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Risk factors for the evolutionary
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Recent outbreaks of novel infectious diseases (e.g. SARS, influenza H1N1) have highlighted
the threat of cross-species pathogen transmission. When first introduced to a population, a
pathogen is often poorly adapted to its new host and must evolve in order to escape extinc-
tion. Theoretical arguments and empirical studies have suggested various factors to explain
why some pathogens emerge and others do not, including host contact structure, pathogen
adaptive pathways and mutation rates. Using a multi-type branching process, we model
the spread of an introduced pathogen evolving through several strains. Extending previous
models, we use a network-based approach to separate host contact patterns from pathogen
transmissibility. We also allow for arbitrary adaptive pathways. These generalizations lead
to novel predictions regarding the impact of hypothesized risk factors. Pathogen fitness
depends on the host population in which it circulates, and the ‘riskiest’ contact distribution
and adaptive pathway depend on initial transmissibility. Emergence probability is sensitive
to mutation probabilities and number of adaptive steps required, with the possibility of
large adaptive steps (e.g. simultaneous point mutations or recombination) having a dramatic
effect. In most situations, increasing overall mutation probability increases the risk of
emergence; however, notable exceptions arise when deleterious mutations are available.
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1. INTRODUCTION

The recent outbreaks of SARS coronavirus and avian
and swine influenza strains have highlighted the impor-
tance of pathogen cross-species transmission, and
subsequent evolutionary adaption, in the emergence of
new diseases (Woolhouse et al. 2005; Dennehy 2009).
Such ‘species jumps’ have been proposed as a major
source of novel pathogen introductions (Woolhouse
et al. 2005; Day et al. 2006; Kuiken et al. 2006), and
indeed many emerging human diseases are zoonotic
(Cleaveland et al. 2001; Taylor et al. 2001). Typically,
these pathogens are initially poorly adapted to
humans because of physiological differences between
species (Kuiken et al. 2006). Thus, significant spread
of these pathogens within the human population often
requires evolutionary adaptation (Dennehy 2009).

A number of risk factors have been proposed to
explain why some pathogens emerge and others do
not. These include the breadth of the pathogen’s
host range (Cleaveland et al. 2001; Taylor et al. 2001;
Woolhouse & Gaunt 2007), susceptibility of the host
(Woolhouse et al. 2005; Woolhouse & Gaunt 2007),
contact patterns in the host population (Woolhouse
et al. 2005; Kuiken et al. 2006; Woolhouse & Gaunt
2007; Dennehy 2009), the mechanism(s) of pathogen
adaptation (e.g. whether recombination is possible;
Woolhouse et al. 2005), pathogen taxonomic
orrespondence (helen@mast.queensu.ca).
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classification (Cleaveland et al. 2001; Taylor et al.
2001), pathogen generation time (Cleaveland et al. 2001;
Taylor et al. 2001) or growth rate (Dennehy 2009)
and pathogen mutability (Cleaveland et al. 2001;
Taylor et al. 2001; Woolhouse et al. 2005; Dennehy
2009). Indeed, empirical studies have revealed that some
of these factors are often associated with emerging dis-
eases (Cleaveland et al. 2001; Taylor et al. 2001;
Woolhouse & Gaunt 2007). In particular, viruses and
protozoa display a relatively high propensity for being
involved in newly emerging human diseases (Cleaveland
et al. 2001; Taylor et al. 2001), and the degree of
transmissibility between members of the new host species
also appears to be a risk factor where data are available
(Taylor et al. 2001).

The association between transmissibility and likeli-
hood of emergence is, perhaps, not surprising. Any
factor that increases the expected number of trans-
mitted infections, such as higher initial
transmissibility between members of the new host
species, means that the pathogen can circulate for
longer after the cross-species jump, and thus has greater
potential for ultimate evolutionary adaptation (Antia
et al. 2003). For the same reason, patterns of contact
among hosts should also play an important role in
disease emergence, because some contact structures
ought to lead to greater scope for transmission than
others. To date, however, the most ‘risky’ patterns of
host contact are not known.
This journal is q 2010 The Royal Society
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The association between pathogen taxonomic classi-
fication and likelihood of emergence is less easy to
explain. It has been suggested that the high incidence
of emergence among viruses may be attributed, at
least partially, to their high mutation rates (particu-
larly in RNA viruses). A high mutation rate might
lead to a greater likelihood of the appropriate adaptive
mutations occurring, implying greater evolutionary
potential (Cleaveland et al. 2001; Woolhouse et al.
2005). On the other hand, most mutations are deleter-
ious, and a high mutation rate could thereby increase
the chance of pathogen extinction (Dennehy 2009).
Indeed, this propensity for extinction might be
exploited clinically by drug-induced ‘lethal mutagen-
esis’ (Anderson et al. 2004; Clementi 2008). Thus, it
remains unclear whether higher mutation rates do
indeed lead to a higher likelihood of evolutionary emer-
gence, or whether other processes are required to
explain the empirical patterns.

In this paper, we investigate the above factors
through mathematical modelling. We ask two main
questions: (i) what types of host contact structure
lead to the greatest risk of evolutionary emergence?
and (ii) how do patterns of mutation affect the risk of
evolutionary emergence? We address these questions
using a branching process model that tracks the
number of infected hosts as a newly introduced patho-
gen spreads and evolves. There have been two main
approaches to using such models in the epidemiological
literature, a network-based approach and a phenomen-
ological approach. The former explicitly considers the
patterns of contact among individuals in the population
and the probability of transmission through any
given contact (e.g. Brauer 2008), but has not, to date,
allowed for evolution. The latter assumes that the
population is well mixed and in some cases allows for
evolution, but has not explicitly modelled the contact
patterns among individuals (e.g. Antia et al. 2003;
Lloyd-Smith et al. 2005; Day et al. 2006; Yates et al.
2006; Reluga et al. 2007). In order to address the
above questions, we place these two approaches
within a common framework, generalizing to allow for
arbitrary contact patterns and arbitrary pathways of
evolutionary adaptation.
2. A UNIFIED MODELLING FRAMEWORK

In order to develop a unified modelling framework
that encompasses both the network-based and phenom-
enological approaches, it is useful first to focus on
single-strain models that ignore evolution.

2.1. Single-strain models

We model in discrete time, using a Galton–Watson pro-
cess. To define the branching process, we require a
distribution for the number of ‘offspring’ produced by
each individual. In the present context, infected hosts
are the individuals of interest, and an ‘offspring’ is
viewed as a contact to whom the infection is trans-
mitted. The network-based approach and the
phenomenological approach arrive at this offspring
distribution in different ways. The network-based
J. R. Soc. Interface (2010)
approach builds up the offspring distribution from
underlying assumptions about the processes of host–
host contact and pathogen transmission. The phenom-
enological approach, on the other hand, simply
specifies this offspring distribution directly, without
explicit consideration of the underlying contact and
transmission processes through which it might arise.

The network-based approach represents the host
population by a graph: each vertex or node corresponds
to an individual, and an edge between two nodes sig-
nifies that the two individuals are acquaintances, i.e.
can contact and potentially transmit disease to one
another. We assume that this network is static, and
restrict attention to random graphs in the limit of infi-
nite population size. In this situation, the network
becomes a tree graph, with the number of ‘branches’
from each node drawn independently from the arbi-
trary degree, or contact, distribution (Trapman 2007
and references therein). This restriction is applied
for mathematical tractability, but neglects certain
realistic network properties such as loops and cluster-
ing; we return to this issue in §4.3. We refer to the
individual(s) initially infected by a source outside the
population as ‘generation 0’ infectives. All individuals
infected by a generation n infective (n ¼ 0, 1, . . .) are
considered generation n þ 1 infectives, and ‘later-
generation’ infectives (i.e. generation � 1) receive
their infections from other individuals within the
population.

Following the derivation presented by Brauer (2008),
we suppose that each node has a degree distribution
fpdg, described by the probability generating function
(PGF)

gðzÞ ¼
X1
d¼0

pdzd :

Furthermore, if we randomly choose an edge and follow
it to a node, the excess degree of that node (number of
other edges emanating out) has distribution fp̃dg given
by the PGF

GðzÞ ¼
X1
d¼0

~pdz
d ¼

X1
d¼1

dpd

kdl
zd�1 ¼ g0ðzÞ

g0ð1Þ ;

where kdl ¼ g0(1) denotes the expected value of degree d.
An infective is assumed to transmit infection to each

still-susceptible contact independently with probability
T, called the transmissibility, taken to be a constant.
That is, if d is the number of still-susceptible contacts,
then the number of infections transmitted is distributed
as Binomial(d, T ). For the initial infective, who has
been infected by a source outside the population, all
contacts (given by the degree) remain susceptible.
Thus, the PGF g(s) for the number of infections
transmitted by a randomly chosen initial infective is
(Brauer 2008)

gðsÞ ¼ gð1� T þ TsÞ:

A later-generation infective has received the infection
from one of its contacts, i.e. it has been arrived at by
following a randomly chosen edge from another
node. Hence, the number of still-susceptible contacts
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is determined from the excess degree distribution. (We
implicitly assume that an individual can only be
infected once, as in an SI- or SIR-type disease.) Thus,
the PGF G(s) for the number of infections transmitted
by a later-generation infective is

GðsÞ ¼ Gð1� T þ TsÞ:

The basic reproductive number, R0, can then be defined
as the mean number of infections transmitted by one
typical (later-generation) infective:

R0 ¼ G 0ð1Þ ¼ G0ð1ÞT :

In this way, we can see how the disease’s reproductive
number in the network-based approach is composed
of the underlying processes of host–host contact
(represented by G0(1)) and pathogen transmission
(represented by T ). R0 is an appropriate measure of
the fitness of a single strain of pathogen.

