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Abstract
With high-throughput technologies providing vast amounts of data, it has become more important to provide sys-
tematic, quality annotations.The Gene Ontology (GO) project is the largest resource for cataloguing gene function.
Nonetheless, its use is not yet ubiquitous and is still fraught with pitfalls. In this review, we provide a short primer
to the GO for bioinformaticians. We summarize important aspects of the structure of the ontology, describe
sources and types of functional annotations, survey measures of GO annotation similarity, review typical uses of
GO and discuss other important considerations pertaining to the use of GO in bioinformatics applications.

Keywords: gene ontology; gene annotation; semantic similarity; gene function; function prediction

INTRODUCTION
The first attempts at classifying gene functions made

use of natural language annotations in databases.

Early on it was found that natural language by

itself is too vague and unspecific to accurately capture

the function of genes [1], as it is difficult to perform

searches and establish relationships with natural lan-

guage annotations. The first efforts towards a struc-

tured and controlled annotation of genes were

schemes such as the enzyme classification (EC)

system representing the function of an enzyme

using a four digit sequence of numbers [2]. Such

classification schemes are still widely used but were

found to be insufficient to accurately describe gene

function. This motivated the introduction of the

Gene Ontology (GO) [3], which has grown to be

the largest resource of its kind.

The ‘GO Consortium’ consists of a number

of large databases working together to define stan-

dardized ontologies and provide annotations to the

GO. The three ontologies it encompasses are non-

redundant and share a common space of identifiers

and a well-specified syntax. Apart from providing a

standardized vocabulary for describing gene and gene

product functions, one key motivation behind the

GO was the observation that similar genes often

have conserved functions in different organisms.

The combination of information from all organisms

in one central repository makes it possible to inte-

grate knowledge from different databases and to

infer the functionality of newly discovered genes.

Originally, the GO was developed for a general

eukaryotic cell [3]. The initial GO vocabulary, as

well as the available GO term annotations present

in the first years of its existence reflects this fact

(Figure 1). However, the GO Consortium now

includes several annotation groups that focus on pro-

karyotes [5], further contributing to the expansion of

the vocabulary and annotations.
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The goal of this review is to provide a primer to

the GO for bioinformaticians. After a brief introduc-

tion to the structure of the ontology, we discuss the

different types of annotations associated with the

GO. Not all annotations are assigned in the same

way and some are more trustworthy than others.

Computational inference methods are described

in more detail in this section, as they are used

to assign a large fraction of GO annotations. The

subsequent section discusses common measures of

similarity to compare the function of genes quantita-

tively. The last section reviews typical uses of the

GO and common pitfalls for the novice GO user.

WHAT IS THEGO?
The GO is a structured and controlled vocabulary

of terms. The terms are subdivided in three non-

overlapping ontologies, Molecular Function (MF),

Biological Process (BP) and Cellular Component

(CC) [6]. Each ontology describes a particular

aspect of a gene or gene product functionality, as

well as the relations between the terms. These rela-

tions are either ‘is_a’, ‘part_of’, ‘has_part’ or ‘regu-

lates’ relationships. There are two subclasses of the

‘regulates’ relationships: ‘positively regulates’ and

‘negatively regulates’. The ‘is_a’ relationship is not

used to imply that a term is an instance of another

term; instead, it connects a subtype to its more gen-

eral counterpart (Figure 2). The ‘part_of’ and

‘has_part’ relationships are logical complements of

each other [7]. The relationships form the edges of

a Directed Acyclic Graph (DAG), where the terms

are the nodes (Figure 2). This allows for more flex-

ibility than a hierarchy, since each term can have

multiple relationships to broader parent terms and

more specific child terms. Any path from a term

towards the root becomes more general as terms

are subsumed by parent terms.

Each gene is associated with the most specific set

of terms that describe its functionality. By definition,

if a gene is associated with a term, it is also associated

with all the parents of that term. The annotation

process is discussed in more detail in the next section.

