are characterized by a low pH (pH = 4.5–5) which gives the digesting 

enzymes an optimal catalytic environment. Microorganisms, macromolecules, and organelles are taken 

up or fused with lysosomes in order to hydrolyze them. Lysosomes can therefore be considered as 

“recycling units of a cell” [10]. Lysosomes are present in all eukaryotic cells and play a major role in 

their physiology. As endosomes, synaptic vesicles and transport vesicles are acidified during the 

process of vesicle recycling, new dyes for a better detection and live imaging of acidic vesicles are 
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highly warranted. Especially new dyes with acidic pH optima and new spectral characteristics have the 

potential to serve as new tools in vesicle related research. 

 

Figure 1. Structure of ageladine A and synthesis of 4-(naphthalene-2-yl)-1H-imidazo 

[4,5-c]pyridine trifluoroacetate (structure 2, LysoGlow84): A: KOH, EtOH, 24 h, 80 °C, 

99%; B: (1) MnO2, pyridine, acetone, 18 h, 80 °C; (2) TFA, EtOH, diethyl ether, 71%. 

The fluorescence of the new compound LysoGlow84 (Figure 1) was compared to the commercially 

available dye LysoTracker® Red DND-99 (Invitrogen, Darmstadt, Germany) in isolated mammalian 

astrocytes as well as in the living and intact flatworms Macrostomum lignano. This marine transparent 

flatworm was first described in 2005 [11] and can be considered as a model species for physiological 

investigations of marine invertebrates. Macrostomum lignano has previously been used in live imaging 

studies to answer questions regarding physiological response to environmental stress [12]. The worm’s 

transparent habitus allows to address physiological questions in intact animals, which is 

physiologically preferable over use of dissected or sliced tissues [4,13]. 

Here we report that the ageladine A derivative LysoGlow84 possesses a strong pH-dependent 

fluorescence and causes no acute cell toxicity. LysoGlow84 staining of lysosomes in cultured cells and 

acidic compartments in the flatworm Macrostomum lignano suggests that this dye is suitable for live 

imaging of acidic compartments in vitro and in vivo.  

2. Results and Discussion 

2.1. Synthesis of LysoGlow84 

In a two-step reaction 4-(naphthalene-2-yl)-1H-imidazo[4,5-c]pyridine trifluoroacetate (Figure 1 

structure 2; LysoGlow84) was synthesized, as shown in Figure 1, following the strategy previously used 

to synthesize compounds that are structurally related to the marine natural product ageladine A [14]. 

Starting with the Pictet-Spengler reaction of histamine dihydrochloride and naphthalene-2-

carbaldehyde, using potassium hydroxide as base in refluxing ethanol, [9,15,16] the resulting  

4-(naphthalene-2-yl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine 1 was obtained as a mixture of 

enantiomers in nearly quantitative yield after chromatographic purification. To keep the subsequent 

oxidation step as simple as possible, a dehydrogenation step with activated manganese (IV) oxide  

was chosen [17,18], which allowed easy separation of the dehydrogenating agent by filtration of the 

the polarity of the solvent with a large volume of diethyl ether. 

 

 

Figure 1.Structure of ageladine A  
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reaction mixture. Other prominent agents that are commonly used to dehydrogenate tetrahydropyridine 

rings to aromatic systems, such as chloranil, Pd/C or IBX [19], had disadvantages during the separation 

process and were therefore not considered for further optimization of the synthesis method. Manganese 

(IV) oxide dehydrogenates the intermediate 1 in the presence of pyridine. Acetone as a non-oxidizable 

solvent with an easy to handle boiling point turned out to be the best choice of solvent for the reaction. 

Although the educt 1 is hardly soluble in acetone, the product forming during the reaction process is 

easily dissolved. The final product of the synthesis, 4-(naphthalene-2-yl)-1H-imidazo[4,5-c]pyridine 

(2a) was obtained in 71% yield after chromatographic purification. The salt of the oxidization product 

was found to be more stable and easier to handle than the free base. The salt was quantitatively 

precipitated using ethanolic hydrochloric acid or trifluoroacetic acid before decreasing the polarity of the 

solvent with a large volume of diethyl ether. 

