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Abstract

DNA mutations are inevitable. Despite proficient DNA repair mechanisms, somatic cells

accumulate mutations during development and aging, generating cells with different geno-

types within the same individual, a phenomenon known as somatic mosaicism. While the

existence of somatic mosaicism has long been recognized, in the last five years, advances

in sequencing have provided unprecedented resolution to characterize the extent and

nature of somatic genetic variation. Collectively, these new studies are revealing a previ-

ously uncharacterized aging phenotype: the accumulation of clones with cancer driver muta-

tions. Here, we summarize the most recent findings, which converge in the novel notion that

cancer-associated mutations are prevalent in normal tissue and accumulate with aging.

Introduction

DNA encodes the basic instructions to construct an organism during its development, and its

stability is essential to life. However, DNA mutations are also necessary for evolution because

they provide the requisite genetic variation for natural selection. Mutations are passed to the

offspring via the parents’ germline, producing iterative cycles of mutagenesis and selection

that allow organisms to adapt to changing environmental conditions. Thus, opposing forces

act on DNA maintenance: stability to preserve the quality of the genetic information within

individuals and instability to warrant intergenerational genetic diversity [1].

For new genetic information to have its phenotypic effect, the zygote must divide and clon-

ally expand during embryonic development up to 1013 to 1014 cells in humans [2]. While the

cells that make up the resulting organism may differ in morphology and physiology, their

underlying genetic code should be, in principle, identical. However, much like how genetic

variation drives selection within organismal populations, genetic variation arising in the soma

enables selection for or against somatic cells. The stochastic nature of mutagenesis, the sparse

gene content of the human genome, and the limited degeneracy of the genetic code imply that

most mutations have neutral or deleterious consequences. Occasionally, however, mutations

provide a selective advantage that leads to the expansion of the mutant cell into a clone. This

process can be influenced by the timing of mutations during an organism’s lifecycle, their fre-

quency, and their functional consequence to a cell’s physiology. The result is genetically dis-

tinct populations of cells within the soma of an individual, a phenomenon known as somatic

mosaicism [3].
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The existence of somatic mosaicism is well documented. While outside the scope of this

review, a number of rare diseases are attributed to mosaicism that arises during the first few

divisions of an embryo, with the severity and phenotypic expression being influenced by when

in development they occur [4–6]. However, the occurrence of somatic mosaicism is not lim-

ited to development and has been recognized as an aging phenotype for decades (Reviewed in

[7]). An increase of somatic mutations with age has been reported for a variety of target genes,

including HLA-A [8], hypoxanthine phosphoribosyl transferase (HPRT) [9–13], T-cell recep-

tor [14], and glycophorin A [14]. Similarly, age-associated accumulation of chromosomal

alterations has been documented with a variety of cytogenetic approaches, from chromosome

painting [15] to single nucleotide polymorphism (SNP) arrays [16–18]. These early findings

appear to be only the tip of an iceberg in terms of somatic mutations in normal tissue (Fig 1).

The advent of Next Generation Sequencing (NGS) technologies has increased the resolution of

mutation detection down to approximately 1% for single base substitutions and has led to the

striking revelation that older individuals not only accumulate chromosomal alterations but

also abundant mutations in cancer driver genes [19–22]. These initial NGS studies in blood

reported cancer-associated mutations in approximately 10% of individuals older than 65.

However, as error-correction NGS (ecNGS) technologies have improved the limit for muta-

tion detection, the prevalence of cancer-associated mutations in adults appears closer to 100%

[23,24]. Furthermore, recent single-cell studies point to the possibility that essentially all cells

have unshared mutations in their genomes [25–27]. In view of this extensive genetic diversity,

it is perhaps not surprising that mutations that confer a proliferative advantage are readily

detected as clonal populations of increasing abundance and size in the elderly. These clonal

populations might lead to loss of organismal health through the functional decline of tissue

and/or the promotion of disease processes, such as cancer. In this review, we summarize recent

Fig 1. The hidden burden of somatic mutations. The extent of somatic mutations in healthy tissues can be thought of as an iceberg, such that the true

prevalence of these mutations is only now being recognized as technologies have improved (right column). The limit of detection refers to the ability to identify

a certain mutation within a given biopsy. The cumulative results of recent studies have shown that cancer-associated mutations (left column) are found in the

population with a prevalence (middle column) that is indirectly proportional to the size of the clones and the age of the individuals. That is, large clones (>10%

MAF of a given biopsy) have low prevalence and are typically found only in old individuals, whereas small clones (<0.1%) are very prevalent, also at mid age.