The phenomenological approach (e.g. Antia et al.
2003; Lloyd-Smith et al. 2005; Day et al. 2006; Yates
et al. 2006; Reluga et al. 2007) does not build up the
process of disease spread from a description of host con-
tacts and pathogen transmission. Rather, it directly
specifies a distribution of number of new infections, X,
produced by an infected individual. The approach typi-
cally uses a Poisson distribution of infections, implicitly
assuming homogeneous mixing in the population, but
sometimes incorporates individual heterogeneity by
allowing the mean of the distribution itself to be a
random variable. For example, Lloyd-Smith et al.
(2005) generally draw the mean, n, from a Gamma
distribution with mean R0 and dispersion parameter
b; then X has a negative binomial distribution with
mean R0 and dispersion b. As special cases, b ¼ 1 cor-
responds to n � Exp(R0) and X � Geometric(R0),
while b! 1 corresponds to n ¼ R0 (no individual vari-
ation) and X � Poisson(R0). In any case, the key
difference from the network-based approach is
that G(s) is effectively specified directly. As before,
one then defines the basic reproductive number as
R0 ¼ G0(1). Notice, however, that unlike the network-
based approach, no distinction is made here between
generation 0 infectives (i.e. those who receive the infec-
tion from an outside source) and later-generation
infectives. (In special cases of the network model, all
generations are in fact equivalent; see appendix A.2.)
If we consider only later-generation infectives, the phe-
nomenological approach can be obtained via the
network-based approach, provided that the contact dis-
tribution in the latter is chosen to obtain the same end
result for the offspring distribution (appendix A.3).

For example, if the contact distribution is such that
the number of still-susceptible contacts has a negative
binomial distribution with mean l and dispersion
b (appendix A.1), i.e. G(z) ¼ (1 þ (l/b)(1 2 z))2b

(Lloyd-Smith et al. 2005), then the offspring distri-
bution will also be negative binomial with mean
lT and dispersion b: G(s) ¼ G(1 2 T þ Ts) ¼ (1 þ
(lT/b) (1 2 s))2b. Since R0 ¼ lT, this gives exact
correspondence with the phenomenological approach
of Lloyd-Smith et al. (2005) described above. Other
examples of contact distributions and the resulting
J. R. Soc. Interface (2010)
offspring distributions are described in appendix B.1
and illustrated in figure 1.

Regardless of which approach is used to obtain the
offspring distribution, the extinction probability q of
the process—that is, the probability that the disease
outbreak eventually ends, infecting only a finite
number of people—is the smallest non-negative solution
of the equation G(s) ¼ s. The epidemic is guaranteed to
go extinct if R0 � 1, but persists with non-zero prob-
ability if R0 . 1 (Allen 2003). Recall, however, that
the network-based approach also distinguishes the
generation 0 infective from all others, and if this initial
infective is chosen uniformly at random, then the
overall extinction probability in that approach is
g(1 2 T þ Tq) ; g(q) (Brauer 2008).
2.2. Multiple strain model

A phenomenological approach has also been used to
explore how pathogen evolution affects disease emer-
gence by accounting for multiple pathogen strains
(Antia et al. 2003; André & Day 2005; Day et al.
2006; Yates et al. 2006; Reluga et al. 2007). These
models typically assume a Poisson distribution of
infectious contacts, which, interestingly, has been
found usually to be a poor fit to epidemiological data
(Lloyd-Smith et al. 2005). Mathematically similar
models have also been used to model evolution and
‘escape’ in a population of replicating individuals
(Iwasa et al. 2003, 2004; Serra & Haccou 2007). In the
most general of these, Serra & Haccou (2007) outline
the model for an arbitrary offspring distribution
as well as arbitrary mutation scheme and fitness
landscape. However, to date, such generalizations and
their implications have not been explored in the context
of evolutionary epidemiology, nor have underlying
mechanisms contributing to the offspring distribution
been considered separately. One can readily extend
the network-based framework outlined in §2.1 to
investigate these questions.

We account for pathogen evolution using a multi-type
branching process. An individual’s type i (i ¼ 1, . . . , m)
denotes which one of the m possible pathogen strains
is infecting that host. We allow for arbitrary contact
distribution and assume that the contact network is
determined by the host, independently of the pathogen
strain. Thus, as before, degree is described by the PGF
g(z) and the excess degree by G(z) for every individual,
regardless of type. We retain the assumption that trans-
missions occur independently to each contact, and
further assume that transmissibility T is strain-specific,
denoted Ti for strain i. Thus, the probability of making
an infectious contact depends only on the current
infective’s strain type. However, a different strain may
be transmitted as a result of pathogen mutation.
Specifically, given that a type i infective makes an
infectious contact, strain j is transmitted with prob-
ability mij (

P
j mij ¼ 1, 8i). We call the m � m matrix

U ¼ [mij] the ‘mutation matrix’, representing the muta-
tional pathway(s) allowed in the evolution of the
pathogen and their probabilities.

We use the word ‘mutation’ loosely to mean any pro-
cesses resulting in a change in the strain identified as a
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Figure 1. (a) Examples of contact distributions, described by the PGF g(z), along with the corresponding offspring distributions,
described by the PGF G(s), for transmissibility (b) T ¼ 0.1 and (c) T ¼ 0.5. Contact distributions, all with mean 5, are: top row,
mixed deterministic with 10% superspreaders; middle row, Poisson; bottom row, negative binomial with dispersion b ¼ 1 (i.e.
geometric).
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host’s type. These processes actually occur within indi-
vidual hosts, but we account for this in a
phenomenological way. The most accurate interpret-
ation of our approach would be that a host currently
infected with strain i transmits only strain i, but that
each infective produced in the next generation has prob-
ability mij of converting to strain j over the course of
infection, before any further transmission occurs. In
this approach, mij is an ‘effective conversion rate’ from
strain i to strain j within one host, summarizing the
results of within-host dynamics (§4.3). This is a
common type of simplification involving a separation
of the time scales on which within- and between-host
processes occur. Antia et al. (2003) mention the possi-
bility of strain conversion owing to mutation within a
host, and André & Day (2005) explicitly model this in
a phenomenological way; however, neither discuss the
above considerations in any detail.

Returning to our multi-type process, the number of
transmissions of each type made by a type i infective
J. R. Soc. Interface (2010)
with d susceptible contacts now has distribution Multi-
nomial(d; 12 Ti, TiUi�), where Ui � is the ith row of U
and the probability vector is given in the order: no
transmission, transmit strain 1, . . . , transmit strain m.
The corresponding PGF for the number of transmitted
infections of each type, (X1 , . . . , Xm), given d suscep-
tible contacts, is

E½sX1
1 � � � sXm

m jd� ¼ 1� Ti þ Ti

Xm
j¼1

mij sj

 !d

:

Thus, extending the notation of §2.1, the PGF for
number of infections transmitted by an initial infective
of type i is

giðs1; . . . ; smÞ ¼ g 1� Ti þ Ti

Xm
j¼1

mij sj

 !
;
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and for a later generation infective, the PGF is

Giðs1; . . . ; smÞ ¼ G 1� Ti þ Ti

Xm
j¼1

mij sj

 !
:

Derivations of these PGFs appear in appendix C.
The probability of extinction starting from one

later-generation infective of type i, denoted qi, is
obtained as the smallest non-negative root of the
equation qi ¼ Gi(q1, . . . , qm), solved simultaneously for
all i (appendix D). More compactly, we can write this
as a vector fixed-point equation: ~Gð~qÞ ¼~q, where
~G ¼ ðG1; . . . ;GmÞ and ~q ¼ ðq1; . . . ; qmÞ. Starting from
a generation 0 infective of type i, chosen uniformly
at random, the overall probability of extinction is
then given by g(1 2 Ti þ Ti

P
j¼1
m mijqj) ; gið~qÞ

(appendix C). If we account for strain conversion as
per the above interpretation, the only adjustment we
must make in our calculations, assuming that strain i
is introduced to a randomly chosen individual, is to
allow the initial infective to be type j with probability
mij. We generally assume that strain 1 is, by definition,
initially introduced to the host population.

In what follows, it is sometimes useful to refer to the
‘basic reproductive number of strain i’, denoted R0,i and
defined as the expected total number of infectious
contacts made by a typical (later-generation) type i
infective. Since this number is distributed as Bino-
mial(d, Ti), we have

R0;i ¼ E d½ �Ti ¼ G0ð1ÞTi:

If strain i were the only strain present, with no possi-
bility of mutation, R0,i would be the value of its basic
reproductive number in the single-strain model.

We define emergence as the situation in which the
pathogen escapes extinction, which necessarily requires
evolution to a strain having R0,i . 1. Probability of
emergence is thus the complement of probability
of extinction. We present numerical results for the
probability of emergence beginning from one later-
generation infective of type 1, 1 2 q1, but these results
may be extended to account for generation 0 and/or
type conversion as described above. Note that the
branching process may be either indecomposable or
decomposable, depending on the mutational scheme.
Thus, if the epidemic persists, the complement of
strains that will be present must be treated on a case-
by-case basis (appendix D).

Our derivation so far is quite general, imposing no
a priori restrictions on the choices of contact distri-
bution, transmissibilities and mutation probabilities.
However, in the numerical results to follow, we limit
ourselves to specific examples.

Contact distributions. We consider the following
contact distributions, each with mean l (see also
appendix B.1).