The GO undergoes frequent revisions to add new

relationships and terms or remove obsolete ones. If a

term is deleted from the ontology, the identifier

for the term stays valid, but is labelled as obsolete

and all relationships to the term are removed [8].

Changes to the relationships do not affect annota-

tions, because annotations always refer to specific

terms, not their location within the GO.

Figure 1: Increase in the number of experimentally verified GO term assignments available for the respective
organism between September 2002 and September 2010. The GO consortium was initially focused on Eukaryotes,
a fact reflected in the distribution and increase of annotations available in the GO database. Contrast for instance
the steady growth of experimentally verified annotations for A. thaliana, S. cerevisiae or M. musculus with the sharp
increment in the number of experimentally verified annotations available for E. coli: from 33 in 2002 to 1852 in 2010.
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It is clear that relationships between the three

ontologies exist. For example, an instance of a BP

is the execution of one or more MFs [9]. Similarly,

relationships exist between the MF and CC ontolo-

gies. Recently, these relationships have been

integrated into the GO by introducing some inter-

ontology links [7]. It should be noted that for the

moment there are two concurrent versions of the

GO, the filtered and the full GO. The main differ-

ence is that the filtered GO does not contain any

‘has_part’ or inter-ontology relationships. Many of

the analysis tools can only use the filtered GO.

Thus, the full expressivity of the GO structure is

not always available.

WHEREDOANNOTATIONS COME
FROM?
Annotations connect genes and gene products to GO

terms. Each annotation in the GO has a source and a

database entry attributed to it. The source can be a

literature reference, a database reference or compu-

tational evidence [4, 6]. In addition, there are three

qualifiers used to modify the interpretation of an

annotation, ‘contributes_to’, ‘colocalizes_with’ and

‘NOT’, making them an integral part of the annota-

tion [8].

Perhaps the most important attribute of an anno-

tation is the evidence code. The 18 evidence

codes available describe the basis for the annotation

(Figure 3). These evidence codes are divided into

four categories. General guidelines for deciding

which evidence code to use are given in Figure 4.

It should be kept in mind that one gene can be

annotated to the same term with more than one

evidence code and that multiple annotations to the

same term for the same gene could even share the

same reference. This makes it possible to see whether

an annotation is supported by more than one type of

evidence. However, if the gene is annotated with

more than one evidence code and one evidence

code is a superclass of another, the annotation with

the more general evidence code does not need to be

specified explicitly.

INFERRED FROM EXPERIMENT
The most reliable annotations are those inferred

directly from experimental evidence. Such annota-

tions are also important to seed the ontology so that

the gene function of related genes can be inferred by

computational methods [10]. At present, most

researchers do not directly add their findings to the

GO. The largest fraction of manual annotations are

Figure 2: The structure of the GO is illustrated on some of the paths of term GO:0060491 to its root term.Note
that it is possible for a term to have multiple parents.
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made by professional curators examining the litera-

ture [11]. In principle, researchers directly annotating

genes they themselves characterized would be more

efficient, but this practice has not yet caught on

because annotation is time consuming and anno-

tation guidelines are complicated [12]. There are

efforts underway to make it compulsory for authors

to submit GO term suggestions with article

manuscripts [13]. A short overview of how annota-

tions are made is given in [9].

INFERRED FROM
COMPUTATIONALMETHOD
There are seven evidence codes associated with com-

putational inference, out of which six imply manual

Figure 4: A decision tree for deciding which evidence code to use. Figure adapted from http://www.geneontology
.org/GO.evidence.tree.shtml.

Figure 3: GO evidence codes and their abbreviations. Evidence code NR (not recorded) is used for annotations
assigned prior to the use of evidence codes, and is not assigned to new annotations.
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curation (ISS, ISO, ISA, ISM, IGC, RCA). The

evidence code IEA is used for all inferences made

without any human supervision, regardless of the

method used. The IEA evidence code is by far the

most abundantly used evidence code (Figure 5).

