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Viral infections are often associated with platelet activation and haemostatic
complications. In line, low platelet counts represent a hallmark for poor prognosis in
many infectious diseases. The underlying cause of platelet dysfunction in viral infections is
multifaceted and complex. While some viruses directly interact with platelets and/or
megakaryocytes to modulate their function, also immune and inflammatory responses
directly and indirectly favour platelet activation. Platelet activation results in increased
platelet consumption and degradation, which contributes to thrombocytopenia in these
patients. The role of platelets is often bi-phasic. Initial platelet hyper-activation is followed
by a state of platelet exhaustion and/or hypo-responsiveness, which together with low
platelet counts promotes bleeding events. Thereby infectious diseases not only increase
the thrombotic but also the bleeding risk or both, which represents a most dreaded clinical
complication. Treatment options in these patients are limited and new therapeutic
strategies are urgently needed to prevent adverse outcome. This review summarizes
the current literature on platelet-virus interactions and their impact on viral pathologies and
discusses potential intervention strategies. As pandemics and concomitant haemostatic
dysregulations will remain a recurrent threat, understanding the role of platelets in viral
infections represents a timely and pivotal challenge.
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PLATELETS AND VIRUSES

While the discovery and availability of antibiotics has dampened the fright of bacterial epidemics,
viral infections pose a major risk to global health as currently demonstrated by the COVID-19
pandemic. Viral infections can cause a variety of clinical symptoms upon systemic dissemination,
frequently including alterations of the haemostatic system, such as increased risk for thrombosis
and/or bleeding.

As cellular mediators of haemostasis platelets are prominently involved in many of these
haemostatic disturbances. Owing to their evolutionary heritage, which they share with leukocytes,
platelets express receptors for various pathogens, enabling them to directly recognize and respond to
invading viruses (1, 2). Thereby, haemostatic platelet functions such as maintenance of vascular
integrity or thrombus formation are affected by platelet-virus interactions. Activated endothelial
cells and leukocytes also modulate platelet functions during viral infections – either via cell-to-cell
contacts or indirectly via release of circulating mediators. Increasing evidence emerges that platelets
org March 2022 | Volume 13 | Article 8567131
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themselves function as immune modulators, thereby signalling
back to leukocytes and endothelial cells to alter their effector
functions (2–5).

As platelets become activated and/or hyper-responsive during
viral infections, they modulate other host responses to interfere
with infectious pathogens depending on the local environment,
the invading pathogen and the disease state. In re-occurring
infections platelets further mediate serological memory via
targeted antiviral IgG release at sites of infection (6).

Their highly sensitive nature in combination with their high
abundance therefore renders platelets not just crucial mediators
of haemostatic functions but also a formidable first line of
defence during viral infections. However, some viruses found
ways to exploit platelets as a shelter and transport system
through the circulation, turning platelets into a guardian as
well as a Trojan horse during viral infections.
DIRECT INTERACTIONS OF PLATELETS
AND VIRUSES

Molecular Interactions
Platelets express various receptors that mediate virus entry into
other cell types and direct interactions between platelets and
virus were first described in the late 1990s (7, 8). Today we know
that platelets express a diverse repertoire of receptors to directly
and indirectly interact with viruses (3, 4, 8, 9) which are
summarized in Figures 1 and 2.

Surface Binding
The most rapid interaction between platelets and viruses occurs
via direct contact with binding and/or entry receptors (Figure 1).
Platelets express a plethora of receptors that specifically allow for
interaction with pathogens (2). However, viruses also use
receptors that are required for other physiological functions in
order to interact with platelets. In this context integrins are of
special importance as they are primarily responsible for platelet
adhesion but also bind to and might even facilitate entry of
specific virus strains (10). Especially, the abundantly expressed
b3 integrins are often implicated in binding of viruses, e.g.
pathogenic hantaviruses (11). Adenovirus-platelet interaction
also involves b3 integrins, such as aIIbb3 and aVb3 (12–14), as
blocking prominent b3 integrins does not completely abolish
virus internalization (15). Other integrins such as a2b1 are
involved in viral binding e.g. of rotaviruses (16).

Further, platelets express the Coxsackie and Adenovirus
receptor (CAR) (12, 17) which allows for interaction between
platelets and Coxsackie virus B (CVB) (18), as well as other
viruses (19).

Sialic acid acts as a cellular receptor which interacts with
heavily glycosylated glycoproteins (20). As platelets express sialic
acid on their surface (21) these sialoyglycans enable interaction
with various viruses such as Encephalomyocarditis virus
(EMCV) (22) and Influenza virus (23–25).

Also, various cytokine receptors are hijacked by viruses to
mediate their interactions with platelets. In that regard, Human
Frontiers in Immunology | www.frontiersin.org 2
immunodeficiency virus (HIV) illustrates how diverse virus-
platelet interactions can be. Via expression of C-X-C
chemokine receptor (CXCR) type 4 and the required co-
receptors C-C chemokine receptor (CCR) type 1, 3 and 4
platelets can directly interact with HIV particles (26, 27). Also,
HIV infected cells release the protein Trans-Activator of
Transcription (TAT), which activates platelets by binding
concurrently to integrin b3 and CCR3 (28). Platelets also bind
and internalize HIV via dendritic cell-specific intercellular
adhesion molecule-3-grabbing non-integrin (DC-SIGN) (29–
31) and C-type lectin receptor 2 (CLEC-2) (30). DC-SIGN
further binds to Ebola virus (EV) (32) which is most likely
only captured (33). Hepatitis C virus (HCV) also binds DC-
SIGN via viral glycoprotein E2 (34) but also to the collagen
receptor glycoprotein (GP) VI (35). For Dengue virus (DENV) a
dual receptor recognition involving DC-SIGN and heparan
sulfate proteoglycan (HSP) has been suggested to mediate
primary platelet binding (36–38). As platelets express no
efficient entry receptor, it is not yet fully understood whether
binding to DC-SIGN simply mediates virus capture or whether
this interaction is also sufficient for cellular entry of HIV and
HCV (31, 34).

Apart from DC-SIGN, DENV induced platelet activation also
involves CLEC-2 (39). Moreover, DENV non-structural protein
1 (NS1) interacts with Toll-like receptor (TLR) 4 and TLR2, but
only TLR4 also mediates platelet activation (40, 41). TLR2 is also
important for platelet interaction with Human Cytomegalovirus
(HCMV) (42) probably via HCMV glycoproteins B and H (43).
Platelets also express complement receptors (CRs) on their
surface which allows for the binding of Epstein-Barr virus
(EBV) glycoprotein GP350 to platelet CR2 (44, 45).

The interaction of platelets with SARS-CoV-2 is rather
controversial. Angiotensin-converting enzyme 2 (ACE2) is
proposed as an entry receptor for SARS-CoV-2, which directly
interacts with the spike protein (46). However, while some
reports demonstrate ACE2 expression on platelets (47), other
studies did not find detectable level of ACE2 but suggest
mechanisms independent of ACE2 (48), while others found no
virus particles within platelets at all (49). Given the low
expression of ACE2 on platelets, ACE2-independent platelet
activation involving more abundantly expressed receptors such
as extracellular matrix metalloproteinase inducer (EMMPRIN/
CD147) may be more important for direct platelet dysregulation
by SARS-CoV-2 or its spike protein, respectively (50).