The final product 4-(naphthalene-2-yl)-1H-imidazo[4,5-c]pyridine trifluoroacetate (compound 2, 

Figure 1) is a stable, non-hygroscopic dye that shows no sign of decomposition at or below room 

temperature during long term storage over several months. The molecular mass and the chemical 

structure of LysoGlow84 were confirmed by mass spectrometry and NMR analysis. 

LysoGlow84 dissolves readily in water, methanol or ethanol. The solubility in water is low at a pH 

of around 10 (pH 9–12) as these conditions cause the deprotonation of compound 2 to the less polar 

compound 2a. Above pH 12 the deprotonation of the last nitrogen-bound hydrogen is favored, which 

generates the negatively charged compound 2b that dissolves easily (Figure 2). At pH values lower 

than 3 (2c) the molecule has two positive charges, dissolves in water but shows only weak fluorescence. 
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Figure 2. Deprotonation and protonation of 4-(naphthalene-2-yl)-1H-imidazo 

[4,5-c]pyridine (LysoGlow84). 

2.2. Stability of LysoGlow84 in Solution 

In order to investigate the stability of LysoGlow84 in solution, a long-term experiment (5 weeks) 

was carried out. LysoGlow84 was dissolved in deuterium oxide and deuterated methanol at a concentration 

of 10 g/L, respectively. Twice a week the NMR spectrum of each solution was measured. During this 

period the NMR-tubes were stored at room temperature and exposed to daylight. No decomposition of 

the molecule occurred in either of the two solvents. 
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2.3. Fluorescence Spectra Vary with pH Values 

Analysis of the fluorescence spectra of the ageladine A derivative LysoGlow84 revealed maximal 

excitation at 315 nm (Figure 3B). In acidified water an emission maximum of LysoGlow84 was 

observed at 440 nm, whereas in alkaline water the emission maximum shifted to shorter wavelengths 

(380–400 nm) (Figure 3A). The recorded excitation spectra are broad and cover a wide nm range, with 

strong excitation at 290–350 nm, which diminishes at 400 nm (Figure 3B). Emission is strong between 

360 nm and 520 nm with a peak at 440 nm (Figure 4A). The intensity of fluorescence depends strongly 

on the pH of the solvent with maximal values determined between pH 4 and 5. The emission maximum 

was shifted from 440 nm at pH 2–6 to 400 nm at pH 10–13. LysoGlow84 is poorly soluble in water at 

pH values between 8 and 12 (Figure 3E), most likely because it is present as uncharged compound in 

this pH range (Figure 2). At pH 13 LysoGlow84 completely dissolves again, most likely by additional 

deprotonation to a negatively charged soluble molecule (Figure 2). At pH values lower than pH 3, the 

molecule is double charged (Figure 2) but only weakly fluorescent (Figure 3). It is important to note 

that there are two isosbestic points at ~405 nm for pH 3–9 and another at ~450 nm for pH 9–13, 

marking two pH insensitive wavelengths. In Figure 3D two pKa values at pH 7 and  

pH 11.5 become apparent, indicating three states of the molecule between pH 3 and pH 13. At low  

pH (<3) the fluorescence intensity decreases dramatically (see Figure 3C) which is likely caused by  

a change in the molecular structure through further protonation (Figure 2, structure 2c). Cleavage or 

other destruction of the molecule is unlikely to be initiated by a higher proton concentration or at high 

pH. We therefore propose four possible protonation states of LysoGLow84 which depend on the  

pH (Figure 2). 

Ionic strength and ion composition have only marginal effects on the fluorescence excitation and 

emission spectra of LysoGlow84 (data not shown). 

A shift in the emission maximum can be used to calculate a relationship between pH and R = I400/I440. 

I400 and I440 give fluorescence intensities at 400 nm and 440 nm, respectively. The ratio R strongly 

depends on the pH range and reaches from R = 0.5 at pH 2–pH 5 to R = 2 at pH 12. The highest 

resolution of R is between pH 6 and pH 8 and between pH 10 and pH 12. There is no linear relationship 

between pH and R value, but R can be used to determine the pH of a medium over a wide pH range 

with varying accuracy (Figure 3D). 

