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ABSTRACT
Objective: CGG repeat expansion on the fragile X 

mental retardation 1 (FMR1) gene is used to diagnose 
fragile X syndrome. Previous studies have discussed the 
correlation between the number of CGG repeats and its 
associated phenotypic components. The objective of 
this study is to determine whether the number of CGG 
repeats differ between carriers of genetic disorders versus 
noncarriers.

Methods: We performed a retrospective chart review 
of 2867 patients who received genetic screening at our 
fertility clinic between June 2013 and July 2015. The 
number of CGG repeats on allele 1 and allele 2 on the 
FMR1 gene was collected and it was specified whether the 
patient was a carrier or a noncarrier of a specific mutation. 
Patients with CGG repeats greater than or equal to 45 were 
excluded from the study.

Results: Carriers (n=759) had a reduced number of 
repeats compared to noncarriers (n=2024) on allele 1 
(p=.03), allele 2 (p=.02) and the average of both alleles 
(p=.01). Additionally, the number of CGG repeats from 
the ten most carried diseases from the cohort were used 
and tested individually for clinical significance against 
the number of repeats in the noncarriers. A reduction in 
repeats was shown in several mutations and a few were 
outliers.

Conclusion: Our results demonstrate that there 
is a significant reduction in the number of CGG repeats 
in carriers of genetic mutations. A larger scale study of 
disease carrying patients would be beneficial.
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INTRODUCTION
The fragile X syndrome is one of the most common 

causes of inherited mental retardation. The disorder is a 
result of intergenerational instability of a trinucleotide CGG 
repeat expansion located on the 5' translated region of 
the X-linked fragile X mental retardation 1 (FMR1) gene 
(Brown, 2002). The full mutation occurs when there are 
greater than 200 CGG repeats on the FMR1 gene, which 
results in the gene becoming fully methylated and thus 
silenced. The numbers of CGG repeats fall into four 
categories based on their stability: normal (up to 44 CGG 
repeats); intermediate (45-54 repeats); premutation (55-
200); and full mutation (>200 repeats) (Maddalena et al., 
2001). Some recent studies have used a lower boundary 
to define the beginning of the intermediate stage (e.g., 41 
CGG repeats) (Hall et al., 2011).

Repeat expansion in the "premutation" range, between 
55 and 200, can cause distinct clinical manifestations or 
neuropsychological changes. Disorders such as fragile 
X-associated tremor/ataxia syndrome (FXTAS) and fragile 
X-associated premature ovarian insufficiency have been 

associated with the premutation (Loesch & Hagerman 
2012).

Many studies have correlated the number of CGG 
repeats with a phenotypic presentation (Mailick et al., 
2014). For example, studies have looked at whether the 
number of CGG repeats differs in patients with Parkinson's 
Disease, Essential Tremor, and Multiple Sclerosis (Cilia et 
al., 2009; Clark et al., 2015; Zhang et al., 2009). Patients 
with the premutation alleles have been described to have 
additional phenotypic components such as developmental 
problems, autism spectrum disorders, attention deficit 
hyperactivity disorders, shyness, anxiety and seizures. 
Fibromyalgia and hypothyroidism have also been found to 
be more common in carriers of the premutation compared 
to controls (Rodriguez-Revenga et al.,2009; Roberts et al., 
2009; Hessl et al., 2005; Bourgeois et al., 2011; Coffeyet 
al., 2008).

A lower-than-normal range of CGG has been associated 
with a myriad of clinical presentations, ranging from 
increased thirst and memory loss to a higher incidence 
of breast and uterine cancer, as well as increased risk of 
having a child with developmental impairment or mental 
disability (Mailick et al., 2014).

Only a few studies have examined the relationship 
between CGG repeats and the genotypic makeup of 
patients. BRCA1/2 mutation carriers have been shown to 
have distinctly lower CGG repeats compared to the general 
population (Weghofer et al., 2012). It has been theorized 
that BRCA1/2 mutations may be embryo-lethal, unless 
rescued by low CGG repeats in the FMR1 genes. However, 
this assumption has been disputed by other studies (Dagan 
et al., 2014).

The objective of this study is to determine whether the 
number of CGG repeats differs between carriers of various 
genetic disorders compared to noncarriers.

MATERIALS AND METHODS
Genetic screening results were collected from women 

that came into our fertility clinic between June 2013 and 
July 2015. Genetic screening was done on a blood sample 
from the patient and it was tested for mutations in 102 
clinically significant genes (Counsyl®, San Francisco, CA., 
USA). The number of CGG repeats on allele 1 and allele 
2 of the FMR1 gene was also obtained from the genetic 
results, as well as whether the patient was a carrier or 
a noncarrier of one or several gene mutations. Patients 
with CGG repeats greater or equal to 45 were excluded 
from the study due to the potential of those with the 
‘intermediate’ number to have Fragile X. The averages of 
the CGG repeats on allele 1 and allele 2 were obtained for 
carriers and noncarriers.

Additionally, the ten most carried diseases within our 
center were obtained and the CGG distribution for each 
disease was collected. The ten most carried diseases 
were: Hb Beta Chain-Related Hemoglobinopathy, Cystic 
Fibrosis, Pseudocholinesterase Deficiency, Spinal Muscular 
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Atrophy, Alpha-1 Antitrypsin Deficiency, GJB2-related 
DFNB1 nonsyndromic hearing loss and deafness, Gaucher 
Disease, Familial Mediterranean Fever, Smith-Lemli-Opitz 
Syndrome and Achromatopsia. The average of the CGG 
repeats for carriers of genetic diseases was tested for 
clinical significance and compared to the noncarriers. The 
CGG distribution for each disease was also individually 
tested for significance against noncarriers.