Internalization of Virus
Platelets can not only bind but also take up virus particles.
However, whether this uptake resembles a true phagocytosis,
simple engulfment of virus or a different mechanism remains to
be elucidated and might depend on the type of virus and
receptors involved. Internalisation of HCV increases virus
persistence by sheltering virus from degradation (51–54).
DENV particles can be bound and internalized via DC-SIGN
and HSP (37). Accordingly, DENV virions were also detected
within platelets of infected patients and the presence of negative
stranded RNA upon virus uptake suggest that platelets are
permissive for virus replication, but this probably does not
March 2022 | Volume 13 | Article 856713
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FIGURE 1 | Direct platelet-virus interactions. Platelets express a plethora of surface receptors to directly bind various virus families. Subsequent virus internalisation may
occur via the cell surface or the open canalicular system. ACE2, Angiotensin-converting enzyme 2; CAR, Coxsackie and Adenovirus receptor; CCR, C-C chemokine
receptor; CLEC-2, C-type lectin receptor 2; CR2, Complement receptor 2; CXCR, C-X-C chemokine receptor; DC-SIGN, Dendritic cell-specific intercellular adhesion
molecule-3-grabbing non-integrin; GP, Glycoprotein; HSP, Heparan sulfate proteoglycan; HTNV, Hantaan virus; IAV, Influenza A virus; EMMPRIN, extracellular matrix
metalloproteinase inducer; EV, Extracellular vesicle; NS1, Non-structural protein 1; PUUV, Puumala virus; RAV, Rotavirus A; TAT, Trans-activator of transcription; TLR, Toll-
like receptor; TMPRSS2, Transmembrane protease serine subtype 2.
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result in productive infection (55, 56). Other viruses, such as
CVB and adenovirus were detected in the surface-connected
open canalicular system (OCS) (15, 57), which is involved in
internalisation processes. While uptake of CVB is mainly
mediated by CAR, the OCS, platelet integrin aIIbb3 and GPIb
might also be involved (19).

Similarly, HIV particles can be engulfed in the OCS but also
in vacuoles close to the plasma membrane. Some of these
vacuoles resemble or are enclosed by endosome-like structures,
suggesting phagocytosis along with simple uptake (27, 58, 59).
However, the precise mechanism has not yet been unravelled and
might involve HIV co-receptors along with yet unidentified
mediators (27, 30). Recently, internalised HIV virions were
found to be shuttled from early to late endosomes in an
endocytic machinery-dependent manner, providing evidence of
true phagocytosis by platelets (29, 59).
Frontiers in Immunology | www.frontiersin.org 4
Internalisation of viral particles by platelets allows for
stimulation of intracellular pattern recognition receptors such
as TLRs, which has been observed for HIV and platelet TLR7
(60), but also EMCV and influenza virus are internalised by
platelets (61) and their uptake involves TLR7 activation (62).
This might represent a general mechanism how single-stranded
RNA viruses interact with platelets and subsequently influence
their activation. As yet another uptake mechanisms, successful
internalisation of SARS-CoV-2 by platelets may be independent
of ACE2 expression as virions were found to hitchhike on
extracellular vesicles that fuse with the platelet membrane (63).

Effects
Platelets not only express several receptors for the recognition of
pathogens but are also equipped with a plethora of antimicrobial
molecules to fight viral infections. Interaction between platelets
FIGURE 2 | Indirect platelet-virus interactions. Several virus families interact with platelets via the formation of virus-IgG complexes that are recognized by platelet
FcgRIIA. Antibodies against viral proteins may also act as autoantibodies by targeting platelet membrane components. Additionally, infection of endothelial cells
induces expression of adhesive molecules that promote platelet adhesion. Infected endothelial cells also facilitate pro-thrombinase activity to modulate platelet
activation. E-sel, E-selectin; FcgRIIA, Immunoglobulin g Fc region receptor IIA; FN, Fibronectin; GP, Glycoprotein; HTNV, Hantaan virus; IAV, Influenza A virus;
IgG, Immunoglobulin G; NS1, Non-structural protein 1; PDI, Protein disulfide isomerase; PGI2: Prostaglandin I2 (prostacyclin); PUUV, Puumala virus; vWF, von
Willebrand factor.
March 2022 | Volume 13 | Article 856713
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and viruses can thus have benefits and risks for the host: while
direct interactions can lead to phagocytosis and degradation of
viral particles, platelets can also become a hideout for viruses,
thereby fostering reproduction and dissemination (Figure 3).
Apart from their role in haemostasis, platelets represent relevant
regulators of immune responses, e.g. by interacting with
leukocytes and subsequently modulating their extravasation
and effector functions (5, 64, 65). Thereby, quantification of
circulating platelet-leukocyte aggregates (PLAs) is often used to
gain insight into immunomodulatory platelet function.

Platelet Activation in Response to Viruses
Direct interaction of viruses and platelets is associated with
platelet activation indicated by elevated P-selectin (36, 37, 39,
42, 66–68), CD63 (39) and CD40L expression (67), aIIbb3
activation (66, 68), phosphatidylserine (PS) exposure (36, 68)
as well as increased secretion of platelet-derived extracellular
vesicles (PEV) (39, 66, 68), platelet factor 4 (PF4/CXCL4) (69),
Thromboxane A2 (TXA2) (66) and ADP/ATP (42). In addition,
enhanced AKT, p38 and ERK phosphorylation (42) and changes
in the platelet morphology (67) support the notion that platelets
are stimulated by the direct interaction with viruses (44, 55, 59,
67, 70). As a consequence, platelet activation promotes
endothelial adhesion (39) and coagulation (44, 69, 70).

Viral Uptake, Degradation and Replication
Despite their seemingly simple nature, platelets have been known
for decades to bear the ability to kill viral particles by every trick
in the book of phagocytosis, including attachment, invagination
and formation of phagosome-like structures (7). Viruses are
ensnared in endocytic vesicles and killed by antimicrobial
peptides when the vesicles fuse with granules. For HIV, this
uptake occurs mainly in the OCS, where viruses lose their regular
morphology (69) and envelope (29, 59), while phagocytosis of
influenza virus is OCS independent (62, 71).

Studies on patient-derived blood showed that platelets rapidly
internalise and digest influenza A (H1N1 or H3N2) by fusion of
vesicles and granules, suggesting that during viremic influenza
infection platelets contribute to viral killing (62, 71). Findings on
platelet interaction with HIV are still controversial. While some
reports indicate HIV degradation in platelets, others found that
platelets can take up HIV particles and keep them in an infectious
state. Infectious HIV can then be transmitted from platelets to
T cells or dendritic cells, which facilitates viral dissemination (30).
This is of special importance, as platelets from HIV-infected
individuals on combined antiretroviral drug therapy with low
blood CD4+ T cell counts contain replication-competent HIV
despite viral suppression (72). Dengue virus particles were also
observed in vesicles of patient-derived platelets and Dengue
structural protein E was detected inside platelets or in platelet
micro-aggregates of in vitro infected platelets (56). However, it is
currently unclear whether platelets degrade dengue virions or if
the virus enters and/or infects platelets to evade immune
responses. While it is clear that platelets directly interact with
HCV (51, 73, 74), little is known on internalisation and or
degradation of HCV by platelets. But the fact that even after
anti-viral therapy HCV RNA was undetectable in serum but still
Frontiers in Immunology | www.frontiersin.org 5
detectable in platelets suggests that platelets serve as a reservoir
for HCV and protect them from immune recognition (73).

Intriguingly, although being an anucleated cell, platelets may
also serve as host cells for virus replication. Indeed, platelets with
internalised Dengue virus particles were shown to enable
replication of the viral genome (+ssRNA) of all Dengue virus
serotypes (37). During acute infection a high number of Dengue
associated copy numbers could be found in Dengue patients’
platelets (68) and isolated platelets contain a higher proportion
of Dengue virus-associated RNA than plasma (56), suggesting
that Dengue virus infects platelets for reproduction (37, 68).
However, while Dengue virus reproduction in platelets
themselves is rather inefficient (55), Dengue virus activated
platelets enhance viral replication in monocytes and THP-1
cell lines in vitro via secretion of PF4/CXCL4 (75).

Platelet Mediated Immune Responses
Platelet activation in response to viruses can thus indirectly
contribute to antiviral effects via modulation of immune responses.