CNV, Copy Number Variant; ddPCR, Digital Droplet PCR; in/dels, insertions and deletions; iPSC, Induced Pluripotent Stem-Cell; MAF, Mutant Allele Fraction;

NGS, Next Generation Sequencing; RT-PCR, Real Time Polymerase Chain Reaction; SNP, Single Nucleotide Polymorphism; SNV, Single Nucleotide

Variant.

https://doi.org/10.1371/journal.pgen.1007108.g001
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research that supports the notion that aberrant clonal expansion (ACE; originally formulated

in Forsberg et al. [28]) resulting from cancer-associated mutations are common in noncancer-

ous tissue and accumulate with age. We propose ACE to be a previously underappreciated

aging phenotype that is universal in most organisms, affects multiple tissues, and likely helps

explain why aging is the biggest risk factor for cancer.

Somatic mutations in blood

Due to its proliferative nature and ease of sampling, the hematopoietic compartment is where

somatic mutations have been most frequently studied. Variants include both large structural

chromosomal alterations and point mutations affecting cancer-associated genes. The first

reports in the mid-1990’s indicated that up to one-third of normal adults harbored gene fusion

events commonly found in leukemias and lymphomas in their blood. These mutations include

the BCR-ABL fusion event, associated with chronic myeloid leukemia (CML) and acute lym-

phoblastic leukemia (ALL) [29,30], and the BCL2-IGH and IGH-cMyc fusion events, associated

with follicular non-Hodgkin lymphoma [31,32]. Interestingly, some translocations appear to

occur very early in life. For instance, a study of cord blood found the leukemia-associated

TEL-AML1 and AML1-ETO gene fusion events are present in approximately 1% of neonates

[33].

More recently, the combined analysis of several genome-wide association studies (GWAS)

collectively comprising more than 100,000 individuals indicated the presence of large (>2

Mbp) leukemia-associated chromosomal abnormalities, such as aneuploidy and copy-neutral

loss of heterozygosity, present in the peripheral blood and buccal swabs from patients free of

clinically detected malignancies [16,17]. Age was found to be the only significant predictor of

mosaic status; the frequency of these events was low in the cohort younger than 50 years

(<0.5%), but this frequency rapidly increased to 2% to 3% of individuals in their 70’s and 80’s

[16,17]. As indicated in Fig 1, the limit of detection of SNP arrays, which was the technology

used in these studies, is approximately 10% mutant allele fraction (MAF) within the sample.

This led the authors to speculate that the true prevalence of these mutations at levels below

their limit of detection was likely significantly higher in the general population [17]. Impor-

tantly, many of the reported chromosomal abnormalities overlapped with numerous genes

known or suspected to be involved in hematological cancers. These include DNMT3A and

TET2, commonly deleted in myelodysplastic syndrome, myeloproliferative disorder, and acute

myeloid leukemia [34,35]; PRAME, DLEU7, DLEU1, and DLEU2, frequently deleted in chronic

lymphocytic leukemia, the most common leukemia in older adults [36–39]; L3MBTL1, a puta-

tive tumor suppressor in myeloid disorders harboring del(20q12) deletions [40]; and RB1, a

well-studied tumor suppressor mutated in many leukemias [41].

An important milestone in the field occurred in 2014 with the publication of three large

population studies using whole exome sequencing. The studies reported abundant mutations

in the peripheral blood of older healthy individuals [19–21]. The genes most frequently

mutated were DNMT3A, TET2, ASXL1, and JAK2, which are genes implicated in myelogenous

leukemias. This phenomenon was termed clonal hematopoiesis of indeterminate potential

(CHIP), but it was later referred to simply as clonal hematopoiesis [42,43] or ACE. We favor

ACE because it reflects the concept of abnormal expansion, and it is generally applicable to

expansions in all somatic tissues. In the three original studies, ACE was reported to be infre-

quent in individuals less than 50 years of age but rapidly increased in prevalence to approxi-

mately 10% of individuals after age 65 and 18% after age 90 [19–21]. The presence of these

clonal expansions conferred a small but significant risk of leukemia (0.5%–1% per year), sug-

gesting that these clones represent an early stage of leukemic progression [20,44]. Recently, a
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second round of studies have taken advantage of the increased sensitivity of ecNGS technolo-

gies (Fig 1) to further characterize ACE in blood. Using ecNGS and digital droplet PCR,

Young et al. identified mutations in DNMT3A and TET2 in 95% of healthy 50- to 60-year-old

individuals at frequencies ranging from 0.03% to 14% [23]. Using a different ecNGS modality,

Acuna-Hidalgo et al. reported clonal hematopoiesis with driver mutations at all ages tested,

ranging from 3% of individuals 20 to 29 years of age to 20% of individuals 60 to 69 years of age

[45]. In a large cohort of more than 11,000 Icelanders, Zink et al. reported that ACE inevitabil-

ity occurs in the elderly, and, regardless of identifiable driver mutations, clonal expansions

were associated with risk of hematological malignancy [42].