 

Figure 3. Cont. 
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Figure 3. Fluorescence properties of LysoGlow84. A: Emission wavelengths of 

LysoGlow84 in dependency of the pH value in solutions containing 9 g/L NaCl. Intensity 

is given in arbitrary fluorescence units (FI) (exc. wavelength 320 nm). B: Excitation 

spectrum. C: Fluorescence measured at 400 nm and 440 nm with different pH values.  

D: Ratio of intensities at emission wavelength 400 nm and 440 nm in dependency of the 

pH. E: LysoGlow84 in water with different pH values during UV excitation (above) and 

with daylight (below) demonstrates its pH-dependent fluorescence and turbidity.  

2.4. Effects of LysoGlow84 on Cultured Primary Astrocytes 

To test for potential toxicity of LysoGlow84 towards mammalian cells, primary rat astrocyte cultures 

were incubated for 3 h or 6 h at 37 °C with or without LysoGlow84 in concentrations between 1 and 

30 µM in the incubation buffer (IB). As controls, the cells were incubated without LysoGlow84 but 

with DMSO at a final concentration equaling the DMSO content of the media of cells exposed to 30 µM 

LysoGlow84. None of the applied control and treatment conditions altered the morphology of the cells 

(data not shown) or compromised cell viability, as demonstrated by the absence of a significant decline 

in MTT reduction capacity (Figure 4A), by the absence of a significant increase in extracellular LDH 

activity (Figure 4B), and by the absence of an alteration in cellular lactate generation and release 

(Figure 4C). These results demonstrate that LysoGlow84 applied at concentrations of up to 30 µM does 

not acutely compromise the viability of cultured primary astrocytes. The absence of an increase in 



Mar. Drugs 2015, 13 926 

 

 

extracellular LDH activity demonstrates maintenance of membrane integrity during treatment, whereas 

the absence of alterations in MTT reduction capacity and glycolytic lactate production demonstrate 

that the basal metabolism of the cells was not affected by treatment with LysoGlow84.  

 

 

Figure 4. Test for acute toxicity and cellular staining of cultured astrocytes with LysoGlow84. 

The cells were incubated for 3 h (A–I) or 6 h (A–C) with the indicated concentrations of 

LysoGlow84 or with the vehicle control (DMSO). Cellular MTT reduction capacity (A), 

extracellular lactate dehydrogenase (LDH) activity (B) and extracellular lactate content (C) 

were determined. ANOVA revealed no significant difference between treatment groups. 

Incubation with DMSO in an amount representing the DMSO content applied with the 

highest LysoGlow84 concentration was for none of the parameters significantly altered 

(data not shown). Panel D–I show the fluorescence staining of the cultures after incubation 

without LysoGlow84 (controls without (D) or with DMSO (E)) or with LysoGlow84 in 

concentrations of 1 (F), 3 (G), 10 (H) or 30 µM (I). The scale bar in panel I represents 50 µm 

and applies to the panels D–I. 
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To investigate whether cultured astrocytes can be stained by LysoGlow84, the cells were incubated 

for 3 h at 37 °C with LysoGlow84 in concentrations ranging from 1 µM to 30 µM and the cellular 

fluorescence emitted at 420 nm was documented using a fluorescence microscope with UV light 

excitation at 330–380 nm. Cells incubated without LysoGlow84 did not show substantial auto-fluorescence 

under the applied conditions (Figure 4D). In contrast, astrocytes that had been incubated with LysoGlow84 

showed a concentration-dependent increase in cells fluorescence that was weak for cells treated with  

1 µM (Figure 4F) or 3 µM LysoGlow84 (Figure 4G) but strong for cells exposed to 10 µM (Figure 4H) 

or 30 µM LysoGlow84 (Figure 4I). 

High magnification of LysoGlow84-stained astrocytes revealed that the observed fluorescence had  

a spotted pattern, suggesting vesicular localization of the fluorescent dye in the cells (Figure 5A).  

Due to this spotted staining pattern (Figure 5) and the high fluorescence of the compound at pH 4–6 

(Figure 3), it was hypothesized that the accumulated LysoGlow84 might be located in lysosomes. 