The Gene Ontology Annotation project (GOA,

[14]) is the largest contributor of IEA annotations,

most of which are derived from the protein domain

database InterPro [15]. The guiding idea behind

computational function annotation is the notion

that genes with similar sequences or structures are

likely to be evolutionarily related, and thus, assuming

they largely kept their ancestral function, they might

still have similar functional roles today. In this sec-

tion, we briefly review the main computational

methods used to infer function. For an in-depth

treatment of the topic, we refer the interested

reader to two recent reviews [16, 17]. Alongside

each method mentioned here, we indicate the evi-

dence code that would be used to support the

respective GO annotation.

The most straightforward approach of computa-

tional functional annotation is to infer the function

of a gene based on the functions of genes returned by

a database search for similar genes. Traditionally,

only sequence similarity is used [18], but some meth-

ods also use structural similarity. For instance,

Liu et al. [19] introduced a method that makes use

of the similarity of protein surface pockets to infer

GO terms related to the protein. The ISS evidence

code was originally used for all annotations derived

from sequence-based analyses and is appropriate

when multiple kinds of computational evidence are

used. Note that annotations marked with ISS evi-

dence code can also be partly derived from structural

similarity.

ISS is a superclass for the ISA, ISO and ISM evi-

dence codes. The three sub-categories of the ISS

should be used when only one method was used

to make the inference. For example, to improve

the accuracy of function propagation by sequence

similarity, many methods take into account the phy-

logenetic relations of genes. Most of these methods

rely on orthology (ISO evidence code), because the

function of orthologs is believed to be largely con-

served across species [20]. In a typical analysis, char-

acterized and uncharacterized genes are clustered

based on sequence similarity measures and phyloge-

netic relationships. The function of unknown genes

is then inferred from the function of characterized

genes within the same cluster (e.g. [20,21]).

Alternatively, methods based on protein profiles

account for the fact that sequence conservation

might be very uneven across the length of two func-

tionally related genes. This is because the function of

a protein is often dictated not by the shape and

structure of the whole protein, but rather by specific

regions and residues, such as catalytic sites, prosthetic

group attachment sites or other binding sites [22, 23].

Another approach to function prediction consists of

supervised machine learning based on features derived

from protein sequence [24–27] (ISM evidence code).

Figure 5: The distribution of evidence codes among annotations in the GO on 1April 2010.

A primer for bioinformaticians 727



Such methods use a training set of classified seque-

nces to learn features that can be used to infer gene

functions. Although few explicit assumptions about

the complex relationship between protein sequence

and function are required, the results are dependent

on the accuracy and completeness of the training

data.

As Rentzsch and Orengo [16] argue, one of the

biggest challenges of automated function prediction

is choosing the right threshold beyond which func-

tion can be propagated. Using a predefined cut-off

level is not a good practice as the optimal threshold

will vary depending on which genes are evaluated.

Indeed, there are several instances of proteins with

high sequence similarity but different functions, and

conversely, of proteins with similar function but

highly divergent sequences [28, 29] and the user of

annotations derived by computational methods

should always have these intricacies in mind.

INFERRED FROMAUTHOR
STATEMENT
Annotations in this group fall into two categories.

Traceable Author Statements (TAS) refer to papers

where the result is cited, but not the original evi-

dence itself, such as review papers. On the other

hand a Non-traceable Author Statement refers to a

statement in a database entry or statements in papers

that cannot be traced to another paper.