Interestingly, the risk for a number of nonmalignant diseases correlates with the presence

of mutations in cancer driver genes. For example, Jaiswal et al. noted in their original study

that, in addition to an increased risk for hematological malignancy, the rate of all-cause mor-

tality, coronary heart disease, and ischemic stroke was also increased [20]. Zink et al. also

noted a similar association with mortality as well as psychiatric disease, smoking-related dis-

eases, and chronic obstructive pulmonary disease (COPD) but not nonhematological malig-

nancies [42]. Statistical correction for smoking status, which is known to correlate with these

phenotypes, still resulted in a significant correlation. However, smoking status was not well

documented in this cohort, leaving open the possibility that the statistical correction was con-

founded. An accompanying study also reported an age-dependent increase in TET2 and

DMNT3A and, interestingly, did not observe an increase with any comorbidities except COPD

asthma [46]. Separately, ACE has also been associated with loss of chromosome Y, which is a

well-characterized aging feature that correlates with shorter survival and increased nonhema-

tological cancer risk [47].

The association between mutations in cancer driver genes and vascular disease is surpris-

ing. A follow-up study by Jaiswal and colleagues specifically designed to address this relation-

ship has recently shown a significant correlation between somatic mutations in DNMT3A,

TET2, ASXL1, and JAK2 and atherosclerotic cardiovascular disease [48]. These findings are

further supported in a Tet2-knockout mouse that exhibited significantly larger atherosclerotic

lesions and elevated expression of chemokine and cytokine genes involved in atherosclerosis,

potentially acting through an interleukin 6 (IL-6)–mediated increase in inflammation [48,49].

Taken together, these studies have revealed that blood ACEs are surprisingly prevalent with

aging and that they are significantly associated with environmental exposures, a variety of age-

related diseases, and mortality. Further research is needed to clarify these intriguing

associations.

Evidence indicates that these mutations are not static and are likely under selective pres-

sure. For example, a number of environmental factors, such as smoking, viral infections, and

pesticide exposure, correlate with clonal expansion, suggesting that these environmental fac-

tors may contribute not only through mutation induction but also by modulation of clonal

expansion [32,47, 50]. The fact that the MAF of clones increases yearly supports a continuous

clonal expansion [46]. However, longitudinal follow-up of clones has revealed that they are

mostly stable over time, suggesting that these mutations might not confer an increase in prolif-

eration but an elevated self-renewal capacity [23]. In addition, not all clones seem to be posi-

tively selected or persist through life. Forsberg et al. observed a gain and subsequent clearance

of a large clone containing copy number variant (CNV) in chromosome 4q in an individual

over the course of 19 years [18]. Additionally, the frequency of leukemia-associated gene

fusion events in newborns is approximately 100-fold more prevalent than the cumulative fre-

quency of leukemia before the age of 15 years [33]. Thus, the role of selection in ACE remains

unclear and would benefit from studies that include longitudinal sampling.
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Somatic mutations in solid tissues

Mutations in cancer driver genes have been reported in histologically normal tissues for

decades but almost exclusively in the context of preneoplastic diseases, such as ulcerative coli-

tis, Barrett’s esophagus, or normal tissue adjacent to tumors [51–54]. In those preneoplastic

fields, somatic mutations are abundant and have been extensively analyzed, most notably in

epithelial cancers. For example, TP53 mutations have been reported in oral, bronchial, bladder,

and esophageal epithelia [55]. KRAS mutations have been frequently observed in histologically

normal lung tissue adjacent to lung tumors, as well as normal mucosa adjacent to KRAS muta-

tion–positive colorectal cancer [56–61]. Recently, the analysis of somatic mutation by NGS in

benign tissue adjacent to tumors revealed that 80% of samples harbored clonal mutations, with

increased frequency associated with older age, smoking, and concurrent mutations in DNA

repair genes [62].