Indeed, confocal analysis of astrocytes that had been co-incubated with LysoGlow84 and LysoTracker 

Red for 3 h at 37 °C revealed a high degree of co-localization of both fluorescent dyes (Figure 5).  

As LysoGlow84 does not acutely affect the metabolism and the viability of the astrocytes, the cellular 

fluorescence observed for LysoGlow84-treated astrocytes can be attributed to LysoGlow84 that has 

been accumulated by viable astrocytes. 

2.5. Staining of Living Individuals of the Flatworm Macrostomum Lignano with LysoGlow84 and 

LysoTracker® Red DND-99 

Living individuals of Macrostomum lignano were exposed to LysoGlow84 and LysoTracker Red 

for 1 h. The worms contained cells that emitted fluorescence derived from both dyes (Figure 6A, 

Figure 7). Structures with bright fluorescence of LysoTracker Red and LysoGlow84 are most probably 

rhabdites that have previously been identified as acidic and stained with a pH sensitive dye [5]. 

However, LysoGlow84 stained more structures in the worm than LysoTracker Red (Figure 6A). 

Especially regions at the upper end of the gut close to the mouth and around the genital pore were 

strongly stained by LysoGlow84, but not by LysoTracker Red (Figure 6C,E). Co-staining and simultaneous 

illumination at both excitation wavelength (340 nm and 561 nm) showed that LysoGlow84 emits 

minor fluorescence in the red (LysoTracker Red) emission wavelength. However, separate excitation 

images with only one excitation wavelength for each dye demonstrated a clear separation of staining 

by the different dyes in both regions of interest.  

Images with higher magnification showed great similarities between the staining of the worm’s 

epidermal cells with LysoGlow84 and LysoTracker Red (Figure 7A,B). However, the overlay image of 

both staining patterns revealed incomplete matching of both patterns, although vesicles stained by 

LysoGlow84 were in most cases also positive for LysoTracker Red (Figure 7C). 

Our live imaging experiments with Macrostomum lignano showed that some structures in the worm 

are stained by LysoGlow84, indicating that this compound is taken up by the worms during exposure 

to the dye in seawater at pH 8.1. Most likely the uncharged lipophilic form (Figure 2, structure 2a) of 

LysoGlow84 (Figure 1), which would be present at normal sea water pH, will cross the cell membranes. 

In acidic compartments of the cells, LysoGlow84 will be partially protonated and trapped, as is the 

case with LysoTracker Red [20,21]. This is the likely reason for the co-localization of both dyes in 
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many structures and compartments in the astrocytes and the worms. However, in both, cultured cells 

and worms, the fluorescence determined for LysoGlow84 and LysoTracker Red did not perfectly match, 

suggesting that both dyes differ in their potential to stain structures. Wiegand et al. [22] stated that 

LysoTracker Red stains all acidic structures in the cells, which is only partly corroborated by our  

study assuming that LysoGlow84 stains additional acidic compartments. Differences in cellular uptake, 

metabolism, pH sensitivity of fluorescence and/or export of LysoGlow84 and LysoTracker Red might 

contribute to the observed differences in the cellular localization. It also has to be considered that 

LysoGlow84, a compound derived from a bioactive natural product, could specifically stain some 

biomolecules and that part of the observed fluorescence signal is independent of the cellular pH. 

Attempts to calculate the exact pH values based on LysoGlow84 images of living cells by ratiometric 

measurements failed so far, because fluorescence emission at 400 nm was insufficient and just above 

baseline values. 