CURATORSTATEMENTAND
OBSOLETE EVIDENCE CODES
Three evidence codes fall in this category: IC, ND

and NR. If an assignment of a GO term is made

using the curator’s expert knowledge, concluding

from the context of the available data, but without

any ‘direct’ evidence available, the IC evidence code

is used. The ND evidence code indicates that the

function is currently unknown (i.e. that no charac-

terization of the gene is currently available). Such an

annotation is made to the root of the respective

ontology to indicate which functional aspect is

unknown. Hence, the ND evidence code allows

for a subtle difference between unannotated genes

and uncharacterized genes. Note that the ND code

is also different from an annotation with the ‘NOT’

qualifier (which indicates the absence of a particular

function). The NR evidence code labels annotations

that were made before the introduction of evidence

codes and as such may not be used for new annota-

tions. It is obsolete and has been superceded by the

ND evidence code. Although a few legacy NR

annotations remain within the GO they will prob-

ably be removed in the nearby future.

IMPORTANCEOF EVIDENCE AND
QUALIFIERS
GO annotations should always be considered with

their qualifier and evidence code. A qualifier, such as

‘NOT’, changes the interpretation of an annotation.

Similarly, although the evidence code is not a direct

measure of the quality of the annotation, some evi-

dence codes are regarded as more trustworthy.

Terms annotated with ND are typically ignored as

no knowledge is available on the function of these

genes. NR annotations are obsolete and should be

ignored since the evidence type used for the annota-

tion is not known.

Most studies also disregard all terms annotated

without curation (IEA) [30–33], consequently leav-

ing out more than 98% of the annotations in the GO

(Figure 5). The mistrust many researchers have

towards IEA annotations is backed by studies sug-

gesting that annotations from the available databases

should be used with caution [34]. One of the leading

factors why IEA annotations are not used is because

this often leads to circular reasoning when used

in computational analyses. On the other hand,

IEA annotations are useful in providing a first appr-

oximation to experimental biologists. Ultimately, no

annotations should be regarded with complete con-

fidence, as some studies show that even the curated

annotations in GO are not free from annotation

errors [35].

To estimate the reliability of unsupervised com-

putational assignments, we compared the September

2008 and September 2010 versions of GO annota-

tion data for four representative Eukaryotes

(Arabidopsis thaliana, Caenorhabditis elegans, Drosophila
melanogaster and Saccharomyces cerevisiae). We consid-

ered all IEA annotations of the 2008 database that

either had an experimental evidence code or were

completely absent in the 2010 release. We used the

annotations confirmed experimentally as surrogate

for correct predictions and the annotations dropped

from the database as surrogates for wrong predic-

tions. In addition, to estimate the coverage of com-

putational predictions, we computed the fraction of

newly added experimental annotations that had been
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previously computationally predicted. This yielded

Figure 6.

Most terms lie in the upper half of the graph,

which suggests that most computational predictions

are correct. As one would expect, more general

terms tend to be better predicted, and in many

cases are better covered as well. A notable exception

is the term GO:0005515 (protein binding) in the MF

ontology. The reason for its particularly low cover-

age is likely due to its usage guideline: ‘Annotation

to this term should use the IPI evidence code so that

the protein being bound can be specified in the

with modifier of the evidence code’ (http://gowiki

.tamu.edu/wiki/index.php/Category: GO:0005515\_!

\_protein\_binding#Notes).

Terms falling in the bottom right part of the chart

have high coverage at the expense of accuracy.

Consider for instance term GO:0016021 (integral

to membrane) from the CC ontology: its immediate

parent term GO:0031224 (intrinsic to membrane),

is positioned in the top right corner of the chart.