Platelet-virus interaction triggers the release of cytokines and
chemokines from platelets including tumour necrosis factor a
(TNF-a), interleukin (IL) 6, IL-8, IL-10, monocyte
chemoattractant protein 1 (MCP-1/CCL2), transforming
growth factor b (TGF-b) and the granulocyte-macrophage
colony stimulating factor (GM-CSF) (67). These mediators are
important for the initiation of cell migration and immune
defence mechanism. In addition, formation of platelet-
leukocyte and platelet-lymphocyte aggregates facilitates
leukocyte activation, recruitment and reactive oxygen species
(ROS) formation (42) as well as B cell isotype switching to
immunoglobulin (Ig) G production (76).

In addition to direct platelet-leukocyte interaction, Dengue
virus-stimulated platelets also release PEV that enhance vascular
permeability, thereby promoting leukocyte migration, and also
stimulate the release of pro-inflammatory cytokines such as
TNF-a and IL-6 by neutrophils and macrophages.
Furthermore, virus-stimulated platelets play a role in formation
of neutrophil extracellular traps (NETs) (39), the release of
neutrophil-DNA and myeloperoxidase (MPO), which is
provoked by platelet-derived complement factor C3 (62).

However, platelet-virus interaction can also have
immunosuppressive functions. In acute and chronic EBV
infections platelet-derived TGF-b inhibits lung epithelial
growth and contributes to disease pathology (44). Also, PF4/
CXCL4 diminishes the immune defence against Dengue virus in
vitro by inhibiting monocyte secretion of interferon a (IFN-a),
IL-1b and IL-6 (75). In addition, activated platelets may
influence antiviral immune defences by modulating infection
of leukocytes themselves. PF4/CXCL4 reduces HIV infection of
T cells and macrophages by binding a subunit of the viral
envelope glycoprotein 120 (gp120) and thus blocking viral
entry (69, 77, 78).

Dengue patients often present with upregulated platelet
apoptosis, indicated by mitochondrial depolarization, elevated
PS exposure and high expression of caspase-3 and caspase-9 (36,
79). Moreover, increased platelet levels of annexin V, cyclophilin
D and thrombopoietin (TPO) are associated with diminished
March 2022 | Volume 13 | Article 856713
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FIGURE 3 | Effects of platelet-virus interaction. (A) Virus binding or internalisation/phagocytosis stimulates platelet activation including degranulation, integrin activation,
phosphatidylserin exposure and extracellular vesicle release. Virus-induced platelet activation enhances endothelial adhesion and thrombus formation, but may also lead to
platelet exhaustion and clearance from the circulation. (B) Platelets serve as virus reservoir and transport vehicle by supporting viral replication in leukocytes or within platelets
themselves and by transferring virus to other host cells, thereby augmenting viral dissemination. Furthermore, platelets shelter intracellular virions from immune-mediated
degradation, though degradation of virus-containing platelets contributes to virus clearance. (C) Virus-stimulated platelets modulate immune responses by cell-cell contact
and/or soluble mediators. Platelet-derived factors block viral entry into leukocytes and prolong macrophage survival. Platelets also facilitate leukocyte extravasation by
augmenting endothelial permeability, leukocyte migration and recruitment. Furthermore, platelets regulate leukocyte effector functions such as IgG production, T cell
polarization, NET formation and release of inflammatory mediators, thereby either enhancing or diminishing immune defences. ADP, adenosine diphosphate; AKT, Protein
kinase B; C3, complement factor 3; CCL5, chemokine (C-C motif) ligand 5; CD40L, CD40 ligand; CXCL4, chemokine (C-X-C motif) ligand 4; ERK, Extracellular signal-
regulated kinase; IFN-a: Interferon a; IgG, immunoglobulin; IL-1b: Interleukin 1b; MPO, myeloperoxidase; NET, neutrophil extracellular trap; p38, p38 mitogen-activated
protein kinase; PEV, Platelet-derived extracellular vesicle; PS, phosphatidylserine; ROS, reactive oxygen species; Th1, T helper cell type 1; TXA2, thromboxane A2.
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platelet count as apoptotic platelets get phagocytosed by
monocytes via PS recognition (68, 79). Similarly, platelets of
dengue patients have impaired mitochondrial membrane
potential and constitutively generate ROS, indicating that
platelet mitochondria are impaired in viral infections (36).

Thrombocytopenia
Thrombocytopenia is a hallmark of viral infections and the
underlying causes are multifaceted and complex (2).
Thrombocytopenia can be induced by four major mechanisms:
(1) direct destruction of circulating platelets, (2) platelet
destruction by immunological features such as auto-antibodies,
(3) dysregulation of platelet production (megakaryopoiesis and
thrombopoiesis) or (4) direct destruction of megakaryocytes (36).

Platelet counts often inversely correlate with viral loads and
disease progression, indicating a hallmark in disease pathology,
though the underlying mechanisms vary (70, 73, 78). Dengue-
associated thrombocytopenia is related to complement-antibody
mediated clearance and lysis of activated platelets (36, 37, 68, 75),
while platelet activation contributes to thrombocytopenia in HCV
infection (73). Influenza-associated thrombocytopenia is,
dependent on the influenza strain, induced by viral
neuraminidases, which remove sialoglycans after internalisation,
thereby stimulating platelet clearance by liver hepatocytes and
macrophages (7, 70). In contrast, in vitro Dengue and Junin virus
can infect hematopoietic progenitors, which induces production of
type I IFN, which in turn attenuates pro-platelet production (80,
81). Interestingly, upregulation of antiviral immune genes e.g.
interferon-induced transmembrane protein 3 (IFITM3) in
megakaryocytes in response to Dengue infection prevents
infection of neighbouring megakaryocytes (81). Of note, patients
with an early and sustained anti-viral response may have lower
platelet counts during acute infection than patients with no-early
response (73). Severe systemic viral infections often result in
disseminated intravascular coagulation (DIC), in which excessive
and systemic activation of the coagulation system leads to
increased consumption of coagulation factors and platelet
activation and ultimately results in formation of microthrombi.
The subsequent drop in platelet count and concurrent
haemorrhages represent a most dreaded clinical complication (82).
INDIRECT INTERACTIONS IN VIRAL
DISEASES – PLATELETS IN THE
INFLAMED ENVIRONMENT

Indirect platelet-virus crosstalk on the molecular level may
involve additional factors that bridge the contact between
platelet receptors and virus particles, but indirect interactions
may also be mediated on cellular level when platelets
communicate with virus-infected or –activated cells (Figure 2).

Platelets also express FcgRIIA, which is a low-affinity receptor
for the constant domain of IgGs. This allows for binding of virus-
containing immune complexes that are generated during viral
infections (83) and contribute to viral pathogenicity (66). As
binding of immune complexes to FcgRIIA activates platelets (66,
Frontiers in Immunology | www.frontiersin.org 7
84), indirect binding of virions to platelets via bridging IgGs may
stimulate platelets even in the absence of virus-specific receptors.
Indirect binding of virus-containing immune complexes to
platelet FcgRIIA has been described for dengue virus, influenza
virus and HCV (35, 68, 85).

Apart from virus-IgG complexes also autoantibodies are
generated during infections which are recognized by FcgRIIA.
In HCV infection autoantibodies that are cross-reactive towards
platelet glycoproteins have been described (86). Autoantibodies
against platelets are also common during DENV infection (87,
88). Here, antibodies which initially target DENV NS1 protein
are cross-reactive with protein disulfide isomerase (PDI)
expressed on the platelet surface (89).

Platelets are primarily known for their role in haemostasis
and as such are pivotally involved in preventing and stopping
haemorrhages by attaching to the injured endothelium and
sealing vessel gaps. This interaction is mediated by various
integrins and surface receptors such as aIIbb3, GPIba and P-
selectin (90), which are also involved in viral interactions.
Infected endothelial cells thus also contribute to platelet
activation by upregulating adhesion molecules, which influence
the binding and interaction with platelets (91). For example,
infection with various Hantaviruses e.g. Andes or Hantaan virus
induces upregulation of endothelial b3 integrins, which are
involved in the recruitment of platelets (11). However, b3 also
displays the virus on the endothelial surface, which results in
platelet recruitment, as shown for Sin Nombre virus (92).
Platelets also bind to endothelial cells infected with Puumala
hantavirus (PUUV) (93), which may contribute to the low
platelet count observed in patients with PUUV infection.