— Deterministic. Every individual has exactly l

contacts.
— Mixed deterministic. There are n types of individ-

uals, where the kth type occurs in proportion pk

and has exactly lk contacts.
— Poisson.
J. R. Soc. Interface (2010)
— Mixed Poisson. There are n types of individuals,
where the kth type occurs in proportion pk and has
a Poisson(lk) distribution of contacts.

— Negative binomial, with dispersion b.

Mutational schemes. We consider two broad types of
mutational schemes: ‘linear’ and ‘hub-and-spoke’ (see
also appendix B.2). In all cases, we assume that strain
m is well adapted to the host; that is, Tm is chosen
such that R0,m . 1. On the other hand, any other
strain i is poorly adapted to the host (R0,i , 1) unless
otherwise specified.

Linear mutational schemes represent single direc-
tions through strain space, where strains 2, . . . , m 2 1
are intermediates between strains 1 and m. We consider
the following possibilities.

— One-step irreversible. The pathogen must acquire
m 2 1 point mutations, one at a time and in a fixed
order. Thus, mutation occurs only from strain i to
i þ 1. This scheme is presented by Antia et al. (2003).

— Multi-step irreversible. Again the pathogen must
acquire m 2 1 point mutations in a fixed order,
but now possibly simultaneously, implying
that mutations can occur from strain i to any
strain j . i, though with diminishing probabilities.
Essentially, higher order terms are being included
where they were neglected in the previous scheme.
This scheme is presented by Gokhale et al. (2009),
along with biological examples.

— Interchangeable and irreversible. This scheme, also
presented by Gokhale et al. (2009), is similar to
the preceding one, but allows the point mutations
to be acquired in arbitrary order, introducing a com-
binatorial aspect to the probabilities. Thus, there
are multiple evolutionary pathways between the
first and last strains, with strain i in our model
representing any ‘real’ strain having i 2 1 of the
required mutations. Our model thus implicitly
assumes that any collection of i 2 1 mutations
yields the same transmissibility, Ti.

— Point mutation and recombination. One-step point
mutation occurs as in scheme 1, but we simplisti-
cally model an additional mechanism of more
extensive genetic change (perhaps recombination
or reassortment; Kuiken et al. 2006) by allowing
any strain i to adapt directly to strain m with a
probability not tied to that of point mutation. We
neglect the chance of simultaneous mutational
events, and all are irreversible.

— One-step reversible. In a modification of scheme 1,
mutation can occur from strain i to either i þ 1 or
i 2 1, representing both forward and reverse point
mutation (again neglecting the chance of simul-
taneous mutations).

One-step irreversible mutations, coupled with a Pois-
son(l) distribution of contacts, corresponds to the
model of Antia et al. (2003), where R0,i ¼ lTi.

Hub-and-spoke mutational schemes represent mul-
tiple distinct pathways through strain space. After
strain 1 is introduced, mutation may proceed from
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this ‘hub’ along a number of different ‘spokes’ (direc-
tions in strain space). Though still numbered
sequentially for convenience, strains 2, . . . , m 2 1
no longer represent intermediates on the path to
strain m. For simplicity, in our results we consider
only paths of length 1 (i.e. strains 2, . . . , m represent
m 2 1 distinct pathways), with equal probability of
proceeding along any path. However, this set-up could
obviously be extended to incorporate pathways of
various lengths and mutation probabilities. We consider
two possible scenarios.

— One-step irreversible.
— One-step reversible.

Finally, we must specify the transmissibility of each
strain, ~T , particularly how these values relate to one
another. For a given contact distribution, defining ~T
effectively determines the pathogen’s fitness landscape.
For linear mutation schemes, we will typically use the
‘jackpot model’ (Antia et al. 2003), in which strains 1
through m 2 1 have identical transmissibility, and
hence the same value of R0,i , 1. Other biologically
interesting possibilities include a fitness valley, where
intermediate strains have lower fitness than strain 1,
or an additive model, where fitness increases linearly
with strain number (Antia et al. 2003). For hub-and-
spoke schemes, we take T2 , . . . , Tm21 less than T1,
representing deleterious mutations, while only Tm is
greater than T1, representing a beneficial mutation.

3. RESULTS

3.1. Criticality of the process

The basic reproductive number, R0, is widely used as a
predictor of when a disease has epidemic potential, as
well as a descriptor of disease spread (Anderson & May
1991; Allen 2003; Brauer 2008). In branching process
models, the disease has a positive probability of emer-
gence if, and only if, R0 . 1. Other aspects of the
offspring distribution affect the probability of emergence
as well, and thus it is common to compare the probability
of emergence across different distributions at the same
value of R0 (Lloyd-Smith et al. 2005; Brauer 2008).

As clearly illustrated in the network-based approach,
however, R0 is a composite quantity that is influenced
by the combined processes of host-to-host contacts
and disease transmission (Meyers et al. 2005; Brauer
2008). Once we decompose the process of disease
spread into these mechanistic components, other com-
parisons suggest themselves. In particular, given that
R0 itself is a critical threshold quantity for disease
spread, it is natural to ask how this quantity changes
across different contact distributions that have the
same mean number of contacts and the same disease
transmissibility. We might also ask how probability of
emergence changes as a function of T rather than R0.
Meyers et al. (2005) likewise argue for a focus on
transmissibility, rather than R0, from the perspective
of making reliable public health predictions across
different host subpopulations.

Insight into the comparison between contact
distributions can be gained by rewriting the equation
J. R. Soc. Interface (2010)
R0 ¼ G0(1)T. Using the relationship G(z) ¼ g0(z)/g0(1)
gives R0 ¼ (g00(1)/g0(1))T. Then substituting g00(1) ¼
s2 2 g0(1) þ (g0(1))2, where s2 is the variance of the
contact distribution, yields

R0 ¼ g0ð1Þ ð1þ c2Þ � 1
� �

T ;

where c ¼ s/g0(1) is the coefficient of variation of the
contact distribution. For a given transmissibility and
mean number of contacts, the contact distribution
that maximizes variance thus maximizes R0. The
above equation is essentially the same as the expression
for R0 given by Meyers et al. (2005), although there it is
not rewritten in terms of c, and is similar to the
expression for R0 used in deterministic network
models (May & Lloyd 2001).

Analogously for a multi-type process, the expec-
tation or mean matrix M ¼ [aij], where
aij ¼ @Gið~sÞ=@sj j~s¼~1 is the expected number of type j
progeny of one type i individual, is crucial in determin-
ing criticality of the process (Harris 1963; Allen 2003;
Haccou et al. 2005). If the dominant eigenvalue of M
is less than or equal to one, extinction is certain; other-
wise, there is a positive probability of non-extinction
and the process is classified as ‘supercritical’ (Harris
1963; Haccou et al. 2005). This threshold result holds
whether the process is indecomposable or decomposable
(see appendix D). The dominant eigenvalue of M is also
known as the population-wide basic reproductive number.

In our multiple strain model, with contact distri-
bution given by PGF g(z) and mutation probabilities
given by matrix U ¼ [mij], we have aij ¼ G0(1)Ti mij ¼

(g0(1)(1 þ c2) 2 1)Timij. We can thus express the
mean matrix as

M ¼ ðg0ð1Þð1þ c2Þ � 1Þdiagð~TÞU ;

emphasizing the dependence of M—and hence its domi-
nant eigenvalue—on the mean and variance of the
contact distribution, the transmissibility of each strain
and the mutation scheme.
3.2. Impact of contact distribution and
transmissibility on emergence

Figure 2 illustrates, for a single strain, the impact of
contact distribution on the basic reproductive
number, R0, and on the probability of emergence start-
ing from one later-generation infective, 1 2 q. Figure 2a
shows how R0 increases with transmissibility T: in all
cases, this increase is linear, but at a different rate for
each contact distribution depending on the variance
in contacts. Figure 2b plots the probability of emergence
versus T for each contact distribution. This probability
becomes non-zero at the point where R0 passes the criti-
cal value of one, which occurs at a different value of T for
each distribution (as illustrated in figure 2a). Thus, at
low values of T, the disease can persist in some host con-
tact structures but not others, despite the fact that they
all have the same mean number of contacts. As T
increases, however, the probability of emergence
increases at different rates for different contact struc-
tures, such that the ordering is not preserved. This
observation is highlighted in the inset, showing



0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.0500

1

2

3

4

5(a)

(b)

(c)

transmissibility, T

ba
si

c 
re

pr
od

uc
tiv

e 
nu

m
be

r,
 R

0

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.0500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

transmissibility, T

Pr
 (

em
er

ge
)

0.1 0.2 0.30

0.5

1.0

5 10 150

0.2

0.4

0.6

0.8

1.0

basic reproductive number, R0

Pr
 (

em
er

ge
)

Figure 2. The relationships among transmissibility, basic reproductive number and probability of emergence, for a single strain of
pathogen and various host contact distributions: Poisson (solid black), mixed Poisson (dashed black), negative binomial with
dispersion 1 (dot-dash black), deterministic (solid grey) and mixed deterministic (dashed grey). Mean number of contacts is
fixed at 30. For mixed distributions, there are two types of hosts, with 90% of the population having on average 15 contacts
and 10% having on average 165 contacts.
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emergence probability over an extended range of T. In
contrast, the ordering is consistent in figure 2c, which
plots the probability of emergence versus R0, comparable
to Brauer’s presentation (Brauer 2008). The same value
of R0 has been achieved for each contact distribution by
varying T to compensate. We can think of the middle
plot as showing the net result of opposing influences
illustrated in figure 2a,c. Similar considerations and
results on the impact of contact distribution and
transmissibility apply to the multiple strain case.
J. R. Soc. Interface (2010)
3.3. Impact of mutation scheme on criticality