 

Figure 5. Confocal images of LysoGlow84 and LysoTracker Red fluorescence in  

cultured astrocytes. The cells were incubated with 10 µM LysoGlow84 and 70 nM of 

LysoTracker Red for 3 h at 37 °C. Images of LysoGlow84 fluorescence (A), LysoTracker 

Red fluorescence (B), and the overlay (C) which shows co-localization of both fluorescent 

dyes in yellow (highlighted in insets). Panel D shows the transmission light image of the 

cells. The scale bar in D represents 20.1 µm and applies to all images. 
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Figure 6. Flatworms of the species Macrostomum lignano were exposed for 3 h to 20 µM 

LysoGlow84 and 60 nM LysoTracker Red. A: Fluorescence images of the worm stained 

with LysoGlow84 (green) and LysoTracker Red (red). B: Transmission image for panel A 

shows well defined organs. C: Confocal image (projection) of one individual of Macrostomum 

lignano stained with LysoGlow84. One specific area close to the mouth in the anterior part 

of the gut is stained. D: Transmission image of the worm shown in panel C. E: Tissue around 

the female genital pore, assumed to be glands, stained with LysoGlow84. F: Transmission 

image for panel E showing well defined organs, including the female genital pore, the male 

stylus, and a developing egg. Scale bars are indicated in the transmission images (B, D, F). 
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Figure 7. A: LysoGlow84 staining of epidermal cell layer of living and intact individual of 

Macrostomum lignano (green). B: LysoTracker Red staining (red). C: Overlay of the 

images shown in panels A and B. D: Transmission image of shown images. The scale bar 

in D represents 6 µm and applies to all images. 

3. Experimental Section 

3.1. Chemicals 

Dulbecco’s modified Eagle’s medium (DMEM), penicillin G/streptomycin sulfate solution and 

LysoTracker® Red DND-99 were purchased from Gibco/Invitrogen (Darmstadt, Germany) and fetal 

calf serum and penicillin/streptomycin solution from Biochrom (Berlin, Germany). The enzymes glutamate 

pyruvate transaminase and lactate dehydrogenase (LDH) were purchased from Roche (Mannheim, 

Germany). NAD+ and NADH were from Applichem (Darmstadt, Germany). Deuterated solvents were 

from Roth (Karlsruhe, Germany). All other chemicals were purchased in analytical grade from Merck 

(Darmstadt, Germany), Fluka (Buchs, Switzerland), Roth (Karlsruhe, Germany), VWR (Darmstadt, 
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Germany) or Sigma (Steinheim, Germany). 96-well microtiter plates and 24-well plates were from 

Sarstedt (Nürnberg, Germany). F/2 Medium with silicatef/2-Si enriched [23]. 

3.2. Synthesis and Chemical Characterization of LysoGlow84 

Synthesis of 4-(naphthalene-2-yl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine 1: 

Naphthalene-2-carbaldehyde (0.78 g, 5 mmol), histamine dihydrochloride (0.94 g, 5 mmol) and 

potassium hydroxide (0.93 g, 16.5 mmol, 3.3 eq.) were dissolved in 120 mL of dry ethanol in a 250 mL 

round bottom flask. This solution was heated at 80 °C for 24 h. After cooling to room temperature, the 

solvent was distilled off under reduced pressure, and the remaining residue was chromatographed over 

silica gel by flash-chromatography, using a gradient of 8:1–1:1 (chloroform/methanol) to yield the 

product in 99% (1.25 g) as a yellow glass-like solid. 1H-NMR (DMSO-d6/CDCl3 (1:1)) δ 7.65–7.88 

(m, 4H), 7.39 (s, 1H), 7.30–7.53 (m, 3H) 5.22 (s, 1H), 2.98–3.20 (m, 2H), 2.54–2.82 (m, 2H) ppm; 
13C-NMR (DMSO-d6/CDCl3 (1:1)) δ 139.1, 134.4, 133.1, 133.0, 128.1, 127.9, 127.7, 127.6, 127.2, 

126.3, 126.2, 57.4, 41.5, 23.1 ppm. No signals were detected for C-4 and C-5 of the imidazole ring 

system. m/z = 499.2606 [2M + H]+ (calc. for C32H31N6
+: m/z = 499.2605). 

Synthesis of 4-(naphthalene-2-yl)-1H-imidazo[4,5-c]pyridine trifluoroacetate (LysoGlow84): 

In a 250 mL round bottom flask, 4-(naphthalene-2-yl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine 

1(1.18 g, 4.7 mmol), activated manganese(IV) oxide (11.75 g, 135 mmol, 25 eq.) and 2.2 mL pyridine 

(28 mmol, 6 eq.) were dissolved in 100 mL of acetone. This solution was heated at 80 °C for 18 h. 