Increased platelet-endothelium interactions are also observed in
DENV (94), Influenza virus (95) andHCMV infection (96). DENV
infected endothelial cells express increased E-selectin levels, which
in turn promotes platelet adhesion and activation (94). Moreover,
DENV-derived NS1 protein triggers degranulation of Weibel-
Palade bodies, leading to increased secretion of von Willebrand
Factor (vWF) (40), further augmenting platelet adhesion and
activation. Similarly, active HCMV replication in endothelial cells
increases their expression of vWF and intercellular adhesion
molecule 1 (ICAM-1), which mediates platelet-endothelial
interactions (97) via platelet GPIb (96). Although vWF and
ICAM-1 are upregulated during influenza infection, platelet
adhesion to influenza-infected endothelial cells is primarily
mediated by other molecules, such as endothelial fibronectin and
platelet a5b1. Moreover, paracrine mechanisms also contribute to
platelet adhesion in influenza infection, as platelets also attach to
cells neighbouring infected ones (95).

In addition to triggering endothelial expression of pro-
thrombotic factors and adhesion molecules, virus infection of
endothelial cells may also promote endothelial permeability,
thereby causing exposure of the subendothelial matrix and
subsequent platelet adhesion. Indeed, interaction of DENV
with TLR4 was shown to disrupt endothelial integrity (98) and
infection of pulmonary microvascular endothelial cells with
Influenza virus increases endothelial permeability by inducing
apoptosis (99).
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Regulation of platelet binding to infected endothelium may
have clinical significance. As such, in vitro endothelial cells
infected with herpes simplex virus (HSV) display changes in
surface composition that facilitate the assembly of the pro-
thrombinase complex and thereby accelerate thrombin
generation, while at the same time prostacyclin (prostaglandin
I2; PGI2) secretion is impaired. Together, these changes in
endothelial activation promote platelet binding and induce a
pro-thrombotic and pro-coagulant microenvironment (100) that
may foster thromboembolic complication.
CONTRIBUTION OF PLATELETS
TO VIRAL PATHOLOGIES

Platelet interaction with viruses contributes to the pathologies of
a plethora of infectious diseases. In the following section we focus
on three types of viruses, which are associated with haemostatic
imbalances. We summarize the current knowledge on viral
haemorrhagic fever (VHF), an infectious disease associated
with an increased bleeding risk, influenza and COVID-19,
which are primarily pulmonary diseases but also associated
with thrombotic complications.

Haemorrhagic Viruses
The term viral haemorrhagic fever (VHF) describes an infectious
disease associated with an increased bleeding risk. VHF is caused
by a distinct group of enveloped RNA viruses that belong to four
virus families: Flavivirus (Dengue virus, Yellow fever virus),
Bunyaviridae (Hantavirus, Crimean-Congo haemorrhagic fever
virus), Arenaviridae (Lassa virus, Junin virus) and Filoviridae
(Ebola, Marburg and Sudan virus). An infection with these
viruses causes systemic pathogenesis characterized by fever,
malaise but also increased vascular permeability and the
development of thrombocytopenia, both supporting increased
bleeding tendencies (Figure 4). These vascular and haemostatic
dysregulations often lead to coagulopathies, which aggravate
disease outcome. VHFs are associated with high mortality
rates. However, currently no effective therapeutic interventions
are known, making them a major global health problem (101).
Although, the underlying molecular pathways and mechanism
are poorly understood, an involvement of platelets as main
players of haemostasis is likely (102).

Various mechanisms were shown to trigger thrombocytopenia
in VHFs (102), though depending on the virus strain different
mechanisms dominate. Especially, virus-induced tissue damage and
DIC result in excessive platelet activation and hence consumption.
DIC is observed during DENV infection (103–105), in Ebola (106,
107) and also in Haemorrhagic Fever with Renal Syndrome (HFRS)
caused by PUUV (108). Accordingly, thrombocytopenia along with
abnormal coagulation is a known hallmark of pathogenic
Hantavirus infection (109, 110), while in Lassa fever DIC seems
to play only a minor role (111–113).

Also endothel ial cel ls contribute to haemostatic
dysregulations in VHFs. On the one hand infection of
endothelial cells induces tissue factor expression, leading to
Frontiers in Immunology | www.frontiersin.org 8
increased thrombin generation and thereby haemostatic
disturbances, which increase the risk for clot formation (93).
Accordingly, D-dimer levels and prothrombin fragments F1 + 2,
are increased in Dengue patients (93), patients with fatal
Crimean Congo Haemorrhagic fever (114) and Ebola (106).

On the other hand the infected endothelium contributes to
diminished platelet counts via scavenging and/or activation of
circulating platelets. Platelet adhesion to DENV-infected
endothelium is partially prompted by increased expression of
endothelial E-selectin and P-selectin, which further contributes
to a drop in circulating platelets (94). Also Ebola patients show
elevated E- and P-selectin levels, indicating endothelial cell and
platelet activation, which might contribute to diminished
circulating platelets due to endothelial scavenging (115).
Platelet adhesion to endothelial cells was further observed
during PUUV (93) and Hantaan virus (HTNV) infection (11).

DENV-derived NS1 also directly increases platelet adhesion.
NS1 activates platelets via TLR-4, thus supporting increased
endothelial adhesion but also enhancing platelet aggregation
(40). Subsequently, NS1 activated platelets are prompted to
perform a phenotypic switch towards inflammation including
degranulation, the synthesis but not the release of IL-1b as well as
the continued expression and release of NS1 after infection. In
turn, released NS1 and granule-stored factors might further
enhance platelet activation and aggregation in an autocrine
loop (41). Enhanced platelet activation is additionally triggered
by DENV-induced synthesis and expression of human leukocyte
antigen (HLA) class 1 on platelets which then binds circulating
cell-free H2A histones, found in dengue patients’ plasma (116).
Enhanced platelet activation and adhesion thus represent a
possible link to thrombocytopenia and haemorrhages in
dengue fever patients.

Intriguingly, in Lassa fever patients with fatal outcome and
during the acute phase of Hantavirus infection dysfunctional
platelets with an impaired aggregation potential were found
(117). Indeed, normal aggregation is rapidly followed by
disaggregation, indicating that Lassa virus (LASV) infection
triggers an aggregation inhibition, which is likely due to
impaired platelet degranulation as degranulation is essential for
sustained platelet aggregation (111, 118, 119). Similarly, infection
with Junin virus (JUNV), another virus belonging to the family
of Arenaviridae causing Argentine Haemorrhagic Fever, is
associated with decreased platelet aggregation, which is
mediated by an unidentified plasma component present during
acute infection (120). As a consequence, diminished platelet
aggregation might contribute to bleeding events that frequently
occur in these patients.

Additionally, several proteins important for haemostasis such
as TF and vWF are also increased in plasma from Lassa patients,
which further implicates pathogenic activation of the coagulation
system as well as platelets (111). Similarly, patients suffering
from haemorrhagic manifestations during Sudan virus infection
also show elevated levels of vWF. This further implicates that
VHF viruses contribute to excessive thrombotic events (121).