This suggests that in this case, the computational

Figure 6: Estimationof correctness andcoverage of computationally inferredGO terms (IEA) fromSeptember2008.
The estimation is based on data for four well annotated Eukaryotes: A. thaliana,C. elegans,Drosophilamelanogaster and
Saccharomyces cerevisiae. Confirmed predictions are those 2008 IEA annotations that were ‘promoted’ to one of
experimental evidence codes (EXP, IMP, IGI, IPI, IDA, IEP) in the September 2010 annotation file. Rejected predictions
are IEA annotations in 2008 that were subsequently removed. The X-axis is a measure of completeness (‘recall’). It
represents the fraction of genes having experimentally validated annotations, added in the 2008^10 period, that
were correctly predicted in the 2008 IEA annotations file. The Y-axis is a measure of correctness (‘precision’). It
represents the fraction of genes having IEA annotations in 2008, later confirmed by experimentally validated
annotations (in the 2008^10 period). The size of each bubble reflects the frequency of the respective GO term in
annotations assigned using experimental evidence codes and is a surrogate for the generality of the term:
the larger the bubble, more abundantly is the term used in GO experimental annotations. To minimize estimation
errors, terms included in the figure have at least five confirmed 2008 IEA annotations and five rejected IEA annota-
tions, resulting in 72 BP terms, 85 MF terms and 37 CC terms. The files containing annotations were downloaded
from the GOA database [14].
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predictions would have been better if they had been

slightly less specific. Overall, these results corroborate

the idea that unsupervised computational assign-

ments can provide first approximations or working

hypotheses that can be refined or verified in subse-

quent steps [11, 36].

HOWAREGOANNOTATIONS
COMPAREDQUANTITATIVELY?
One of the main purposes of GO annotations is a

quantitative comparison of gene function. Such

comparison is based on a measure of function simi-

larity between two genes, defined over the GO

terms associated with these genes. In this section,

we review the main similarity measures commonly

used, with an attempt at motivating intuitively their

mathematical formulas. For a more thorough survey

of similarity measures and their mathematical proper-

ties, we refer the reader to more specialized reviews

[28, 37].

SIMILARITYOF TWOGOTERMS
We start with the simplest similarity measure, the

function similarity between two GO terms. One

early idea was to define the similarity as a function

of the distance between the two terms in the ontol-

ogy graph [38] or the length of their common path

from the root, i.e. the number of common parents

[39]. However, pure graph-based similarities suffer

from the fact that the depth of a term within the

ontology is not necessarily indicative of its specificity

[40]. This motivated the formalization of the notion

of specificity with the definition of the information

content (IC) of a given term:

ICðcÞ :¼ � log pðcÞ,

where p(c) is the probability of term c [40]. Hence,

the root term, which is implied by all terms and thus

has a probability of 1, has an IC of 0. By contrast,

rare terms have a high IC. The term probabilities are

commonly estimated from their frequencies in the

entire database, i.e. the number of genes associated

with c, divided by the total number of genes in the

ontology [37].

Resnik [40] combined the notion of IC with the

ontology structure to define the similarity of two

terms as the IC of the most informative common

parent. Formally,

Sim Resnikðc1,c2Þ :¼ maxc2Sðc1,c2ÞICðcÞ,

where Sðc1,c2Þ is the set of all terms that subsume

both c1 and c2. A slight variation consists in taking the

IC of the lowest common parent [41], which coin-

cides in most cases with the most informative

common parent, but is faster to compute.

An inconvenient aspect of this measure is that it is

not normalized. To remedy this, Lin normalized the

measure between 0 (no similarity) and 1 (identical)

[42]:

Sim Linðc1,c2Þ :¼
2� SimResnikðc1,c2Þ

ICðc1Þ þ ICðc2Þ
:

But due to the normalization, Lin’s measure does not

convey the specificity of the terms compared. As a

result, genes that are annotated to general terms tend

to have higher similarities on average than genes

annotated to specific terms.

This phenomenon is referred to as the ‘shallow

annotation problem’ [43]. This motivated Schlicker

et al. [44] to refine the measure by weighting it by a

factor accounting for the specificity of the terms:

SimSchlickerðc1,c2Þ :¼ SimLinðc1,c2Þð1� pðcMICAÞÞ,

where pðcMICAÞ is the probability of the most infor-

mative common ancestor of c1 and c2.

Though IC-based measures are less influenced by

the idiosyncrasies of the ontology structure than their

graph-based counterparts, they are still biased,

because some terms are used more often and some

research areas receive more attention than others

[28]. Another caveat is that in principle, different

relationships within the ontology should not be trea-

ted equally.