When there are multiple strains of pathogen, the path-
ways of mutation among them may also affect the
threshold parameter. In the case of irreversible
mutation, we can number strains such that M is a tri-
angular matrix, with its eigenvalues given simply by
the entries on the main diagonal. Assuming the final
strain is the best adapted, the dominant eigenvalue is
then R0,m ¼ G0(1)Tm. Hence, criticality is independent
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Figure 4. Probability of emergence (1 2 q1) for various linear
mutation schemes: one-step irreversible (solid black), multi-
step irreversible (dashed black), interchangeable and irrevers-
ible (dot-dash black), point mutation and recombination
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distribution is Poisson with mean 30. We use m ¼ 4 strains
and the jackpot model of evolution, with transmissibility of
the final strain set to 0.05. Forward mutation probability is
m ¼ 0.01 and, where applicable, reverse mutation probability
is n ¼ 0.01 and jump-to-m probability is r ¼ 0.0001.
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of the precise details of a uni-directional mutation
scheme. By contrast, a scheme that allows both forward
and reverse mutation can affect criticality. Figure 3
illustrates how the population R0 (dominant eigenvalue
of M) changes with the probability of reverse mutation
(n) in the linear one-step reversible scheme; similar con-
siderations apply to the hub-and-spoke one-step
reversible scheme as well. A high rate of reverse
mutation from a well-adapted to a poorly adapted
strain can tip the branching process from supercritical
to subcritical. Population R0 increases almost linearly
with Tm, but is relatively insensitive to number of
strains (m), earlier strain transmissibility (T1) and
forward mutation probability (m). This is because
population R0 is very close to amm ¼ G0(1)Tm(1 2 n),
but slightly influenced by contributions from small
populations of other (poorly adapted) strains that
persist asymptotically if the process escapes extinction.
3.4. Impact of mutation scheme on
probability of emergence

We can compare not only the qualitative result of criti-
cality, but also the quantitative probability of
emergence across various supercritical branching pro-
cesses. To obtain this probability, 1 2 q1, we compute
the extinction probability ~q numerically, through
fixed-point iterations of the offspring distribution PGF,
~Gð~sÞ (§2.2). We initiate an iteration from a point ~s
with si , 1, 8i, to ensure convergence to the appropriate
J. R. Soc. Interface (2010)
fixed point (see appendix D for details), and continue
until the difference between successive iterations, in
max norm, is less than a specified tolerance, taken to
be 10212 or 10216 in the figures we present.

Figure 4 illustrates the probability of emergence
across various linear mutation schemes with the same
contact distribution. Here, Tm is far from the critical
threshold, and reverse mutation, even at a high rate
equal to that of forward mutation, makes a negligible
impact on the probability of emergence. This agrees
with Sagitov and Serra’s result that reverse mutation
is negligible in a similar model with an arbitrary off-
spring distribution (Sagitov & Serra 2009), and with
the neglect of pathways to the escape mutant exceeding
the minimum length in the work of Iwasa et al. (2003,
2004). On the other hand, results are highly sensitive
to the path of forward mutation that is assumed to be
possible. Allowing jumps directly to strain m tends
to make a particularly large difference, with this
effect most pronounced when early strains have very
low transmissibility. Simultaneous point mutations,
though extremely rare, also make a significant contri-
bution to the probability of emergence. In general,
similar trends were observed for larger Tm, with the
probability of emergence scaled up but the relationships
among mutation schemes the same. Probability of
emergence reaches a plateau, presumably at the
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probability of the well-adapted strain m ever appearing,
as Tm becomes very large (results not shown).

We can also consider the impact of mutation scheme
when intermediate strain fitness (as determined by
transmissibility for fixed contact structure) varies.
Although we have typically used the jackpot model,
one might also consider other choices of transmissibil-
ities. As one would expect, the higher the
intermediate strain fitness, the higher the probability
of emergence as observed by Antia et al. (2003). Now
that we have generalized the mutation scheme, we can
investigate whether this effect is more pronounced for
some schemes than for others. For instance, a decrease
in intermediate strain transmissibility (creating a fitness
valley) hurts the pathogen’s chance of emergence more
if only one-step forward mutation is possible, as
opposed to a jump directly to the final strain through
recombination (results not shown). This is in agreement
with an observation by Iwasa et al. (2004).
3.5. Impact of mutation probabilities
and number of strains

For any given mutation scheme, we can gain greater
insight into the effect of mutation probabilities and
number of strains by estimating the probability of emer-
gence analytically. As other authors (Antia et al. 2003;
Iwasa et al. 2003, 2004; Serra & Haccou 2007; Sagitov &
Serra 2009) have considered analytical approximations
for this model (or special cases of it) in detail, we
keep our remarks brief.

Using an intuitive argument, Antia et al. derived the
following approximation for the probability of evolution
to strain m (starting from strain 1) in the case of a
Poisson-distributed number of infectious transmissions
and one-step irreversible mutation (Antia et al. 2003):

PrðevoÞ �
Ym�1

i¼1

mR0;i

1� R0;i
¼ mm�1

Ym�1

i¼1

R0;i

1� R0;i
:

This approximation, which holds for m	 1 and R0,i not
too close to 1, makes it clear that probability of emer-
gence, which is proportional to the probability of
evolution in this estimation, is expected to scale
�mm21 (Antia et al. 2003). The derivation in fact pro-
ceeds without reference to any features of the
offspring distribution besides its mean, and figure 5 con-
firms that the prediction holds for all our sample
contact distributions. Differences among contact distri-
butions are primarily due to our comparison at fixed Ti

rather than fixed R0,i.
More generally, Serra & Haccou (2007) give a formal

derivation for probability of ‘escape’ (or emergence),
showing that (in our notation)

1� qi �
R0;i

1� R0;i

Xm
j¼1;j=i

mijð1� qjÞ

under quite general conditions, including the scenarios
considered by Antia et al. (2003) and Iwasa et al.
(2003, 2004). Specifically, this approximation is valid
under the following assumptions.
J. R. Soc. Interface (2010)
— Total offspring distribution for each type is arbi-
trary, provided its variance is finite. The mean of
the distribution for type i is R0,i. Mutations occur
independently among the offspring.

— There is a single ‘escape’ type (which we denote m)
having R0,m . 1; all other types i = m have R0,i , 1.

— There are no mutations away from the escape type;
thus, qm can be computed independently and substi-
tuted into the above approximation for qi, i = m.
However, all other mutations among types are
allowed.

— All mutation probabilities mij, i = j, are of O(u).

Under these conditions, the above approximation has
error of O(u2). However, the neglected error term
increases as R0,i! 1, implying that the approximation
will break down if strain fitness approaches the critical
threshold. Iwasa et al. (2004) present approximations
valid for various choices of R0,i, including the near-
critical case, though only for a specific offspring
distribution.

As an example, consider our ‘mutation and recombi-
nation’ scheme. Either by applying an Antia-like
argument to this specific scenario or by substituting
mutation probabilities into Serra and Haccou’s
result, we can show that the probability of emergence
starting from a type 1 individual (1 2 q1) scales as
O(mm21) þ O(r), where m is the probability of one-
step forward ‘point mutation’ and r is the probability
of jump-to-m ‘recombination’. Figure 6 supports
this prediction for an example with m ¼ 3 strains, illus-
trating the relative contributions of the different
adaptive pathways. When r
 m2, the probability
of emergence is almost constant in m and scales
approximately linearly in r. When r	 m2, the prob-
ability of emergence is almost constant in r and scales
proportionally to m2.

Despite the availability of these useful analytical
results, there is still a place for numerical solutions
when looking for subtle differences among cases (e.g.
different contact distributions) or where the assump-
tions underlying these approximations are broken or
pushed to their limits (e.g. relatively large mutation
probabilities), as we will encounter in the next
subsection.
3.6. Impact of increasing overall mutation rate

The same biological mechanisms (e.g. nucleotide substi-
tution rate, error-correcting mechanisms) contribute to
all mutation rates, not only those for beneficial
mutations. Given this constraint, it is not immediately
clear whether pathogens with the highest mutation
rates will have the largest or smallest probability of
emergence. We explore this question for two mutational
schemes in which deleterious steps are possible: one-step
reversible mutation and hub-and-spoke irreversible
mutation.

For simplicity, with one-step reversible mutation, we
use only two strains (implying that linear and hub-and-
spoke schemes are equivalent), the poorly adapted
strain 1 and the well-adapted strain 2. Mutation from
1 to 2 occurs with probability m, and from 2 to 1 with
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probability n, which we scale proportionally to m.
Results demonstrate a non-monotonic relationship
between mutation rate and probability of emergence
(figure 7). The probability of emergence increases
with mutation rate over a wide range, before abruptly
crashing to zero. This occurs because the branching pro-
cess becomes subcritical once reverse mutation rate is
too high, even when forward mutation rate is similarly
high (§3.3). Note, however, that the crash does not
occur if T2 is well above the critical threshold.