Phagocytosis of platelets is another mechanism leading to a
decrease in circulating platelets. Platelets are cleared via
March 2022 | Volume 13 | Article 856713
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FIGURE 4 | The role of platelets in viral haemorrhagic fevers (VHF). (A) Dengue virus activates platelets and promotes the development of disseminated intravascular
coagulation (DIC), leading to platelet consumption. Additionally, activated platelets adhere to infected endothelial cells and infected megakaryocytes (MK) show
impaired pro-platelet formation. Together with macrophage-mediated clearance of virus-activated platelets, these mechanisms lead to thrombocytopenia and
enhanced haemorrhagic complications. In addition, virus-stimulated platelets bind to leukocytes or release soluble factors to modulate immune responses such as
NET formation as well as production of a specific cytokine profile, depending on whether interacting platelets are activated or apoptotic. Platelet-derived factors also
promote virus replication in monocytes which is further fostered by modulated immunometabolism and platelet-induced lipid biogenesis. (B) Infection with Lassa or
Junin virus is associated with elevated levels of von Willebrand factor (vWF) and tissue factor (TF) which contribute to platelet activation and development of DIC.
While activated platelets readily bind to monocytes and neutrophils via their aMb2 receptor, they are unable to maintain stable platelet-platelet interaction and rapidly
disaggregate. Further, virus infection augments endothelial platelet adhesion and sequestration and limits pro-platelet formation of MKs. Thereby, infection with Lassa
or Junin virus leads to thrombocytopenia and increases bleeding risk. (C) Hantavirus readily infects endothelial cells which promotes endothelial platelet adhesion and
sequestration from the circulation. While infected megakaryocytes display no differentiation dysfunction, they are cleared by cytotoxic T lymphocytes (CTL). Systemic
infection triggers a pro-coagulatory state which may exacerbate to DIC. Nevertheless, platelets show impaired capacity to form stable aggregates. Hantavirus thus
causes thrombocytopenia and haemorrhagic complications by affecting key mediators of haemostasis. (D) Infection with Ebola virus is associated with systemic
coagulation induction and risk for DIC, which leads to platelet consumption. However, platelets may also be sequestrated due to enhanced adhesion to the infected
endothelium. Thereby, Ebola virus causes thrombocytopenia and haemorrhagic complications. CTL, Cytotoxic T cell; CXCL4, chemokine (C-X-C motif) ligand 4; DIC,
Disseminated intravascular coagulation; IFN-a: Interferon a; IL, Interleukin; MIF, Macrophage migration inhibitory factor; MK, Megakaryocytes; NET, Neutrophil
extracellular trap; NS1, Non-structural protein 1; PEV, Platelet-derived extracellular vesicle; TF, Tissue factor; VHF, Viral haemorrhagic fevers; vWF, von
Willebrand factor.
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phagocytosis by macrophages upon activation by DENV (40) or
severe fever with thrombocytopenia syndrome virus (SFTSV), a
member of the Bunyaviridae family like Hantavirus (122).
Platelets from dengue patients further shows decreased sialic
acid levels, which are associated with increased platelet
phagocytosis and hence platelet clearance (123, 124). In line,
Dengue fever is associated with increased levels of circulating
active vWF, which also induces removal of sialic acids on
platelets via neuraminidase mobilization (124). These
observations suggest that the underlying mechanisms of
thrombocytopenia include platelet clearance.

Not only dysfunctional platelets and/or reduced platelet
counts are problematic in VHF, but additional activation of the
immune systems e.g. by platelets can further exacerbate disease
progression. Platelets also have immunomodulatory functions
during VHF. Leukocyte integrin aM (ITGAM, CD11b) is
upregulated upon exposure to LASV, which may enhance
platelet-leukocyte binding and therefore complicate symptoms
(125, 126). During EV infection, a transient increase in sCD40L
was measured during the early stages of infection which might be
implicated in activating further immune cells (107).

In DENV infection, activated platelets release PMVs, which
induce neutrophil activation and subsequent NET formation
(39). Additionally, DENV-exposed platelets can also reprogram
immunometabolism of uninfected monocytes and amplify
potential inflammatory cytokine release. Moreover, by forming
aggregates with platelets, monocytes become activated and
increase lipid droplet (LD) biogenesis (127). LDs play an
important role in the pathogenesis of DENV infection. Viruses
are unable to perform lipid synthesis which is a pre-requisite for
functional virion production (128) and must therefore exploit
cellular mechanisms (129). Indeed, leukocytes from Dengue
patients show high LD formation, suggesting that lipid
biogenesis might contribute to Dengue pathogenesis (129, 130).

Platelets from dengue patients show increased PS exposure,
depolarization of mitochondria as well as the activation of
caspase 9 and caspase 3. Thereby DENV-induced platelet
apop to s i s i s no t on ly a s soc i a t ed wi th inc r ea s ed
thrombocytopenia but may also enhance monocyte binding
(36). Indeed, DENV-activated and apoptotic platelets form
aggregates with monocytes and induce secretion of IL-1b, IL-8
and IL-10 or only IL-10, respectively, in a mechanism involving
P-selectin-mediated binding as well as recognition of exposed PS
(131). All these mechanisms suggest that DENV actually induces
cellular changes on many different levels by triggering platelet
activation which might aggravate the disease (39).

Lastly, platelets induce the inhibition of IFN-a production in
monocytes and enhance DENV replication in monocytes. This
effect is at least partially dependent on PF4/CXCL4 and increased
plasma levels of PF4/CXCL4 correlate with increased DENVNS1
in monocytes from patients (75).

However, not only platelets but all their progenitors,
including both megakaryocytes and haematopoietic stem cells,
are affected by VHFs. DENV is able to infect and replicate in
megakaryocytes, which leads to diminished megakaryocyte
development and platelet production due to diminished pro-
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platelet formation (132, 133). Similarly, JUNV infection of
megakaryocytes also impairs thrombopoiesis by decreasing
pro-platelet formation. Reduced pro-platelet formation
together with abrogated aggregation responses of circulating
platelets contribute to haemorrhages in patients with JUNV
infection (80). Also HTNV infects megakaryocytes (134),
however no direct effects on megakaryocyte differentiation and
survival were observed. Nevertheless, infected megakaryocytes
are cleared by cytotoxic T cells, thus also supporting
thrombocytopenia (135).

Influenza
Influenza is an acute respiratory infection caused by negative-
strand RNA viruses belonging to the Orthomyxoviridae family
that cause seasonal influenza pandemics. While three distinct
types of influenza viruses (A, B and C) can infect humans (136,
137), influenza C virus mainly infects children, causing only mild
upper respiratory tract infections. Therefore available vaccines
target influenza A and B viruses, but not influenza C (138–140).
Especially influenza A viruses regularly acquire adaptive mutations
by genetic drifts and shifts that create novel influenza A subtypes
(136). The virion envelope of influenza is covered with
hemagglutinin (HA) and neuraminidase (NA) glycoproteins,
which determine the specificity of the virus for a host species and
cell type.Each InfluenzaAsubtype is characterizedbynumberingof
HAandNAproteins. The two subtypesH1N1 andH3N2 currently
circulate in the human population (139). In contrast, Influenza B
virus has only a single subtype with two lineages and is not further
sub-categorized (139, 141).

Influenza viruses are primarily transmitted via inhalation of
infectious particles when an infected person coughs or sneezes.
However, airborne and fomite transmission may also contribute
to viral spreading (136). During infection HA binds to the sialic
acid (SA)-terminated glycans present at the cell membrane. NA
facilitates the release of virus progeny by cleaving SA residues
from the cell surface (70) (Figure 5).They primarily target
epithelial cells of the upper and lower respiratory tract, causing
pneumonia, but also encephalopathy and myocarditis (142, 143).
In severe cases pneumonia is often accompanied by acute lung
injury (ALI) or even acute respiratory distress syndrome
(ARDS), which is characterized by alveolar capillary damage,
oedema, parenchymal haemorrhages, pulmonary microvascular
thrombosis and hyperinflammatory cytokine responses (142,
144). ALI and ARDS also correlate with organ failure, ICU
admission and a high fatality rate (145).