After cooling to room temperature, the black mixture was filtered through a celite pad and a bright yellow 

filtrate was received. The filter cake was additionally washed with acetone/methanol mixture (1:1) 

until the filtrate was colorless. The solvents were distilled off under reduced pressure, and the  

residue was chromatographed over silica gel by flash chromatography, using a gradient of 8:1–1:1 

(chloroform/methanol) to yield the product as pale orange solid showing bright blue fluorescence  

at 366 nm. The product 2a was dissolved in 5 mL of tetrahydrofurane without intermediate 

characterization. Trifluoroacetic acid (1 mL) was added and the final product was precipitated by 

addition of diethyl ether until no further solid formed. The trifluoroacetate was yielded in 71% as 

yellow solid. Analysis of the product by NMR and mass spectrometry revealed the following 

parameters: 1H-NMR (DMSO-d6) δ 9.04 (s, 1H), 8.82 (s, 1H), 8.55 (d, 1H), 8.48 (d, 1H), 8.16 (s, 1H), 

8.09 (d, 1H), 8.03 (d,1H), 7.97 (m, 2H) ppm; 13C-NMR (DMSO-d6) δ 149.1, 144.7, 144.1, 137.6, 

135.6, 134.4, 132.8, 131.2, 129.5, 129.0, 128.8, 128.6, 128.3, 127.7, 126.4, 109.9 ppm. m/z = 491.1984 

[2M + H]+ (calc. for C32H23N6
+: m/z = 419.1978). 

All NMR spectra were recorded using a Bruker Avance 400 MHz spectrometer at 400 MHz  

(1H NMR) and 100 MHz (13C NMR). All experiments were carried out at 300 K using standard 

parameters. The chemical shifts of the 1H- and 13C-NMR spectra are reported in ppm relative to 

internal tetramethylsilane (δ = 0.00 ppm). High resolution mass spectra were recorded with a direct 

injection ESI-TOF mass spectrometer (Bruker micrOTOF, Bremen, Germany). 

The presence of one trifluoroacetate counter ion within salt 2 was confirmed by a NMR titration of 2 

in deuterated methanol against sodium methanolate. Two deprotonation steps were observed as shown 

in Figure 2, starting with the positively charged 2, passing the neutral molecule 2a and resulting in the 

negatively charged 2b. 
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3.3. Characterization of LysoGlow84 as Fluorescent Molecule 

Fluorescence spectra were measured using a Luminescence Spectrometer LS50b (Perkin Elmer). 

10−8 M LysoGlow84 was dissolved in following solutions. Solvents were: NaCl (30 g/L); LNaCl  

(10 g/L); artificial sea water NaCl (7.3 g/L); KCl (0.186 g/L); MgCl2·6H2O (0.203 g/L); CaCl2·2H2O 

(0.294 g/L); and NaHPO4·H2O (0.179 g/L); and MilliQ water. Solutions were adjusted with sodium 

hydroxide or hydrochloric acid to establish specific pH values. 

Fluorescence of LysoGlow84 dissolved in water at different pH values (Figure 2E) was visualized 

in a small dark chamber (Figure 2E) equipped with a Xenon lamp for UV excitation (maximal 

emission 366 nm).  

3.4. Cell Culture Experiments on Cultured Astrocytes 

Primary astrocyte cultures were prepared from the brains of newborn Wistar rats as previously 

described [24,25]. The harvested brain cells were seeded in culture medium (90% DMEM, 10% fetal 

calf serum, 18 units/mL penicillin G, 18 μg/mL streptomycin sulfate, 1 mM sodium pyruvate) at a density 

of 300,000 viable cells in 1 mL medium per well of 24-well plates and were cultured with 10% CO2 in 

the humidified atmosphere in a Sanyo incubator (Osaka, Japan). The culture medium was renewed 

every seventh day. For experiments, confluent cultures of an age between 13 to 17 days were used. 