In practice this is often not done and often all

relationships are treated equally to simplify the ana-

lysis [43]. Furthermore, it should be noted that not

all relationships are represented equally within the

ontology [45]. While ‘is_a’ relationships alone form

a complete tree that can be used for comparisons the

same is not true for other relationships.

GO SIMILARITYOF TWOGENES
In the previous section, we discussed similarity mea-

sures for pairs of GO terms. In most studies, how-

ever, the analysis is at the level of genes, each of

which can be associated with more than one term.

The simplest approach consists in considering all pos-

sible pairs of GO terms associated with both genes
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and to use either the average or the maximum simi-

larity as measures for the two genes [43, 45]:

GeneSimavgðG1,G2Þ :¼ avgc12TðG1Þ,c22TðG2ÞSimðc1,c2Þ

or

GeneSimmaxðG1,G2Þ :¼ maxc12TðG1Þ,c22TðG2ÞSimðc1,c2Þ,

where T(G) is the set of GO terms associated with

gene G.

However, both variants have flaws. The main pro-

blem of the average is that considering all pairs of

GO terms penalizes multifunction proteins: in parti-

cular, the similarity between a multifunction gene

and itself can be quite low, because the average

tends to be dominated by pairs of different GO

terms (Consider a gene with n GO terms. Of all

the pairs, the number of pairs involving identical

GO terms scales linearly in n, but the number of

pairs involving different GO terms scales quadrati-

cally). The maximum suffers from the opposite pro-

blem, namely that genes that differ in all but one

functional aspect will still show a high similarity

under this measure. To balance between the two,

Azuaje et al. [46] suggested computing the average

over the reciprocal best matching pairs only.

Instead of reducing gene similarity to the similarity

of paired GO terms, other measures consider all

implied GO terms at once. One such measure is

the Term Overlap (TO), which considers the

number of common terms between genes [47].

Note that the set of terms associated with a gene

by definition includes the parents of all terms a

gene is annotated with. A normalized version of

this measure also exists, but was found to suffer

from the shallow annotation problem [48]. Yet

another measurement converts genes into binary

vectors of length equal to the number of terms in

the ontology by setting the i th component to 1 if the

gene is annotated with the corresponding term and 0

otherwise. The distance between two genes can then

be computed using a metric on the vector space,

such as the cosine of the angle between them [49].

Lastly, set similarity measures, such as the Jaccard

index, can also be used to compare the sets of

terms with which two genes are annotated [50].

COMPARING SIMILARITY
MEASURES
Various measures reviewed above formalize the

notion of function similarity in slightly different

ways. Thus, choosing the best measure is a subjective

decision. Conceptual arguments can suffice to dis-

qualify a measure if it has an obvious flaw, e.g. a

low reported similarity for identical genes or a high

reported similarity for completely different ones.

Else, several studies have attempted to compare func-

tional similarity measures in terms of how well they

correlate with other measures that are assumed apriori
to be linearly linked with function, such as sequence

similarity (e.g. [45, 48]) or gene co-expression levels

(e.g. [43]). But the strong premises of such assess-

ments undermine their usefulness, because one of

the main goals of defining a measure of gene func-

tion similarity is precisely to investigate the rela-

tionship between function and other aspects of

genes such as sequence or expression. Ultimately,

we believe that the choice of similarity measure

should be acknowledged as inherently subjective.

Instead of trying to identify the best measure, studies

should demonstrate that their conclusions are not

sensitive to the choice of similarity measure (as

done e.g. in [51]).