Severe influenza infections can also have major impact on the
haemostatic system, with thrombosis and bleedings potentially
occurring at the same time. On the one hand, influenza
infections are often associated with thrombocytopenia and
elevated mean platelet volume (MPV), indicating elevated
thrombopoiesis, potentially due to elevated platelet activation
and phagocytosis of viral particles (70, 145–148). Accordingly,
pulmonary, alveolar and interstitial haemorrhages are frequent
complications (70, 137, 149). On the other hand, influenza
infection and associated platelet activation increases the risk of
thrombus formation.
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Influenza-stimulated platelets infiltrate the lungs of infected
individuals (137, 149), where they form platelet-platelet and
platelet-leukocyte aggregates (137, 147, 149), partially
occluding blood vessels or small airways. In addition,
neutrophil stimulation triggers NET release, which are highly
cytotoxic and thus contribute to tissue damage and induce
thrombosis. Interestingly, influenza-mediated platelet
activation is not restricted to the lungs, as NET components
and platelets co-localize in the heart of influenza-infected mice
(144, 149). Also, enhanced deep vein thrombosis (DVT) and
pulmonary thromboembolism may occur in influenza patients
(142). These data indicate that thrombocytopenia and platelet
activation contribute to influenza-associated pulmonary injuries
caused by systemic inflammation and local leukocyte infiltrates,
thereby fostering pulmonary thrombosis and haemorrhages (71,
147). In addition, in mice anti-platelet therapy [including aspirin,
P2Y12 blockage and antagonists of aIIbb3 or protease-activated
receptor 4 (PAR4)] reduces platelet aggregation, leukocyte
recruitment and infiltration, viral reproduction and alveolar
damage, ameliorating survival and underl ining the
contribution of platelets to influenza-mediated lung
Frontiers in Immunology | www.frontiersin.org 11
pathologies (137, 149, 150). However, the role of PAR4
remains unclear as one study found a protective effect of PAR4
inhibition on survival in influenza-challenged mice (137),
whereas another study reported a detrimental effect of PAR4
deficiency (150).

Recent findings suggest that communication between
platelets and neutrophils via CXCL4 is a prerequisite for viral
removal and efficient immune response (151). However,
dysregulated platelet-neutrophil crosstalk also contributes to
influenza-mediated pathologies. Platelet derived complement
factor C3 and GM-CSF are regarded as key proteins for
platelet-neutrophil communication. Activated platelets form
aggregates with neutrophils and secrete C3 from their granules
which induces NET formation and thus helps to entrap and kill
viruses. In turn, neutrophils trigger platelets to release GM-CSF,
which serves as a negative feedback mechanism by reducing C3-
mediated NET formation. Dysregulated platelet-neutrophil
communication and surplus of C3 and NETs are predictors of
acute myocardial infarction and myocardial infarct size and are
therefore believed to increase the risk of influenza-associated
myocardial infarct (62). Furthermore, platelet aggregation
FIGURE 5 | The role of platelets in influenza infections: Platelets bind and internalise influenza virus via the interaction of virus hemagglutinin (HA) proteins and sialic
acid (SA)-terminated glycans on the platelet surface, though platelets also bind influenza-containing immune complexes. These interactions result in platelet activation
and platelet-mediated immune responses that contribute to influenza-associated pathologies. Cleavage of SA residues by viral neuraminidase (NA) induces platelet
clearance by liver hepatocytes and Kupffer cells. However, rapid internalisation of viral particles leads to digestion of influenza virus when vesicles with enclosed
virions fuse with platelet granules that contain antimicrobial peptides. Systemically, influenza-infected endothelial cells express pro-thrombotic factors like fibronectin
or integrin a5b1, which increases platelet adhesion to the endothelium and thus fosters platelet sequestration. Locally, platelets infiltrate the lung tissue, where
thrombus formation may constrict and/or occlude blood vessels or small airways. Furthermore, platelet-leukocyte aggregate formation induces leukocyte recruitment
and triggers the formation of NETs to entrap viral particles, regulated by C3 and GM-CSF. However, NETs cause further tissue damage and enhance thrombus
formation. Together, these platelet-mediated responses in influenza trigger pulmonary injuries, disseminated intravascular coagulation (DIC), thrombocytopenia and
haemorrhages in severe influenza infections. C3, Complement factor C3; DIC, disseminated intravascular coagulation; GM-CSF, Granulocyte-monocyte colony-
stimulating factor; HA, hemagglutinin; NA, neuraminidase; NET, neutrophil extracellular traps.
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involving integrin aIIb was recently found to play an important
role for platelet-leukocyte interplay during influenza as mice
deficient for aIIb displayed reduced pulmonary neutrophil influx
and NET formation upon challenge with influenza. Similarly,
thrombin and PAR4 inhibition also diminished platelet
accumulation, neutrophil influx and NET formation in the
lungs and reduced pulmonary oedema without affecting viral
load, underlining the importance of platelet aggregation for
neutrophil-mediated tissue damage (152).

Moreover, platelets contribute to influenza-associated
pathologies by interacting with infected endothelial cells. Both
in vitro and in vivo platelets adhere to endothelial cells upon
infection with influenza A subtypes H1N1 and H3N2, mediated
by the interaction of endothelial fibronectin and platelet integrin
a5b1. In influenza-infected mice anti-platelet treatment using
aspirin thus blocks platelet adhesion to the endothelium, leading
to reduced arterial hypoxemia and improved survival (95).

SARS-CoV-2
SARS-CoV-2, the causative pathogen of coronavirus-induced
disease 2019 (COVID-19), newly emerged in 2019 and led to
an ongoing global pandemic.

The COVID-19 pandemic has forced the scientific
community to face complex challenges in order to understand
the molecular and cellular processes responsible for COVID-19
pathology and improve patient treatment. Although scientific
advancements could build on knowledge of the closely related
SARS-CoV-1 and Middle East respiratory syndrome coronavirus
(MERS-CoV), SARS-CoV-2 shows distinct properties which
require in-depth elucidation. Further, the rapid spread of
SARS-CoV-2 demanded that new discoveries had to be
reported at an unprecedented speed and made broadly
available, often curtailing peer review processes and forcing
researchers to lower their sights regarding tightly defined
cohort composition. In particular, location and time of
recruitment may influence clinical studies due to e.g. overtaxed
healthcare systems and adapted treatment protocols. As a
consequence, despite best efforts studies frequently yield
contradictory results that will have to be verified in the future
under controlled and comparable settings.

COVID-19 primarily affects the upper and lower respiratory
tract, leading to respiratory distress or failure, however
complications involving the haemostatic system such as
thrombosis, thromboembolism and bleeding events are common,
particularly in patients requiring intensive care unit (ICU)
treatment (153–155). Additionally, platelet counts are reduced in
COVID-19, hinting towards an involvement of primary
haemostasis, though counts do not drop to the same extent as
during non-COVID-19 pneumonia and clinical thrombocytopenia
is rare (156–160). Of note, thrombocytopenia occurs more
frequently in severe than non-severe infection (161) and is
associated with significant bleeding complications (153).

Despite overall minor reduction of circulating platelets,
COVID-19 is associated with increased levels of immature
platelets, indicating enhanced platelet turnover (162). Blood
smears of COVID-19 patients further revealed the presence of
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giant platelets, corroborating reports of increased MPV (47, 163,
164). Increased MPV is associated with disease severity (164,
165) and acute kidney failure in COVID-19 (166), but
interestingly not with ICU requirement (48).

The primary receptor for SARS-CoV-2 is ACE2 which binds
to the viral spike protein and enables cell entry, facilitated by
transmembrane protease serine subtype 2 (TMPRSS2)
(Figure 6). Both ACE2 and TMPRSS2 were found to be
expressed on human and mouse platelets and on the
megakaryocytic cell line MEG-01 (47), mediating virus binding
and internalisation (47, 158). Additionally, platelet EMMPRIN
(CD147) is involved in spike protein-mediated platelet activation
and SARS-CoV-2 may hitchhike on extracellular vesicles to enter
platelets via membrane fusion, thereby circumventing the need
for ACE2 (50, 63). While platelets do not seem to support viral
replication, MEG-01 cells can be infected at least temporarily,
leading to rising intracellular and shed virions which suggests
successful replication (158). However, whether megakaryocyte
infection also occurs in vivo and if it affects thrombopoiesis is
currently unknown.