With an irreversible hub-and-spoke mutation
scheme, we assume that the initial strain is equally
likely to mutate to any other, but only one mutational
pathway is beneficial. As an extreme case, we set
transmissibility of all deleterious strains to be zero.
Figure 8 plots the probability of emergence versus T1

for various mutation probabilities. When T1 is well
below the critical threshold (at which R0,1 reaches 1),
emergence probability increases linearly with mutation
probability, as we would predict from analytical
approximations (§3.5). Although this figure plots
J. R. Soc. Interface (2010)
results for m ¼ 10 strains, a virtually identical increase
in emergence probability versus m at fixed small T1 was
observed for m ¼ 2, 3, 5 as well (results not shown).
This indicates that regardless of how high the risk of
deleterious steps, a pathogen that is guaranteed to go
extinct unless it acquires a beneficial mutation (evolves
to strain m) is always better off having a large mutation
rate. Near the critical threshold, emergence probability
shows a sharp jump; once strain 1 is sufficiently fit to
escape extinction without further evolution, mutation
probability makes only a small difference in results.
Shortly after this point, a very high mutation prob-
ability becomes detrimental to the pathogen, even
while strain 1 is not as well adapted as strain m. The
risk of mutating to a poorly adapted strain now out-
weighs the potential benefit of mutating to a better
adapted strain. Adding reverse mutation at a prob-
ability equal to that of forward mutation makes
negligible difference to quantitative results (results not
shown), as also observed with linear mutation schemes
where R0,m is not too close to one. We might suspect
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that increasing reverse mutation probability indepen-
dently of forward mutation probability could provide
a benefit to the pathogen if the transmissibility of dele-
terious strains is non-zero, such that mutation could
‘rescue’ the pathogen by a return to strain 1 (the
hub). However, this does not appear to be the case
within tested parameter ranges (results not shown):
increasing reverse mutation probability decreases prob-
ability of emergence, though only marginally when R0,m

is well above one.
4. DISCUSSION

We have linked phenomenological and contact network-
based approaches to modelling disease spread as a
branching process, clarifying how they may be viewed
within a common framework. By explicitly considering
the number of contacts along with a model of how
transmission occurs to these contacts, a network-
based model offers more detailed insights into factors
contributing to pathogen fitness and probability of
emergence. Such a model lends itself to comparison of
the relative impact of various public health interven-
tions, which may act by reducing either number of
contacts or probability of transmission per contact
(Meyers et al. 2005; Brauer 2008).

Expressing the basic reproductive number as R0 ¼

(g0(1)(1 þ c2) 2 1)T—where g0(1) is the mean of the
contact distribution, c is its coefficient of variation
and T is transmissibility—highlights the contributions
of both ecological factors (contact structure) and epide-
miological factors (transmissibility) to pathogen fitness.
That is, a pathogen’s fitness depends on the particular
host population in which it circulates, an observation
that has been made more generally for pathogen fitness
measures (Antolin 2008). Similarly, in the multi-type
process, we can express the mean matrix as M ¼
(g0(1)(1 þ c2) 2 1)diagð~TÞU , where ~T is the vector
of strain transmissibilities and U is the mutation
J. R. Soc. Interface (2010)
matrix. These expressions make it clear that for fixed
transmissibilities, mean number of contacts and
mutation scheme, maximizing pathogen fitness is equiv-
alent to maximizing the variance of the host
population’s contact distribution; this agrees with the
general observation that increasing heterogeneity
among hosts increases R0 (Antolin 2008). Furthermore,
in the multi-type process, we see that criticality is
independent of mutation probabilities if mutation is
uni-directional; however, if mutation is bi-directional
then this can push the process into a subcritical range
(figure 3).

We have argued that the comparison of emergence
probability across contact distributions should be
made at given pathogen transmissibility, rather than
at given pathogen fitness (R0). This comparison more
easily lends itself to questions about the sort of host
population contact structure that is associated with
greatest risk of disease emergence. In contrast, holding
R0 fixed in comparisons requires that we simultaneously
alter pathogen transmissibility when altering the
contact distribution, thereby confounding these two
factors.

4.1. What are the most risky contact structures?

The contact distribution associated with highest risk of
emergence is not always the same, but rather depends
on the transmissibility, i.e. the particular pathogen
involved. Especially large differences among contact
distributions occur near the critical threshold for the
branching process. Recall figure 2b: at a transmissibility
of 0.03, probability of emergence ranges from 0 to
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approximately 0.7, depending on contact distribution,
even when all distributions have the same mean. This
suggests that certain pathogens, having a transmissibil-
ity near the critical threshold, will be able to cause an
epidemic in some host populations, but not others.

Although previous authors have often found that
increased population heterogeneity increases the
probability of extinction (e.g. Caraco et al. 1998;
Lloyd-Smith et al. 2005), in phenomenological models
this heterogeneity is necessarily introduced directly to
the offspring distribution. In contrast, the heterogeneity
we introduce through contacts in our more mechanistic
model has the counteracting effect of raising R0, as
the chance of getting the disease is correlated with the
number of opportunities to pass it on. (Recall the
distinction between degree and excess degree distri-
bution.) Through comparison of contact distributions
at given transmissibility, we found that heterogeneity
can in fact increase the risk of emergence over a
significant range.
4.2. What are the most risky mutational
processes?

Probability of emergence is highly sensitive to the
mutational pathway(s) by which the pathogen may
possibly evolve (figure 4). Provided we are not too
close to the critical threshold, reverse mutation has
very limited impact on this probability and may reason-
ably be neglected. On the other hand, the possibility of
taking large adaptive steps through either simultaneous
point mutations or another mechanism of genetic
change can have a dramatic impact. Given the finding
on simultaneous mutations, it may be worth including
higher order terms in other mutation schemes as well.
As in the case of contact distribution, however, the
‘most risky’ mutational pathway depends on the patho-
gen’s initial transmissibility. Given a mutational
scheme, probability of emergence is also sensitive to
mutation probabilities and number of intermediate
strains in an analytically predictable manner (figures 5
and 6).

We also considered more realistic situations where
deleterious as well as beneficial evolutionary steps are
available to the pathogen, either by reverse mutation
or by including multiple pathways in strain space.
Here, we constrained all types of mutations to occur
with proportional probabilities, based on some overall
mutation rate of the pathogen. We found that, when
the pathogen was initially poorly adapted, increasing
overall mutation rate was usually beneficial to an emer-
ging pathogen (i.e. riskier to the host). On the other
hand, as the pathogen’s initial fitness increases
beyond the critical threshold where survival without
adaptation is possible, the risk of deleterious mutations
comes to outweigh the benefit of potential mutation to
a more fit strain, and a high mutation rate becomes a
liability (figure 8). Thus, our results largely provide
support for the hypothesis that the statistically higher
propensity of RNA viruses to emerge is due to their
high mutation rate (Cleaveland et al. 2001; Woolhouse
et al. 2005). However, an exception occurs with patho-
gens for which the fully adapted strain has a basic
J. R. Soc. Interface (2010)
reproductive number only slightly above one. In this
situation, when allowing for reverse mutation, we
observed another phenomenon in which emergence
probability has a non-monotonic relationship with over-
all mutation rate (figure 7). If this rate passes a critical
point, excessive back mutation to poorly adapted
strains implies that the pathogen can no longer sustain
itself. This result parallels the phenomenon of ‘error cat-
astrophe’ observed in viral quasi-species models, which
offer a theoretical explanation for experimental success
in inducing lethal mutagenesis in viruses (Eigen 2002;
Anderson et al. 2004; Clementi 2008). Although the
required ‘mutation’ rate may at first appear unrealisti-
cally high, it is important to remember that it does
not represent the probability of point mutation during
a single replication event, but actually incorporates all
factors involved in strain conversion, including genetic
changes arising during multiple rounds of replication
and within-host strain competition. Taken together,
our results suggest that any attempt to alter a patho-
gen’s mutation rate for host benefit should be
undertaken with careful consideration of the pathogen’s
initial fitness and the availability of mutations, both
beneficial and deleterious. An attempt to induce
lethal mutagenesis seems liable to backfire if the patho-
gen has significant adaptive potential, as in the case of
many emerging pathogens.
4.3. Future directions

We have modelled the spread of an emerging pathogen
following its introduction to a new host species. This
model does not incorporate the dynamics of the intro-
duction itself (or possibly multiple introductions),
such as interspecific interactions (Woolhouse et al.
2005; Day et al. 2006; Kuiken et al. 2006; Woolhouse &
Gaunt 2007; Lloyd-Smith et al. 2009). Indeed, although
a better understanding of the dynamics of cross-species
transmission is likely to be important in dealing with
emerging diseases, few models to date have considered
multiple species and phases in cross-over (Lloyd-Smith
et al. 2009). (However, see Day et al. (2006) and
Reluga et al. (2007) for models incorporating ongoing
interactions with animal reservoirs.) Putting our
model in a broader context could elucidate the impact
of additional risk factors such as pathogen–host range
(Cleaveland et al. 2001; Taylor et al. 2001).

Within the context of transmission in a single-host
population, there are several common but potentially
significant limitations of our modelling approach.
Given the importance of contact structure that we
and others have predicted, consideration of more realis-
tic networks may be an important next step. Using a
branching process neglects higher order network fea-
tures, such as loops that persist even in large
populations, thus implicitly assuming that the avail-
ability of susceptibles is not limited by local
saturation. Clustering of contacts is expected to limit
disease spread owing to reduction in the availability of
susceptibles (Keeling & Eames 2005), and including
features such as triangles in networks may have a
dramatic impact in decreasing the probability of a
large-scale epidemic (Trapman 2007). Thus, we expect
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the branching process approach to provide an upper
bound on the risk of emergence. On the other hand, a
recent analysis addressing some apparent inconsisten-
cies in the literature suggests that the impact of
clustering on the probability of an epidemic is in fact
negligible unless degree is typically small or host-
based heterogeneities are large (Miller 2009), providing
some support for conclusions drawn from a branching
process approach. While some authors (e.g. Ball &
Neal 2002; Trapman 2007; Miller 2009) have made pro-
gress in modelling stochastic single-strain disease spread
with more complicated contact structures, to our
knowledge such approaches have not yet been extended
to multiple strains.