WHYUSETHEGO?
The GO can be used as a database to look up genes

with similar functionality or location within the cell

[29]. In this way a search for interacting genes in one

organism or similar genes in two organisms can be

narrowed down. If the terms associated with genes

are too specific, more general parent terms can be

used to give a snapshot of an organism’s gene func-

tions that can more easily be compared with other

organisms [5]. Another standard use of the GO

is to reason across the relations using an automatic

logical inference tool [5]. Inferences can be made

by following simple rules, for example, if A ‘is_a’ B
and B is ‘part_of’’ C then A is also ‘part_of’’ C. In

this way relations that are not immediately obvious,

but captured in the GO, can be automatically

uncovered.

The GO is frequently used to analyse the results of

high-throughput experiments. One possibility is to

infer the location or function of genes that are over-

or under-expressed [8, 12]. In functional profiling the

GO is used to determine which processes are differ-

ent between sets of genes. This is done by using a

likelihood-ratio test to determine if GO terms are

represented differently between the two gene sets

[8]. Both hypothesis-generating and hypothesis-

driven queries can be addressed in this way.

In hypothesis-generating queries, the goal is to find
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which terms are significantly different between the

sets, whereas in hypothesis-driven queries, it is to test

if some set of terms are different. In hypothesis-

generating queries a multiple-test correction needs

to be applied, but because of the amount of terms

in the GO, the power of the test is significantly

reduced. Hypothesis-driven queries do not require

any multiple-test corrections. To reduce the effect

of doing a multiple-test correction the number of

tests done in hypothesis-generating queries need to

be minimized. This is commonly done by running

the query on a GO slim. A GO slim ontology is a

reduced subset of general terms [8]. The annotations

for a set of genes can then be mapped onto the GO

slim. Because of the structure of the GO, an annota-

tion may be mapped to many terms in the GO slim.

Another standard use of GO slims is to give a high-

level categorization of genes based only on the terms

within the GO slim. It should be added that there are

two types of GO slims. The first type is a subset of

the GO used to facilitate the examination of a parti-

cular taxon subdivision. The second type is a set of

broad GO terms used to aggregate the GO into large

bins used for the representation of annotation data.

Additionally, the GO is used to infer the function

of unannotated genes. Genes that behave similarly to

an unannotated gene are identified from the experi-

ment and their function is evaluated to be transferred

to the unannotated gene. Many of these assigned

terms will be false positives, but the correct terms

should appear more often than is dictated by

chance or indirect effects [5].

The GO is also used to infer protein–protein

interactions (PPI) [33]. Shin et al. [32] used both

PPI and GO data to show that interacting proteins

are colocated within the cell. Another approach is to

test the validity of inferred PPI networks by looking

at the functional similarity of genes within the GO

[30]. In this case, it is important that annotations

inferred from previous PPI studies (IPI evidence

code) are left out from the analysis.

A wealth of tools has been developed for applying

the GO to various tasks. Links to most of the more

prominent tools can be found on the GO website

(http://geneontology.org). To give broader access to

the GO, the GO consortium developed the AmiGO

application (http://amigo.geneontology.org) [52].

AmiGO can be used online from the GO website or

downloaded and installed. The application contains

interfaces for searching, visualizing and downloading

data in the GO. AmiGO also features BLAST search,

Term Enrichment and GO Slimmer tools. The

Term Enrichment tool is used for functional profil-

ing and the GO Slimmer is used to map annotations

to the terms within a GO slim. Lastly, AmiGO also

makes it possible to directly query the GO database.

There are many other tools available for analysing

GO data. Because not all the tools use exactly the

same methods the results can be very different and it

is recommended that researchers try a few different

tools before making an interpretation [8].

While it can be a powerful inference tool,

researchers using the GO should familiarize them-

selves with the structure of the ontology and also

with the methods behind the tools they use to

ensure that their results are valid.

CONCLUSION
The number of associations in the GO has grown

exponentially since its inception. There were 30 654

associations on 1 July 2000 and 7 781 954 associations

on 1 July 2003 [6]. This number had grown to more

than 16 million in 2007 [8] and more than 55 million

in 2010. Due to the inference methods used, most of

the growth has been from IEA associations. In con-

trast, the curated associations component has only

grown linearly. The ontology itself has also been

steadily growing, from less than 5000 terms in

2000 [6] to more than 30 000 in 2010. The

Reference Genome Project has been initiated to

focus the annotation efforts of various groups on a

number of predetermined homologous genes [10].