SARS-CoV-2 infection is associated with dysregulated platelet
functions, affecting all phases of primary haemostasis. Platelets of
COVID-19 patients express increased surface levels of CD62P
and CD63 relative to either healthy controls or non-COVID-19
pneumonia patients (47, 48, 157, 167–170), demonstrating
augmented basal platelet degranulation. In line, a-granule-
contained PF4/CXCL4 and dense granule-contained serotonin
(5-HT) are reduced within platelets, but increased in plasma
(46), along with sCD40L, ADP and TXA2 (164, 167, 169). Of
note, surface CD62P, CD63 and plasma TXA2 levels correlate
with plasma fibrinogen, D-dimer and C-reactive protein,
suggest ing a l ink between enhanced basal plate let
degranulation and the hyper-inflammatory and hyper-
coagulatory milieu in COVID-19 (167). Additionally, platelets
of COVID-19 patients also exhibit enhanced basal aIIbb3
activation relative to healthy donors or non-COVID-19
pneumonia patients (47, 168, 169).

In vitro and in vivo studies using a humanized mouse model
demonstrate that SARS-CoV-2 virions dose-dependently
enhance platelet degranulation, aIIbb3 activation, spreading,
aggregation and thrombosis in a mechanism involving spike
protein and platelet ACE2 (47), further underlining the link
between SARS-CoV-2 infection and platelet hyper-activation.
On the other hand, plasma of severely-ill COVID-19 patients
also induces platelet CD62P and CD63 expression relative to
control plasma (167), providing evidence that platelet activation
in COVID-19 is also regulated by plasma components.

While the exact mechanisms of SARS-CoV-2-mediated
platelet hyper-activation is still unclear, COVID-19 is
associated with enhanced activation of phospholipase A2

(PLA2) and protein kinase Cd (PKCd) (46, 48), which are
prominently involved in TXA2 generation and platelet
degranulation, respectively. Furthermore, janus-activated
kinase 3 (JAK3) and mitogen-activated protein kinases such as
extracellular signal-regulated kinase (ERK), p38 and c-Jun-N-
terminal kinase (JNK) are also triggered in COVID-19 or upon
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direct exposure to SARS-CoV-2 (47, 48), providing evidence of
the complex and diverse dysregulation of the intracellular
signalling network that may cause platelet hyper-activation and
influence thrombotic risk. Indeed, in a murine thrombosis model
SARS-CoV-2 spike protein enhances thrombosis only if mice
were transfused with human ACE2-expressing platelets, but not
in mice transfused with wildtype platelets (47).

Though reports on elevated basal platelet activation in
COVID-19 appear very consistent, associations with disease
severity are more variable with some studies showing higher
platelet activation in more severe cases (47, 167), whereas other
Frontiers in Immunology | www.frontiersin.org 13
studies did not find any association between disease severity and
platelet activation (46, 48).

Interestingly, despite evident platelet hyper-activation in
COVID-19, effects on platelet responsiveness are unclear. In
fact, initial studies reported facilitated agonist-induced CD62P
expression, TXA2 release, adhesion, spreading and aggregation in
COVID-19 relative to healthy controls (46, 48). However,
accumulating evidence indicates that platelets of COVID-19
patients display a hypo-responsive phenotype that affects
degranulation (168, 171), aIIbb3 activation (48, 157) and
aggregation (172), potentially due to alterations in the proteome
A

B

FIGURE 6 | The role of platelets in COVID-19. (A) SARS-CoV-2 may enter platelets upon binding to ACE2/TMPRSS2 or EMMPRIN receptors or by hitchhiking on
extracellular vesicles (EV) that fuse with the platelet plasma membrane, though SARS-CoV-2-containing immune complexes are also recognised by FcgRIIA. Binding
and/or internalisation of SARS-CoV-2 stimulates platelet activation including degranulation and secretion, integrin activation and aggregation as well as exposure of
pro-coagulant surfaces on platelets themselves or platelet-derived extracellular vesicles (PEV). Together with apoptosis of virus-bound platelets, these processes
induce a reduction in circulating platelet count. Platelet hyper-activation in COVID-19 is accompanied by hypo-responsiveness to further stimulation. (B) Altered
platelet behaviour in COVID-19 has systemic effects on pro-thrombotic and immunomodulatory platelet functions. Hyper-active and pro-coagulant platelets show
enhanced adhesion to the inflamed endothelium and foster the development of COVID-19-associated coagulopathy (CAC). Accordingly, platelet turnover is increased in
COVID-19. Formation of platelet-leukocyte aggregates triggers monocyte TF expression and NET formation, which add to the pro-coagulant microenvironment. In addition,
infected megakaryocytes may shed virions to exacerbate infection. Together, these pathologic alterations increase the risk for thromboembolisms, pulmonary damage and
haemorrhages. ACE2, Angiotensin-converting enzyme 2; ADP, adenosine diphosphate; ADAMTS13, A disintegrin and metalloproteinase with a thrombospondin type 1
motif, member 13; CAC, COVID-19-associated coagulopathy; CD40L, CD40 ligand; COVID-19, Coronavirus-induced disease 2019; CXCL4, chemokine (C-X-C motif)
ligand 4; EMMPRIN, extracellular matrix metalloproteinase inducer; ERK, Extracellular signal-regulated kinase; FcgRIIA, Immunoglobulin g Fc region receptor IIA; JNK, c-Jun
N-terminal kinase; p38, p38 mitogen-activated protein kinase; MK, Megakaryocyte; EV, Extracellular vesicle; NET, neutrophil extracellular trap; PEV, Platelet-derived
extracellular vesicle; NO, Nitric oxide; PGI2, Prostaglandin I2 (prostacyclin); PS, phosphatidylserine; SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; TF,
Tissue factor; TMPRSS2, Transmembrane protease serine subtype 2; TXA2: thromboxane A2; vWF, von Willebrand factor.
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(173). Further, COVID-19 effects on platelet responsiveness were
reported to differ between agonists (169) and to depend on agonist
concentration (170) as well as disease stage (174). In line, in vitro
thrombus formation under flow is decelerated during the early
phase of disease, but comparable to healthy donors in intermediate
and late stages, independently of platelet count or severity (175).
This provides further evidence of the dynamic alterations of
platelet function in COVID-19 and the difficulties in comparing
studies of different sampling strategies.

Further, platelets of COVID-19 patients, especially of those
with thrombosis, express higher levels of PS than control
platelets (48, 176), but agonist-induced upregulation is
impaired (177). Together with the occurrence of TF-positive
platelets (178) and augmented circulating PMVs (46), these
findings provide evidence of the pro-thrombotic and pro-
coagulatory microenvironment in COVID-19, which results in
thrombotic complications in lungs and other tissues (170).
Though, in light of the observed hypo-responsiveness of
platelets in aggravated COVID-19, the relative contributions of
primary and secondary haemostasis to thromboembolic
complications are still incompletely understood.

Hyper-activation of platelets in COVID-19 may not
only contribute to elevated thrombotic risk, but could also
mediate other disease symptoms such as thrombocytopenia.
Aggravating disease severity is associated with increased levels of
apoptotic platelets, which in turn negatively correlate with
circulating platelet count. To distinguish apoptotic from pro-
coagulant platelets, true apoptosis was corroborated by higher
mitochondrial inner membrane potential and cytosolic calcium as
well as augmented caspase 9 cleavage in addition to PS upregulation.
Thereby, elevated platelet apoptosis was identified in COVID-19
patients requiring ICU treatment relative to both healthy controls
and to COVID-19 patients in general ward. In vitro this pro-
apoptotic phenotype can be reproduced by serum or IgGs derived
from ICU patients, suggesting an FcgRIIA-mediated effect (176).