A second major assumption in our model is that
hosts are homogeneous in terms of their epidemiological
characteristics. That is, the same transmissibility
applies to every host infected with a given strain of
pathogen. However, host-based factors are predicted
to play a role in emergence risk (Woolhouse et al.
2005; Woolhouse & Gaunt 2007), suggesting value
J. R. Soc. Interface (2010)
in a more realistic model. This would incorporate
variability in host characteristics contributing to
transmissibility, such as infectivity and susceptibility
(Yates et al. 2006; Miller 2007). Analysis in the
single-strain case predicts that such heterogeneities
reduce the probability of an epidemic (Miller
2007, 2009).

Furthermore, both the level of transmissibility (T )
and the strain conversion process have been treated
only phenomenologically in our present between-host
model. We (and other authors) have implicitly assumed
that any conversion of strains within an individual is
instantaneous, with no possibility for co-infection. We
have also ignored variation in the precise number of
pathogen copies in the body. Realistically, once a
mutation arises in a host there will be some dynamical
process leading to fixation or loss over time, with coex-
istence of strains at least temporarily. Both André &
Day (2005) and Handel et al. (2006) also raise this
issue, the latter suggesting that the difficulty of obtain-
ing direct estimates of parameters in the between-host
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model (e.g. R0 and conversion rates) supports a move to
modelling at the within-host level.

An important avenue for future work will thus be to
develop an explicit model of within-host processes, and
then to link the within- and between-host scales. In
recent years, a number of authors have developed
such ‘nested models’ (reviewed in Mideo et al. 2008);
however, these are typically deterministic, whereas we
suggest that stochasticity may be important at both
levels. A pathogen may then increase its fitness via
multiple routes (Antolin 2008), with potential for
conflicting selection at different scales (Gilchrist &
Coombs 2006; Coombs et al. 2007). We anticipate
that antagonistic selection at the within- versus
between-host scales would tend to reduce the prob-
ability of population-level emergence, as the more
transmissible strain (better able to avoid extinction
between hosts) is thwarted by dominance of other
strain(s) within the host. By extending our model to
the within-host scale, we can address these sorts of
trade-offs in greater detail, offering further perspectives
on risk factors contributing to evolutionary emergence.
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APPENDIX A. CORRESPONDENCE OF
APPROACHES (SINGLE-STRAIN MODELS)

The parallels and subtle differences between the phe-
nomenological and network-based approaches suggest
several questions regarding when models are equivalent
and whether one may be recovered as a special case of
another. We explore these questions in the following
subsections.
A.1. Can g(z) be recovered from G(z)?

Not all models deal with generation 0 infectives, or
we may only have information for ‘typical’ (later-
generation) infectives. To connect such cases to a con-
tact network framework, we may ask: given the excess
degree distribution, G(z), can we work backwards to
determine the degree distribution, g(z)?

We have the relationship

GðzÞ ¼ g0ðzÞ
g0ð1Þ :

Integrating both sides yieldsðz

0
GðsÞ ds ¼ 1

g0ð1Þ

ðz

0
g0ðsÞ ds ¼ 1

g0ð1Þ ðgðzÞ � p0Þ

) gðzÞ ¼ p0 þ g0ð1Þ
ðz

0
GðsÞ ds:

Thus, given only G(z), g(z) is under-determined: once a
disease is being passed among those who are connected
to the contact network, we have no way of knowing how
many additional individuals are in the population but
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have no contacts at all. To determine g(z), we must
impose an additional assumption. Note that the proper-
ties of a PGF imply g(1) ¼ 1; thus, we have the
relationship

gð1Þ ¼ p0 þ g0ð1Þ
ð1

0
GðsÞ ds ¼ 1

) g0ð1Þ ¼ 1� p0Ð 1
0 GðsÞ ds

:

Thus, we can find g(z) if we specify either p0, the prob-
ability of having zero contacts, or g0(1), the mean
number of contacts. We can calculate the other
quantity from the above relationship, subject to
the restriction that p0 [ [0,1] and hence g0(1) [
[0,1/

Ð
0
1 G(s) ds].
A.2. Under what conditions is g(z) 5 G(z)?

Phenomenological models do not typically distinguish
between generation 0 and later-generation infectives.
In what case(s) will this perspective be exactly equival-
ent to a network-based model? That is, suppose every
infective, whether in the initial or later generations,
has exactly the same distribution of still-susceptible
contacts: g(z) ¼ G(z). What restrictions does this
impose on the possible distribution of contacts?

Since G(z) ¼ g0(z)/g0(1), the condition that g(z) ¼
G(z) leads to the ordinary differential equation

g0ðzÞ ¼ g0ð1ÞgðzÞ;

which, using the constraint that g(1) ¼ 1, has the
unique solution

gðzÞ ¼ expðg0ð1Þðz � 1ÞÞ:

Since a PGF uniquely identifies a distribution, we can
deduce that the contact distribution is Poisson, with
only the mean g0(1) left to our discretion. Thus, the dis-
tinction between generations of infectives is in fact
irrelevant in many phenomenological models, which
specify a Poisson distribution. Note that if we only
require that the number of still-susceptible contacts
should have the same type of distribution in each gener-
ation, but not necessarily with the same parameter(s),
then other types of distributions are possible: for
instance, a negative binomial degree distribution with
mean l and dispersion b leads to a negative binomial
excess degree distribution with mean l(b þ 1)/b and
dispersion b þ 1.
A.3. Can G(z) be recovered from G(s)?

Recall that authors taking phenomenological
approaches (e.g. Antia et al. 2003; Lloyd-Smith et al.
2005) specify only the distribution of infectious con-
tacts. Once we separate contact structure from
transmissibility in a network-based approach (as in
Brauer 2008), is there more than one distribution of
contacts that will achieve the same distribution of infec-
tious contacts? For consistency among models, in the
remainder of this section, we will treat all infectives
alike, and work only with G(z) and G(s). The same



Table 1. Names and associated PGFs of distributions used in numerical results. Listed parameters are the mean for
deterministic and Poisson; number of trials and probability of success for binomial; mean and dispersion for negative binomial;
proportion of each type and mean for each type for mixed deterministic and mixed Poisson; and proportion of each type,
number of trials for each type, and probability of success for mixed binomial. The PGF for a Poisson distribution is given by
Brauer (2008) and the PGF for a negative binomial distribution is given by Lloyd-Smith et al. (2005).

contact (degree) distribution excess degree distribution offspring distribution (single strain)

deterministic(l) deterministic(l 2 1) binomial(l 2 1, T )
g(z) ¼ zl G(z) ¼ zl21 G(s) ¼ (1 2 T þ Ts)l21

Poisson(l) Poisson(l) Poisson(lT )
g(z) ¼ exp(l(z 2 1)) G(z) ¼ exp(l(z 2 1)) G(s) ¼ exp(lT(s 2 1))

negative binomial(l, b) negative binomial(l(b þ 1)/b, b þ 1) negative binomial(lT(b þ 1)/b, b þ 1)
g(z) ¼ (1 þ (l/b)(1 2 z))2b G(z) ¼ (1 þ (l/b)(1 2 z))2(bþ1) G(s) ¼ (1 þ (lT /b)(1 2 s))2(bþ1)

mixed deterministic(~p, ~l ) mixed deterministic(~p � ~l=l, ~l � 1) mixed binomial(~p � ~l=l, ~l � 1, T )
g(z) ¼

P
k¼1
n pk zlk G(z) ¼ (1/l)

P
k¼1
n pklk zlk21 G(s) ¼ (1/l)

P
k¼1
n pk lk (1 2 T þ Ts)lk21

mixed Poisson(~p, ~l ) mixed Poisson(~p � ~l=l, ~l ) mixed Poisson(~p � ~l=l, ~lT)
g(z) ¼

P
k¼1
n pk exp(lk (z 2 1)) G(z) ¼ (1/l)

P
k¼1
n pklk exp(lk (z 2 1)) G(s) ¼ (1/l)

P
k¼1
n pk lk exp(lk T(s 2 1))

Table 2. Contact distributions used in numerical results, along with their variance and the expression for the basic
reproductive number R0 for the single-strain model in each case.

contact (degree) distribution variance R0

deterministic(l) 0 (l 2 1)T
Poisson(l) l lT
negative binomial(l, b) l(1 þ l/b) lT(b þ 1)/b
mixed deterministic(~p, ~l )

P
k¼1
n pk (lk 2 l)2 (1/l)

P
k¼1
n pk lk (lk 2 1)T

mixed Poisson(~p, ~l ) l þ
P

k¼1
n pk (lk 2 l)2 (1/l)

P
k¼1
n pklk

2 T
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results apply if we replace G(z) with g(z) and G(s) with
g(s).

Given a distribution G(s) for number of infectious
contacts, we can always obtain a distribution G(z)
for number of still-susceptible contacts that satisfies
G(s) ¼ G(1 2 T þ Ts), trivially, by taking T ¼ 1 and
G(z) ; G(z). More generally, for arbitrary T, we
require that G(1 2 T þ Ts) ¼ G(s), if G(.) exists for
this choice of G(.). Rearranging z ¼ 1 2 T þ Ts
yields s ¼ (z 2 (1 2 T ))/T. Thus, G(z) ¼ G((z 2 (1 2

T ))/T) if G(z) exists; that is, if this expression
yields a valid PGF. Taking z [ [0,1] as we would
usually evaluate a PGF leads to s ¼ (z 2 (1 2 T))/T
[ [2(1 2 T )/T, 1], and G(s) may not be a valid PGF
on this range. Taking G(s) to be, say, binomial or
negative binomial leads to a valid PGF for G(z), for
any T [ [0,1]. But taking G(s) ¼ sN (exactly N infec-
tions transmitted by every infective) only gives a
valid PGF if T ¼ 1, not surprisingly. These examples
illustrate that some, but not all, distributions of infec-
tious transmissions can be traced back to contact
distributions for arbitrary T. This limitation is to be
expected, given that we have constrained the
number of transmissions from an individual to be dis-
tributed binomially with total number of ‘trials’ equal
to the number of contacts. Precise conditions on G(s)
yielding a valid contact distribution G(z) in this or
other models of transmission is an interesting math-
ematical question, but lies beyond the scope of the
present work.
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APPENDIX B. DETAILED DESCRIPTIONS
OF CONTACT DISTRIBUTIONS AND
MUTATIONAL SCHEMES

B.1. Contact distributions

The following contact distributions are used in our
numerical results. In all cases, l denotes the mean of
the distribution. Tables 1 and 2 summarize these distri-
butions with the corresponding PGFs and expressions
for R0.