This will not only help in seeding the ontology,

but through a concentrated effort on certain

branches the overall structure of the ontology will

also be improved.

One shortcoming of the GO is that annotations

only describe the normal, healthy functioning of

genes [12]. In addition, data on functional coordina-

tion between multi-function genes are not explicitly

stored [31]. Another shortcoming is that until

recently no relationships between the three ontolo-

gies were recorded [7, 12]. Although inter-ontology

relationships are now recorded they are only

recorded in the full GO, which is not used by all

analysis tools, making it necessary to maintain two

versions of the GO.

The structure of the GO is predominantly the

result of painstaking manual curation over the past

10 years. Through many additions and changes the

GO has grown to be quite large and in many cases
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the structure is not optimal anymore. More specific

subsets are available, in the form of a prokaryote

subset and GO slims. Although there are quite a

large number of GO slims available on the GO web-

site, only seven of them are actively maintained

(Of the seven GO slims that are maintained by the

GO consortium two are for specific organisms

(Schizosaccharomyces pombe and Candida albicans), two

are for broader classes of organisms (Yeast and

Plant slims) and one is a generic GO slim. In addition

there is also the UniProtKB-GOA and whole pro-

teome analysis and the Protein Information

Resource slim. These GO slims are included as

part of the GO flat file, but can also be downloaded

individually from the website). The manual creation

of GO slims is a painstaking process as the informa-

tion loss from both the graph-structure and the

gene-product annotation needs to be minimized

[53]. A recent paper discusses the automatic creation

of GO slims based on an information theoretic

approach [53]. The analysis in the paper shows that

the terms chosen for inclusion in existing GO slims

are not always ideal and often subject to a bias.

Recently, researchers have also used techniques

from information theory to automatically organize

and optimize the structure of the GO [54]. It is

likely that in the future such approaches will be

used more frequently for the construction and cura-

tion of both the full GO and GO slims.

There are a number of other ontologies and

schemes for cataloguing genes available to research-

ers. In order to centralize the data, projects have been

initiated to clean up and integrate ontologies [4, 16].

The most important such example is the Open

Biomedical Ontologies (OBO) group which,

guided by a set of principles similar to the ones the

GO was built upon, seeks to standardize bio-ontol-

ogies [4]. As part of their efforts the OBO developed

the OBO biological ontology file format for specify-

ing ontologies. Their efforts also include the OBO

Foundry, a group that is devoted to the integration

of ontologies according to the OBO principles. In

addition, this group is also concerned with removing

redundant ontologies and aligning the development

of ontologies by separate communities. An important

tool in the standardization of ontologies is the OBO-

Edit ontology editor (www.obo-edit.org) which is

developed and maintained by the GO consortium.

Linking ontologies will increase their usefulness

and power, but will also provide many more pitfalls

for inexperienced users. Probably the most

challenging aspect will be the integration of associa-

tions made from different types of evidence and

blending the contents of the different ontologies to

give maximal information while still remaining clear

and concise. These steps will be necessary to ensure

that both inter- and intra-ontology comparisons

return meaningful results.

Key Points

� The GO is a structured and controlled vocabulary of terms and
relationships for cataloguing gene function.

� Annotations in the GO can be experimentally or computation-
ally derived, different classes of annotations have different levels
of confidence.

� The vast majority of annotations in the GO are automatically
inferred and not curated.

� Terms in the GO can be compared based on their information
content, which is inversely proportional to the probability of a
term.

� Genes can be compared based on the terms that they are anno-
tatedwith in the GO.

� The GO is a powerful tool for data analysis, but its usage is
fraught with pitfalls for inexperienced users, which could lead
to false conclusions being drawn.
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