If not stated otherwise, the cultures were washed with 200 µL of pre-warmed (37 °C) incubation 

buffer (IB; 145 mM NaCl, 30.4 mM KCl, 1.8 mM CaCl2, 1 mM MgCl2, 0.8 mM Na2HPO4, 20 mM 

HEPES, 5 mM glucose, pH = 7.4) and incubated for 3 h with 200 µL IB containing LysoGlow84 

and/or other compounds as indicated. Incubations were terminated by washing the cells twice with 1 mL 

ice-cold phosphate buffered saline (PBS; 10 mM potassium phosphate buffer, pH = 7.4, containing  

150 mM NaCl). 

Following treatment, viability of astrocytes was assessed by determining the extracellular activity  

of the cytosolic enzyme lactate dehydrogenase (LDH), the cellular MTT reduction capacity, and the 

release of glycolytically generated lactate. The extracellular LDH activity was measured by a microtiter 

plate-based photometric assay as previously reported [25] and is given as percent of the initial cellular 

LDH activity (determined in untreated cells that had been lysed with 1% (w/v) Triton X-100 in IB). 

MTT reduction capacity was determined by a modification of a previously described method [26]. 

Briefly, after a given incubation the cells were incubated with 1 mL MTT (0.5 mg/mL in IB) for 

further 1.5 h at 37 °C. After removing the supernatant, the formazane generated by the cells  

was dissolved in 500 µL DMSO. 50 µL of this solution was diluted with 150 µL DMSO and the 

absorbance was measured at 540 nm in wells in a microtiter plate reader (Tecan, Grödig, Austria).  

The extracellular lactate content in the medium was determined by an enzymatic assay also in 

microtiter plates as described previously [27,28]. 

3.5. Experiments on Macrostomum Lignano 

The culture of Macrostomum lignano was originally received from Dita Vizoso and Lucas Schärer 

(Basel) and was raised and maintained in 16/8 LD cycle in Petri dishes together with the diatom 

Nitzschia sp. at 20 ± 2 °C in our lab since 2011. Worms were incubated in F/2 medium for 1 h with  
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20 µM LysoGlow84 and/or 60–100 nM LysoTracker Red, washed with medium, and anesthetized  

with 7.18% MgCl2. 

3.6. Fluorescence Microscopy 

LysoGlow84 fluorescence in primary astrocyte cultures was monitored by using an Eclipse TE-2000U 

microscope with a DS-QilMc camera (Nikon, Düsseldorf, Germany) using appropriate filter sets 

(excitation: 330–380 nm, emission: 420 nm, dichromatic mirror: 400 nm).  

Co-localization of LysoGlow84 and LysoTracker Red in living cells and living individuals of 

Macrostomum lignano was monitored with a confocal laser scanning microscope TCS SP5 (Leica, 

Wetzlar, Germany) using appropriate excitation for the cellular fluorescence for LysoGlow84 (excitation: 

340 nm, emission: 430–470 nm) and LysoTracker® Red DND-99 (excitation: 561 nm, emission: 590 nm). 

Fluorescence spectra were measured using a Luminescence Spectrometer LS50b/Perkin Elmer. 

3.7. Presentation of Data 

Quantitative data of viability tests on astrocytes are presented as means ± SD of values that were 

obtained from experiments on three independently prepared cultures. The analysis of significance between 

groups of data was performed by ANOVA followed by the Bonferroni post hoc test with p > 0.05 

considered as not significant. The images documenting cellular fluorescence of LysoGlow84-treated 

astrocytes were derived from a representative experiment that was reproduced at least once on 

independently prepared cultures. Fluorescence images of worms are from representative experiments 

that were reproduced with similar outcome at least 5 times.  

4. Conclusions 

LysoGlow84 (Figure 1, structure 2) was chemically synthesized, its structure confirmed by mass 

spectrometry and NMR spectroscopy, and its fluorescent properties analyzed. The strong fluorescence 

of LysoGlow84 at slightly acidic pH makes it a good tool to investigate the localization of acidic 

cellular structures. Indeed, in cultured viable rat astrocytes and worm cells, LysoGlow84 stained cellular 

compartments and structures largely similar, but not identical to, staining with LysoTracker® Red 

DND-99. This demonstrates that LysoGlow84 is a new promising dye that stains acidic compartments 

including lysosomes. 
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