Deterministic. Every individual has a fixed number
of contacts. This leads to a binomial offspring
distribution.

Poisson. This distribution is appropriate ‘[i]f con-
tacts between members of the population are random,
corresponding to the assumption of mass action in the
transmission of disease’ (Brauer 2008, p. 142). The
degree and excess degree distributions are the same.
Using a Poisson-distributed number of contacts also
leads to a Poisson-distributed number of infectious con-
tacts (offspring distribution), as used in several
phenomenological models (e.g. Antia et al. 2003;
Yates et al. 2006; Reluga et al. 2007). In fact, since a
Poisson distribution is fully determined by its
mean, disease outbreak properties in this situation are
fully determined by R0 (or R0,i for multiple
strains), regardless of whether R0 is influenced through
contacts or transmissibility. However, for other distri-
butions, the parameters involved in the model do not
appear only in the combination R0; that is, for a fixed
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choice of R0, the probability of emergence still varies
depending on the chosen parameters. Here, the separ-
ation of ecological and epidemiological influences is
significant.

Negative binomial. This type of distribution arises in
Lloyd-Smith et al. (2005) by taking a Poisson distri-
bution with mean drawn from a Gamma distribution.
We might interpret this distribution as arising from
an infective making contacts at a constant rate (i.e. at
points of a Poisson process) over a Gamma-distributed
duration of infection. Variance decreases as dispersion
(b) increases; in the limit as b!1, we get a Poisson
distribution.

Mixed distributions. This choice of distribution is
motivated by the existence in the host population of
‘superspreaders’, who contribute an unusually large
number of transmission events (Lloyd-Smith et al.
2005; Meyers et al. 2005; Day et al. 2006; Yates et al.
2006; Brauer 2008). We introduce this heterogeneity
through number of contacts, an ecological effect,
similarly to examples in Brauer (2008). Another
possibility is that superspreading is due to higher-
than-normal transmissibility among certain members
of the population (Yates et al. 2006), an epidemiological
effect that might be incorporated through an extension
to our model (§4.3). While phenomenological models
directly specifying the distribution of infectious con-
tacts would not distinguish the two cases, which both
simply raise R0 (e.g. Lloyd-Smith et al. 2005), these
situations may lead to very different results (Meyers
et al. 2005). Some authors distinguish the two cases
by labelling hosts with a large number of contacts
‘superspreaders’, and those with high transmissibility
‘supershedders’ (Meyers et al. 2005).

In general, a mixed distribution specifies n types of
individuals, in proportions p1, . . . , pn. Each type has a
characteristic distribution of contacts, which we take
to be either deterministic (the kth type has exactly lk

contacts) or Poisson (the kth type has a Poisson(lk) dis-
tribution of contacts), where

P
k¼1
n pklk ¼ l. These

cases lead to a mixed binomial or a mixed Poisson off-
spring distribution, respectively. For our numerical
examples, we have taken n ¼ 2, representing a less-
frequent class of superspreaders among more-frequent
‘normal’ spreaders.

B.2. Mutational schemes

Schemes are numbered and interpreted as in §2.2. Each
is characterized by the mutation matrix U ¼ [mij], where
mij is the probability that an infection transmitted by a
type i is of type j. We denote the probability of one-step
forward point mutation by m, of one-step reverse point
mutation by n and of jump-to-strain-m genetic change
(e.g. recombination) by r.

One-step irreversible:

U ¼

1� m m 0 � � � 0 0 0
0 1� m m � � � 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 � � � 0 1� m m

0 0 0 � � � 0 0 1

2
666664

3
777775:
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Multi-step irreversible: following Gokhale et al.
(2009),

mij ¼
m j�ið1� mÞm�j for i , j � m;

1�
Pm

k¼iþ1 mk�ið1� mÞm�k for j ¼ i;
0 otherwise:

8<
:

Interchangeable and irreversible: following Gokhale
et al. (2009),

mij ¼
m � i
j � i

� �
m j�ið1� mÞm�j for i � j � m;

0 otherwise:

8<
:

Point mutation and recombination:

U ¼

1�m�r m 0 � � � 0 0 r

0 1�m�r m � � � 0 0 r

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 � � � 0 1�m�r mþr

0 0 0 � � � 0 0 1

2
666664

3
777775:

One-step reversible:

U ¼

1�m m 0 � � � 0 0 0
n 1�m� n m � � � 0 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � n 1�m� n m

0 0 0 � � � 0 n 1� n

2
666664

3
777775:

Hub-and-spoke, irreversible:

U ¼

1� ðm � 1Þm m m � � � m m m

0 1 0 � � � 0 0 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 � � � 0 1 0
0 0 0 � � � 0 0 1

2
666664

3
777775:

Hub-and-spoke, reversible:

U ¼

1� ðm� 1Þm m m � � � m m m

n 1� n 0 � � � 0 0 0

..

. ..
. ..

. ..
. ..

. ..
.

n 0 0 � � � 0 1� n 0
n 0 0 � � � 0 0 1� n

2
666664

3
777775:
APPENDIX C. DERIVATION OF PGFs FOR
THE MULTI-TYPE MODEL

Here, we present a derivation of the PGFs used in our
network-based multi-type model. First consider the
PGF for number of infections of each type,
~X ¼ ðX1; . . . ;XmÞ, transmitted by a type i infective,
given d susceptible contacts. The number of each type
of transmission (including ‘failed’ transmissions) has a
multinomial distribution with d independent ‘trials’;
possible outcomes are transmission of type j (prob-
ability Timij), for some j ¼ 1, . . ., m, or no
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transmission (probability 1 2 Ti). Thus,

E sX1
1 sX2

2 � � �sXm
m jd

� �
¼
X1

x1¼0
� � �
X1

xm¼0
Pr
�
~X

¼ðx1;x2; . . . ;xmÞjd susceptible contacts
�

sx1
1 . . .sxm

m

¼
Xd

x1¼0
� � �
Xd

xm¼0

d

x1;x2; . . . ;xm

� �

�ðTimi1Þ
x1 . . .ðTimimÞ

xmð1�TiÞd�x1�����xm sx1
1 . . .sxm

m

¼ðTimi1s1þTimi2s2þ�� �þTimimsmþ1�TiÞd ;

where at the final step we have used the multinomial
theorem to rewrite the summation.

We can then derive the offspring distribution by
considering the distribution of d. The appropriate
PGF depends on the generation:

E sX1
1 sX2

2 � � �sXm
m

� �
¼E E sX1

1 sX2
2 � � �sXm

m jd
� �� �

¼
X1
d¼0

Prðd susceptible contactsÞ E sX1
1 sX2

2 � � �sXm
m jd

� �

¼
X1
d¼0

Pr d susceptible contactsð Þ ð1�TiþTi

Xm
j¼1

mij sjÞd

¼

gð1�TiþTi
Pm
j¼1

mij sjÞ for an initial infective

Gð1�TiþTi
Pm
j¼1

mij sjÞ for a later-generation

infective:

8>>>>><
>>>>>:
Finally, consider the overall probability of extinction

starting from an initial infective of type i, given the
probability of extinction starting from a later-
generation infective of each type (~q). Let D be the
number of contacts of the initial case and let
~X ¼ ðX1; . . . ;XmÞ be the number of infectives of each
type in generation 1. Then, using the independence
of the branching processes started in generation 1,
we have

PrðextÞ

¼
X1
d¼0

PrðD ¼ dÞ PrðextjD ¼ dÞ

¼
X1
d¼0

pd

X1
x1¼0

� � �
X1
xm¼0

Prð~X ¼ ðx1; . . . ;xmÞjD ¼ dÞ

�Prðextj~X ¼ ðx1; . . . ;xmÞÞ

¼
X1
d¼0

pd

Xd

xl¼0

� � �
Xd

xm¼0

d

xl ;x2; . . . ;xm

� �

� ðTimi1Þ
x1 � � � ðTimimÞ

xm ð1�TiÞd�x1�����xmqx1
1 � � �qxm

m

¼
X1
d¼0

pd 1�Ti þTi

Xm
j¼1

mijqj

 !d

¼ g 1�Ti þTi

Xm
j¼1

mijqj

 !
:

J. R. Soc. Interface (2010)
APPENDIX D. TECHNICAL RESULTS FOR
MULTI-TYPE BRANCHING PROCESSES

In this section, we present more detailed technical
results relevant to the methods applied to our multi-
type branching process. As in the main text, we
denote by ~G ¼ ðG1;G2; . . . ;GmÞ the vector of type-
specific offspring distribution PGFs. First, we make
the reasonable assumption that our process is never
singular. Singular processes are those in which every
individual has exactly one offspring (Harris 1963), and
are often excluded from analyses.