Triple repeat detection was done by PCR to size the CGG 
repeat in the 5' UTR region of the FMR1 (NM_002024.4: c.1-
131CGG[1_n]). PCR products generated from fluorescently 
labeled primers are detected by gel electrophoresis. 
Reported sizes are accurate to +/- 1 repeat for up to 200 
repeats. All laboratory investigations were performed using 
commercial assays (Counsyl®, San Francisco, Ca., USA).

The distribution of the CGG repeats in women with 
and without a carrier mutation was compared using the 
statistical t-test when appropriate, at 5% significance level.

RESULTS
In total, the study included 2,867 women who received 

genetic screening. Of those, 843 (mean age 35.9±5.4y) 
were carriers of one or more genetic diseases, and 2024 
(mean age 35.7±5.0y) were noncarriers. 84 women were 
excluded from the carrier cohort because they had CGG 
repeats greater than or equal to 45. Therefore, 759 carriers 
of a genetic mutation were included in the study.

Table 1 outlines the average number of CGG repeats for 
carriers, noncarriers and the top ten carrier mutations at 
our center. Carriers had lower CGG repeat values compared 
to noncarriers for allele 1 (p=.03), allele 2 (p=.02) and the 
average of both alleles (p=.01). Allele 1 repeats in carriers 
of Alpha-1 Antitrypsin, Gaucher, Familial Mediterranean 
Fever and Smith-Lemli-Opitz Syndrome had significantly 
lower repeats than noncarriers. (p=.01, p=.02, p=.02, 
p=.01, respectively). Allele 2 repeats in carriers of Alpha-1 
Antitrypsin, Gaucher and Smith-Lemli-Opitz Syndrome 
had lower repeats than noncarriers (p=.02, p=.01, p=.05, 
respectively). The average of both allele 1 and allele 2 
in Alpha-1 Antitrypsin, Gaucher and Smith-Lemli-Opitz 
Syndrome carriers demonstrated significantly reduced 

CGG repeats than noncarriers. (p=.003, p=.004, p=.009). 
No significant difference was noted in any of the other CGG 
distributions within the other diseases.

DISCUSSION
This study evaluated whether there is a correlation 

between the numbers of CGG repeats in carriers of genetic 
mutations versus noncarriers, to determine whether CGG 
repeats differ between the two groups. We evaluated 
2867 women who were screened for genetic mutations. 
Overall, carriers had a lower number of CGG repeats than 
noncarriers. However, several mutations were outliers. 
Weghofer et al. (2012) described an association between 
low CGG repeats and BRCA1/2 positive women. They 
suggested that low numbers of CGG’s rescued embryos 
carrying the BRCA1/2 mutation. If a human embryo carries 
a low allele (<26), then the embryo is able to overcome 
the BRCA1/2- associated embryo lethality. Additionally, 
they hypothesized that BRCA1/2 mutations may somehow 
be able to influence CGG repeat expansion.

Another trinucleotide pattern, the CAG repeat, has been 
found to be associated with a higher risk of cryptorchidism in 
patients with shorter repeats. It has been hypothesized that 
there is an indirect influence whereby the shorter CAG repeats 
create lower testosterone levels and, therefore, influence the 
androgen receptor mediated genomic pathway associated 
with cryptorchidism (Davis-Dao et al., 2012).

The mechanism by which the carrier status can cause 
a reduction in the number of CGG repeats or vice-versa 
could be a result of an indirect relationship between the 
transcription of the FMR1 gene and the genes responsible 
for the carrier mutation. Mechanistic investigations are 
needed to identify these indirect or direct effects.

A limitation to our study is the small sample size. Indeed, 
a larger cohort with more carriers would be beneficial.

In conclusion, this preliminary investigation suggests 
that carriers of genetic mutations have less CGG repeats 
on the FMR1 gene when compared to noncarriers. Larger 
epidemiological studies of disease carrying patients as 
well as analysis of genomic pathway mechanisms may be 
beneficial.

  Table 1. Average number of CGG repeats for carriers and noncarriers on allele 1, allele 2 and the average of alleles 1 and 2

Disease CGG Allele 1 (Mean) CGG Allele 2 (Mean) Avg. of Both Alleles

Hb Beta (n=93) 28.20±3.7 31.58±4.0 29.90±3.3

Cystic Fibrosis (n=90) 27.92±3.6 31.39±3.6 29.66±3.0

Pseudocholinesterase (n=65) 27.62±4.2 31.97±4.2 29.79±3.3

SMA (n=48) 28.23±3.7 31.06±2.9 29.65±2.4

GJB2 (n=47) 27.60±4.2 31.21±4.7 29.40±3.7

Gaucher (n=43) 26.51+4.7 30.33±3.3 28.42±3.4

Alpha-1 Antitrypsin (n=39) 26.41±4.9 30.41±3.3 28.41±3.5

Smith-Lemli-Opitz 
Syndrome (n=35) 26.43±4.3 30.60±2.3 28.51±2.7

FMF (n=34) 26.41±4.8 31.74±4.1 29.10±3.6

Achromatopsia (n=30) 28.87±3.4 31.00±2.9 29.93±2.3

Noncarriers (n=2024) 27.82±3.9 31.55±3.5 29.69±3.3

Carriers (n=759) 27.50±4.3 31.25±3.6 29.37±3.2

Abbreviations: Hb-Beta, Hb Beta Chain-Related Hemoglobinopathy; SMA, Spinal Muscular Atrophy; GJB2, GJB2-related 
DFNB1 nonsyndromic hearing loss and deafness; FMF - Familial Mediterranean Fever.
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