Apart from platelet apoptosis, declining circulating platelets
could also be a result of platelet hyper-activation, leading to
enhanced adhesion (46, 170) and thus potentially to
sequestration. Indeed, platelet count negatively correlates with
platelet degranulation markers (47) and associates with mortality
(179) and bleeding risk (153, 180), but interestingly not with
thrombosis (181). Platelet sequestration may be facilitated by
activation of endothelial cells in COVID-19, which show
impaired synthesis of nitric oxide and PGI2 (178). In
combination with increased levels of vWF and decreased a
disintegrin and metalloprotease with thrombospondin type
motif 13 (ADAMTS13) in plasma (182), endothelial
dysfunction thus generates a pro-thrombotic milieu that fosters
the development of microthrombi and sequestration of hyper-
active platelets.

Patients with COVID-19 also present with elevated levels of
PLAs involving monocytes and neutrophils as well as CD4- and
CD8-positive lymphocytes (48, 157, 167, 169). Elevated levels of
p la te le t -monocyte aggregates (PMAs) were found
predominantly in severe but not mild COVID-19 (167).
Similarly, platelet-neutrophil aggregates (PNAs) also increase
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with disease severity and worsening blood oxygenation (170).
Nevertheless, circulating PLAs are lower in non-survivors than
survivors (174). Enhanced PLA formation in COVID-19 may of
course be regulated by virus-induced leukocyte activation.
However, platelet hyper-activation is also prominently involved
as in vitro platelets from COVID-19 patients show higher PMA
and PNA formation with naïve leukocytes than platelets from
healthy donors (111, 170).

In line with platelet-mediated regulation of leukocyte
function, monocytic TF expression in COVID-19 patients is
higher on platelet-bound than on solitary monocytes (167) and
patient-derived platelets promote NET formation over naïve
platelets (170). These findings indicate that platelet activation
may promote thromboembolic complications also via
augmenting pro-coagulant leukocyte behaviour. Whether
platelet hyper-activation and platelet responsiveness in
COVID-19 also impact on immune responses and the ability
to combat SARS-CoV-2 is currently still unexplored.

Overall, COVID-19 is clearly associated with platelet
dysfunction, though its exact characteristics, dynamic changes
and underlying mechanisms are still unclear. Current literature
supports the idea that platelet dysfunction contributes to (micro)
thrombotic events and may affect platelet counts, possibly even
immune responses, which in turn could have repercussions for
bleeding/thrombotic risk, organ function and ultimately survival.

Hence, the clinically-relevant effects of anti-platelet
medication on COVID-19 morbidity and mortality are
carefully investigated. Though, fitting to the controversial
findings regarding platelet function in COVID-19, studies on
the effect of anti-platelet medication also provide variable results.

While dual anti-platelet therapy improves hypoxemia (183)
and aspirin has been associated with lowered risk for mechanical
ventilation and ICU admission as well as decreased in-hospital
mortality without affecting bleeding risk in some studies (184,
185), others found no protective effect of anti-platelet drugs against
adverse thrombotic events, severity or mortality (186, 187). An
ongoing large randomized controlled trial currently comprising
almost 15.000 COVID-19 patients reports no impact of aspirin
treatment on the risk for invasive ventilation or mortality (188),
which fits to the hypo-reactive platelet phenotype described in
various patient cohorts. Future studies will have to determine
whether anti-platelet therapy might affect morbidity of COVID-19
patients by impairing other platelet-mediated processes, e.g.
vascular surveillance or immunomodulation.
PLATELETS AND VIRAL DISEASES –

TREATMENT OPTIONS

Understanding the underlying mechanisms of platelet
dysfunction in viral infectious disease and unravelling the
consequences of their interplay with other cellular and non-
cellular mediators represents a prerequisite to discover novel and
safe therapeutic targets in this complex disease. Current anti-
platelet strategies targeting COX-1 and/or P2Y12 to reduce
platelet activation and the incidence of arterial thrombosis in
March 2022 | Volume 13 | Article 856713
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patients with cardiovascular diseases. However, they dysregulate
the haemostatic balance, leaving patients at risk of systemic side-
effects such as bleeding complications.

During chronic and acute inflammatory diseases, including
virus infections, distinct mechanisms of platelet activation occur,
which are potentially insensitive to classical anti-platelet drugs,
e.g. due to alternative pathways of platelet activation that may be
of particular importance for immunothrombotic processes
during severe infections. The use of thrombin inhibitors or
thrombin receptor antagonists which target both primary and
secondary haemostasis, represents another available approach,
but also bears a risk for haemorrhages. Animal studies on
influenza infections could show beneficial effects of the
thrombin receptor PAR1 beyond inhibition of platelet
activation (189). A recent study suggests that inflammatory
and immune-thrombotic mechanisms of platelets can be
diminished upon inhibition of PAR4 during influenza infection
(152), leading to ameliorated survival (137). However, inhibition
of hypo-responsive platelets by these classical platelet agonists
might further increase the bleeding risk. Therefore, alternative
strategies are necessary to dampen the risk of haemostatic
dysregulations in viral diseases.

Recent studies focus on targeting primary platelet activation
pathways e.g. via immunoreceptor tyrosine-based activation
motif (ITAM)-containing collagen receptor GPVI/FcRg-chain
complex. While GPVI inhibition yielded encouraging results,
reducing platelet aggregation without elevating major bleeding
complications (190), nothing is yet known on potential beneficial
effects in viral diseases. Also targeting immunoreceptor tyrosine-
based inhibitory motif (ITIM)-containing receptors could
provide an alternative approach for targeted platelet inhibition
due to the role of these receptors in the downregulation of
platelet ITAM-receptor signalling (191). Again, nothing is
known yet on the effect of these inhibitors in viral diseases.
However, as some viruses result in GPVI shedding and
diminished GPVI responses, like all classical anti-platelet drugs
also these inhibitors target platelets behind time. Interfering with
platelet-virus interactions would therefore provide another
interesting target, though this is likely to also affect immune-
defence mechanisms and therefore accelerate the risk of
unfavourable outcome.

Another crucial aspect is blocking immune-complex
mediated platelet activation via FcgRIIA. The physiologic
relevance of platelet FcgRIIA, which may facilitate both direct
antimicrobial function of platelets as well as crosstalk with other
immune cells, is currently unclear (192). This vicious interaction
of immune complexes and platelet FcgRIIA is not only
responsible for platelet activation in viral infections but also in
a plethora of other diseases – including heparin-induced
thrombocytopenia (HIT), autoimmune diseases like systemic
Frontiers in Immunology | www.frontiersin.org 15
lupus erythematosus (SLE) (193) or the more recently
d i s cov e r ed vac c i ne - induc ed immune th rombo t i c
thrombocytopenia (VITT). To date, no data exist on potential
effects of drugs interfering with FcgRIIA signalling in viral
infections. Investigations are complicated by the fact that mice
do not express FcgRIIA on platelets. However, humanized mouse
models do exist and for some viruses a crucial involvement of
F c gRI IA fo r p l a t e l e t a c t i v a t i on and sub s equen t
thrombocytopenia could be unravelled (193). Further studies
are warranted to fully understand the impact of platelet
inhibitors on viral infections. Beneficial effects of such
interventions will likely depend on the virus type, disease stage
and co-morbidities of patients. Therefore, experimental models
and patient cohorts have to be carefully selected and results
cautiously interpreted. Patients are often enrolled at different
disease stages and not longitudinally monitored. Moreover, they
often suffer from co-infections and/or other co-morbidities,
which have to be considered. While some of these obstacles
can be overcome by animal models, for some pathogens no
appropriate models exist. Also, haemostatic processes as well as
platelet surface receptor patterns significantly differ between
mice and humans. As pandemics and concomitant haemostatic
dysregulations will remain a recurrent threat, understanding the
role of platelets in viral infections represents a timely and
pivotal challenge.
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