Aside from preneoplastic fields, the detection of somatic variants in normal solid tissues

has historically proved difficult. The main reasons are the generally slower replicative index

compared with the hematopoietic compartment, clonally restrictive tissue architecture, diffi-

culty of tissue access, and low frequency of mutation occurrence. Due to these limitations and

insufficient technical resolution, there were very few studies prior to the development of NGS

that attempted the analysis of somatic mutation in solid normal tissue not associated with can-

cer. In a pioneer study using SNP arrays and DNA from autopsy tissue, O’Huallachain et al.

reported CNV in a variety of tissues, including pancreas, kidney, brain, liver, small intestine,

ovary, and uterus [63]. Importantly, CNVs were more abundant in dividing tissues and often

affected genes involved in cell regulation. A later study using SNP arrays in colon tissue

reported abundant chromosomal alterations in colon crypts, which are clonal units, and an

increase of these alterations with aging [64]. While not the focus of this review, it is noteworthy

to mention that clonal expansions in normal aging colon have also been extensively demon-

strated by the analysis of mutations in mitochondrial DNA [65]; however, the role these muta-

tions play in clonal expansion and oncogenic potential is poorly understood.

With the advent of NGS, it has become increasingly clear that somatic mutations accumu-

late with aging in normal tissue, even in individuals who are cancer free. Unequivocal evidence

was provided by Martincorena et al. [66], who reported extensive clonal patches of somatic

mutations in normal skin, containing mutations in genes such as NOTCH1, NOTCH2,

NOTCH3, TP53, FAT1, and RBM10, all well-characterized skin cancer drivers [66]. The devel-

opment of ecNGS methods has further expanded the ability to detect these somatic mutations

in normal tissue because the removal of sequencing errors allows the identification of muta-

tions present at very low frequency [67–71]. For instance, Duplex Sequencing [68,72] was able

to detect TP53 mutations at frequencies <0.01% in peritoneal fluid of women without cancer

[24]. Notably, these mutations clustered in cancer-associated TP53 hotspots and typically

resulted in loss of protein activity. Moreover, nonsynonymous mutations were enriched, indi-

cating that, much like their counterparts in blood and skin, these mutations were undergoing

positive selection [24]. TP53 mutations were detected in practically all peritoneal fluid samples

analyzed (from women with and without cancer), as well as in paired blood, suggesting that

clonal expansions driven by cancer genes are a near-universal feature of aging.

Similar to these reports, a recent study found measurable levels of cancer-associated muta-

tions in numerous “driver genes,” including KRAS, PIK3CA, PTEN, ARID1A, TP53, and sev-

eral others, in endometriosis, a benign pathology that only rarely progresses to neoplasia [73].

Seventy-nine percent of patients with endometriosis and no histological sign of cancer har-

bored somatic mutations. The MAF was as high as 40%, indicating that these mutations are

highly prevalent and not limited to small subclonal populations of cells [73]. In a separate
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study, uterine lavage fluid, which contains mostly endometrial cells, showed abundant cancer

driver mutations mostly in PIK3CA, KRAS, and PTEN both in women with and without endo-

metrial cancer [74]. These subclonal events had a MAF between 1% and 30% and were associ-

ated with age and postmenopausal status, confirming once again the age-related nature of

ACE [74].

Recently, a novel sequencing study of human adult stem cells also demonstrated an age-

related accumulation of somatic mutations in small intestine, colon, and liver [75]. Interestingly,

while these tissues have very different cancer incidences, their mutation rates were very similar.

The types of mutations, however, differed by tissue and reflected the mutation spectra of driver

genes found in cancers of each given tissue. Similar overlap in the somatic mutation spectra of

normal tissue and its associated cancer was reported by Hoang et al., suggesting that the muta-

tional processes operative in aging also underlie the development of cancer in a given tissue [70].

The age-associated rise of cancer-associated mutations has also been reported in human

spermatogonia of healthy men. Offspring of older parents are at an increased risk of having

genetic disorders caused by mutations in cancer-associated genes, including Apert syndrome

(FGFR2) [76], achondroplasia and thanatophoric dysplasia (FGFR3) [77], and Costello syn-

drome (HRAS) [78,79]. The increase rate has been attributed to a “selfish selection” mecha-

nism whereby spermatogonia harboring these mutations, which affect the growth factor

receptor RAS proliferative pathway, outcompete wild-type spermatogonia by clonal expansion,

leading to a time-dependent increase in mutant sperm [80].