Results for multi-type branching processes are
usually stated for indecomposable processes, in which
‘each type of individual eventually may have progeny
of any other type’ (Haccou et al. 2005, p. 26), also
known as irreducible processes (Mode 1971). Such a
process can be identified from the expectation matrix,
M: the process is indecomposable if, for every pair of
types (i,j), there exists a positive integer n such that
Mn(i,j) . 0; or equivalently, there is a non-zero prob-
ability of producing at least one type j in generation
n, given that the process starts with one type i (Mode
1971; Haccou et al. 2005). If n is independent of the
types (i,j), the process is called positively regular
(Mode 1971). Only periodic processes are indecomposa-
ble, but fail to be positively regular (Mode 1971);
however, a periodic process can be represented by a
non-periodic process through a transformation of time
scale (Haccou et al. 2005). Thus, from here on, we
take indecomposable to mean positively regular. In
our model, whenever mutation is reversible and all
types are transmissible, we have an indecomposable
process.

On the other hand, we may be dealing with a decom-
posable process, in which there are ‘distinct groups of
types that do not produce types in other groups’
(Haccou et al. 2005, p. 27). In our model, whenever
mutation is irreversible, the mutation matrix U is
upper triangular; hence, the expectation matrix M
and any positive power Mn are also upper triangular
and we have a decomposable process. We also encounter
decomposable processes whenever there are non-
transmitting types, leading to an all-zero row in M.

We say that extinction of the process occurs when
the population of every type reaches zero at some gen-
eration. Analogously to the single-type case, there is a
threshold theorem for multi-type processes stating
when non-extinction is possible; now, the threshold par-
ameter is the dominant eigenvalue r of the expectation
matrix M. In the indecomposable case, extinction
occurs with probability one from any starting type if
and only if r � 1 (Harris 1963; Mode 1971; Athreya &
Ney 1972; Allen 2003; Haccou et al. 2005). In the
decomposable case, we must consider classes of types
that communicate, i.e. any type within a class can
give rise to any other type in the class after some
number of generations (Harris 1963; Mode 1971).
Then, provided there is no type that produces in the
next generation exactly one offspring in its class with
probability one, the threshold theorem continues to
hold in the decomposable case (Harris 1963; Mode
1971). We will assume that this condition, which is
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essentially an extension of the definition of non-
singularity (Mode 1971), always holds in processes we
consider.

Applying this theorem to our model, clearly the
possibility of non-extinction requires that some type is
supercritical in isolation, i.e. R0,i . 1 for some i.
When mutation is irreversible, the eigenvalues of M
are simply given by the entries on the main diagonal,
and assuming that the final strain m is best adapted,
the dominant eigenvalue is R0,m. Thus, the process is
guaranteed to go extinct from every initial type if and
only if R0,m � 1. Otherwise, there is a positive prob-
ability that the process does not go extinct, at least
from some initial type. In fact, any initial type will suf-
fice, provided the probability of forward mutation is
positive and every strain is transmissible. For reversible
mutation, again assuming strain m is best adapted,
having R0,m . 1 is a necessary, but not sufficient,
condition to obtain a positive probability of non-
extinction (cf. figure 3). Finally, if any type is
non-transmissible (as we sometimes consider with
hub-and-spoke schemes), clearly a process initiated by
such a type is guaranteed to go extinct. Starting from
any other type, we can simply ignore any production
of non-transmissible types to define a process fitting
into one of the aforementioned cases.

Let qi denote the extinction probability of a multi-
type branching process initiated by one type i individ-
ual. It is a well-known result for an indecomposable
process that ~q ¼ ðq1; . . . ; qmÞ is a fixed point of the
vector equation ~Gð~qÞ ¼~q, i.e. Gið~qÞ ¼ qi, 8i (Harris
1963; Athreya & Ney 1972; Kimmel & Axelrod 2002;
Allen 2003; Haccou et al. 2005). However, the argument
for reaching this conclusion in fact applies to any
branching process (Mode 1971); some further deduc-
tions depend on irreducibility. First note that ~1 (the
vector of length m containing all ones) is always a
fixed point of ~G; there may be other solutions too.

For an indecomposable process, ~q is the smallest
non-negative fixed point of ~G: if r � 1, then ~q ¼~1, as
guaranteed by the threshold theorem; while if r . 1
(the supercritical case), 0 � qi , 1, 8i (Harris 1963;
Mode 1971; Athreya & Ney 1972; Kimmel & Axelrod
2002; Allen 2003; Haccou et al. 2005). Furthermore,
the only solutions to the fixed-point equation
with 0 � si � 1, 8i, are ~1 and ~q, and fixed-point iter-
ation beginning with any ~s (0 � si , 1, 8i) converges
to ~q (Harris 1963; Mode 1971; Athreya & Ney 1972).
This suggests a simple way to compute extinction
probabilities to arbitrary accuracy, and is indeed the
method we use for our numerical results (§3.3).

For a decomposable process, the threshold theorem
again implies that ~q ¼~1 if r � 1. However, for a super-
critical process (r . 1), the uniqueness of fixed-point
solutions ~s =~1 does not necessarily hold, nor must
every qi be less than one even when~q =~1. For any situ-
ation we consider, we can argue (see below) that our
computational method finds the ‘right’ solution~q repre-
senting the probability that the entire process (i.e. every
type) goes extinct; see also Reluga et al. (2007) for
interpretations of multiple solutions.

We first assume that all types are transmissible, so M
has no all-zero row. Suppose mutation is irreversible
J. R. Soc. Interface (2010)
and hence M is upper triangular. This implies that
Gið~sÞ is in fact independent of sj for all j , i. Thus, we
can solve for any fixed point ~s by working backwards
through types m, m 2 1, . . . , 1, substituting solutions
for those si already found and leaving an equation in
one variable only. Assuming type m is supercritical
(R0,m . 1), according to results for single-type branch-
ing processes, Gm(sm) ¼ sm has two solutions: sm ¼ 1
and sm ¼ qm , 1 (the extinction probability of the pro-
cess initiated by a type m). We can then solve for sm21

in each case. Gm21(sm21, 1) is the PGF for the number
of type m 2 1’s produced by a type m 2 1, defining a
single-type branching process. In most cases we con-
sider, R0,m21 , 1, and hence this will be a subcritical
branching process, yielding a unique fixed point on
[0, 1], sm21 ¼ 1. Occasionally (e.g. figure 8), we will con-
sider a case where R0,m21 . 1 and the process may be
supercritical; in this case, we obtain two fixed points,
sm21 ¼ 1 and sm21 ¼ q̃m21 , 1. On the other hand,
Gm21(sm21, qm) is an increasing, concave-up function
satisfying Gm21(0, qm) . 0 and, assuming mm21,m . 0
(i.e. Gm21ð~sÞ is not independent of sm), Gm21(1, qm) ,

1; therefore, there is a unique solution qm21 , 1 satisfy-
ing Gm21(qm21, qm) ¼ qm21. The argument proceeds
identically as we continue to work backwards through
types. To summarize, in most cases, we will have
R0,m . 1 and R0,i , 1 8i = m; this yields two solutions
to the vector fixed-point equation:~s ¼~1 and~s ¼~q, the
extinction probability, where qi , 1, 8i. Furthermore,
fixed-point iteration beginning with any~s with all com-
ponents ,1 will converge to the latter solution, since
iteration of Gm(sm) converges to qm. In the occasional
case that we have more than one supercritical type,
there will be more than two solutions, corresponding
to different subsets of types persisting in the case of
non-extinction (Reluga et al. 2007). However, only one
solution ~q will have all components ,1, and this can
readily be identified as the vector of probabilities that
the entire process (every type) goes extinct, based on
arguments presented above. Again, this is the solution
that will be reached by fixed-point iteration beginning
with ~s such that si , 1, 8i, which is the method we
apply in computations. In more complicated mutational
schemes (not considered here), for instance if certain
pathways are reversible and others are not, classes in
a decomposable process may consist of more than one
type; here we can write M in a block triangular form
and apply results from Mode (1971) to make similar
arguments.

If any type i is not transmissible, its corresponding
PGF is clearly Gi ð~sÞ ¼ 1, with unique fixed point si¼ 1.
Substituting this solution into all other equations
yields PGFs that effectively neglect any production of
type i, and we can then proceed as described above.

Finally, recall that the probability of extinction
starting from a generation 0 infective of type i, chosen
uniformly at random with respect to degree, is given
by g(1 2 Ti þ Ti

P
j¼1
m mij qj) ; gið~qÞ. This probability

is less than one if and only if qj , 1 for some j for
which mij . 0, simply meaning that extinction is guar-
anteed in this process if it is guaranteed in the
processes initiated by later-generation infectives of
types accessible by mutation.
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If the branching process escapes extinction, we may
be interested in the complement of types present in
the long term. In indecomposable processes, all types
will persist, and their populations grow asymptotically
at a geometric rate r (Haccou et al. 2005). However,
this is not necessarily the case in decomposable pro-
cesses. A simple inductive argument can be used to
show that only supercritical types can persist if
mutation is irreversible; so, in most cases we consider,
‘emergence’ means that only type m is present in the
long term. More detailed limit theorems can be found
in Mode (1971).
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