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Pharmacogenomics is the study of the contribution of
inheritance to variation in drug response—variation that
can range from a loss of the desired therapeutic effect at
one end of the spectrum to an adverse drug reaction at
the other (1,2). The National Institute of Diabetes and
Digestive and Kidney Diseases (NIDDK) recently spon-
sored a workshop on the pharmacogenomics of metfor-
min, the most widely prescribed drug for the treatment of
type 2 diabetes. Metformin displays wide variation in
efficacy and occasional serious adverse reactions (3). A
report of that workshop is published in this issue (4).
Pawlyk et al. (4) provide an overview of the current status
of metformin pharmacogenomics as well as insight into
the current state of pharmacogenomics as a discipline.
Pharmacogenomic information is increasingly being
implemented clinically and is being used to adjust drug
dosage or to avoid adverse drug reactions (5). At the same
time, pharmacogenomic research has moved from a focus
on the contribution of genetics to variation in processes
that we already understand—for example, drug metabo-
lism and known drug target(s)—to also become a tool for
discovery by using techniques as diverse as genome-wide
association studies (GWAS), next-generation DNA se-
quencing, genomic studies of patients enrolled in very
large clinical consortia, or the addition to genomic infor-
mation of other, complementary “omics” data sets. Appli-
cation of these techniques has made it possible to move
beyond merely identifying biomarkers to obtaining novel
mechanistic insights. Several of these experimental
approaches have already been applied to study inherited
variation in metformin response or were suggested by
participants in the NIDDK workshop. There has already
been significant progress in our understanding of metfor-
min pharmacogenomics, particularly with regard to its
pharmacokinetics, i.e., factors that determine the concen-
tration of drug that reaches its target(s). However, many
questions remain unanswered, especially with regard to
metformin pharmacodynamics, i.e., targets for the drug,

downstream signals from those targets, and mechanisms
of drug action.

Metformin, unlike most drugs, does not undergo bio-
transformation. It is not metabolized (6). However, it is
transported into and out of cells and organs (7–9). There
have been successful pharmacogenomic studies of metfor-
min transporter genes such as OCT1 (SLC22A1), MATE1
(SLC47A1), and MATE2 (SLC47A2) (Fig. 1) (7–9). However,
even though OCT1 encodes the major metformin trans-
porter in the liver and is functionally genetically polymor-
phic, and even though common genetic polymorphisms in
the MATE1 and MATE2 genes have been associated with
altered metformin-related glucose-lowering effect, the
practical clinical utility of these transporter gene polymor-
phisms remains to be demonstrated. The same is true of
polymorphisms identified during a candidate gene study of
40 genes in potential metformin target pathways, such as
the AMP-activated protein kinase pathway (10).

There are now many examples in which GWAS have
been applied successfully to study drug response, both
efficacy and adverse drug reactions, in the setting of large
prospective clinical trials (11,12). Many population-based
pharmacogenomic GWAS have also been performed. The
one large metformin response GWA study that has been
published, the Genetics of Diabetes Audit and Research in
Tayside Scotland (GoDARTS) study (13–15), a population-
based study, reported a genome-wide association “signal”
on chromosome 11 in an area containing seven genes, in-
cluding the ATM (ataxia telangiectasia mutated) gene. How-
ever, functional validation of a possible role for ATM in
metformin response remains a subject of controversy
(16,17). As a result, although pharmacogenomic studies of
metformin have already helped us to understand the role of
inheritance in its pharmacokinetics (Fig. 1), and although
intriguing initial results have been obtained, the clinical util-
ity of those observations remains to be demonstrated, and
the critical question of clinically relevant genetic variation in
targets for the drug also remains unanswered. However, if
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the suggestions made at the NIDDK workshop can be
implemented—such as the creation of a large national or
international consortium for metformin pharmacogenomic
studies or complementing pharmacogenomic studies with
other “omics” techniques (e.g., metabolomics)—we might
anticipate future insight into mechanisms of metformin ac-
tion and potentially the identification of novel drug targets
for the treatment of type 2 diabetes. In addition, although
the use of metformin to treat or prevent cancer was not
addressed during the NIDDK workshop, pharmacogenomic
studies might also contribute to that expanding clinical
application of metformin (18). As a result, implementation
of the recommendations and suggestions contained in the
report by Pawlyk et al. (4) might help make it possible to
identify and validate biomarkers with clinical utility for bet-
ter individualizing metformin dosage and use. Equally impor-
tant, the results of such studies might also have the potential
to provide insight into mechanism(s) of action of this very
important drug and, as a result, the possible identification of
novel drug targets for the treatment of type 2 diabetes.
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Figure 1—Schematic representation of the cellular locations of SLC
transporters that contribute to metformin pharmacokinetics. It has
been reported that the genes encoding SLC22A1, MATE1, and
MATE2 are genetically polymorphic and that these polymorphisms
contribute to individual variation in metformin pharmacokinetics
(7–9). SLC22A1 = OCT1, SLC22A2 = OCT2, SLC22A3 = OCT3,
SLC29A4 = ENT4, SLC47A1 = MATE1, and SLC47A2 = MATE2.
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