The rise of cancer-associated mutations with aging

While the analysis of normal tissue is essential to understand the accumulation of somatic

mutation with aging, tumor tissue is highly informative as well, given that a clonal tumor car-

ries the somatic load of the original founder cell. Tumor sequencing analyses have reported

the presence of hundreds to thousands of mutations shared by most or all tumor cells, and

mutation burden correlated with patient age [75,81–83]. Statistical modeling of tumor

sequencing data suggests that half or more of somatic mutations in tumors arise before initia-

tion of the tumor [84]. In addition, there appears to be a correlation between cancer incidence

and stem cell divisions across a wide variety of cancer types [85,86]. Even with correction for

environmental and hereditary cancer predisposition, replication-derived mutations have been

proposed to be responsible for up to two-thirds of the mutations in human cancers [85].

“Mutation signature” analysis provides further support for an underlying mutational pro-

cess that gives rise to age-associated mutation [87]. Studies using tumor sequencing data and

tissue culture of adult stem cells have inferred that tissues generally accumulate approximately

40 mutations/genome/year, independent of tissue of origin, and exhibit two main age-associ-

ated mutational signatures [75,83]. The primary signature, composed of C!T/G!A single

base substitutions at CpG sites, is consistent with spontaneous deamination of methylated

cytosine residues, with the intensity of this signature differing between tissue types and corre-

lating with the rate of replicative turnover [75,83]. The second age-associated mutational sig-

nature consists primarily of a mixture of T!C/A!G and C!T/G!A transitions across all

sequence contexts. This molecular signature is prevalent only in certain tissue types, and the

underlying molecular process is unknown. Importantly, the mutation rates of both signatures

do not correlate, indicating that they are likely to have different origins. Nevertheless, given

the fact that most cancers show age-dependent associations with one or both of the signatures,

they are proposed to represent the accumulation of somatic mutation with aging in human tis-

sues [83]. Reconstruction of cellular lineages during embryogenesis also indicates almost iden-

tical mutational signatures, suggesting that the mutagenic processes that give rise to somatic
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mosaicism begin to operate immediately upon fertilization [88]. However, mouse tissues are

reported to have different mutation signatures and rates, indicating that the mutagenic pro-

cesses that give rise to age-associated mutations may be species specific [1,89]. It is tempting to

speculate that these different mutagenic processes may, in part, account for the difference in

risk for different cancer types between mice and humans.

Together, these studies have begun to shed light on how cancer-associated mutations arise

in normal tissue. A general model can be formed wherein cells mostly accumulate mutations

at replication during development and tissue maintenance through life. Although the muta-

tions that accumulate are, by and large, not lethal, they likely influence replicative fitness. In

support of this idea, work in yeast indicates that 10% to 20% of diploid strains harboring a het-

erozygous deletion of just one of the 6,200 genes exhibit a growth disadvantage during compe-

tition assays [90]. In the presence of extensive DNA damage and certain oncogenic mutations,

cells might activate tumor suppression mechanisms that lead to senescence, further diminish-

ing tissue homeostasis with age. Senescence reduces the number of stem cell lineages, requir-

ing the remaining lineages to divide more frequently to maintain the tissue, thus providing an

opportunity to further increase the somatic mutation burden in those cells. The acquisition of

a mutation in one of the approximately 140 identified tumor suppressor or oncogenes might

lead to a replicative advantage and the expansion of the founder cell into a clone [91]. While

these clones appear to be a feature of normal aging, over time they might accumulate addi-

tional genetic advantages and develop into cancer. It has been estimated that a replicative

advantage of only 0.4% over the course of 20 years could be enough to lead to the acquisition

of a tumor [92].

Concluding remarks

It is estimated that cells in highly proliferative tissues likely contain tens of thousands of

mutations by the age of 60, each of which is potentially subjected to selective forces [93].

However, the detection and characterization of these mutations and their functional conse-

quences has been extremely challenging due to their low abundance. Until very recently, only

large chromosomal alterations or mutations expanded to at least 10% of the sample could be

detected. With the advent of various NGS technologies and methods, the limit of detection

has decreased to<0.01%. This resolution has revealed that clonal expansions of cancer-associ-

ated mutations is an extremely common, if not universal, condition in somatic tissues. These

findings illustrate an ongoing intra-organism process of mutation, selection, and clonal expan-

sion analogous to the inter-organism process that fosters the evolution of species. While this

process might culminate in the development of malignancy, it usually does not. However,

increased proliferation resulting from a cancer-associated mutation affords more opportunity

for additional mutations to occur. Such secondary mutations could act as an accelerant for car-

cinogenesis by providing sufficient additional clonal diversity through a mutator phenotype or

other required driver mutations to overcome intrinsic barriers preventing tumorigenesis.

Future studies with larger numbers of individuals of different ages and diversity of normal tis-

sues are essential to elucidate the intricate relationship between the occurrence of somatic

mosaicism in aging and cancer.
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