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In this review, we will first discuss the concept of bone strength and introduce how fat 
at different locations, including the bone marrow, directly or indirectly regulates bone 
turnover. We will then review the current literature supporting the mechanistic relation-
ship between marrow fat and bone and our understanding of the relationship between 
body fat, body weight, and bone with emphasis on its hormonal regulation. Finally, we 
will briefly discuss the importance and challenges of accurately measuring the fat com-
partments using non-invasive methods. This review highlights the complex relationship 
between fat and bone and how these new concepts will impact our diagnostic and 
therapeutic approaches in the very near future.
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iNTRODUCTiON

We will briefly review how the definition of osteoporosis has evolved to integrate other parameters in 
addition to bone mineral density (BMD) measurements. We will then review the makeup of the bone 
microenvironment and the distribution of fat within and outside the bone compartment. Finally, 
we will briefly summarize how muscle and its fat composition may have impact on bone strength.

The Concept of Bone Strength
At the National Institutes of Health (NIH) Consensus Conference in 2000, osteoporosis was defined 
as a skeletal disorder characterized by compromised bone strength that predisposes to an increased 
risk of fracture (1). Bone strength reflects the integration of two features: BMD and bone quality. 
BMD is one of the strongest risk factor for fractures and its measurement has long been used to define 
osteoporosis. Clinical risk factors have also been integrated with BMD measurements in an attempt 
to help clinicians better identify patients requiring osteoporosis therapy (2). The FRAX calculator is 
a user-friendly web-based tool that provides immediate quantification of risks and treatment deci-
sion making based on a very simple algorithm. However, it should always be interpreted within the 
clinical context as it does not take into account a number of important clinical variables.

The World Health Organization defines osteoporosis as two and a half SD below the peak bone 
mass [i.e., the maximum amount acquired post bone maturation around the age of 18 in women 
(3) and 20 in men (4), but bone growth can continue up to the age of 30]. It is expressed as grams 
of mineral per area or volume. On the other hand, bone quality reflects a combination of bone 
microarchitecture, bone turnover, and mineralization. Peak bone mass is therefore a critical param-
eter that will impact bone strength as the skeleton is aging. Genetic factors appear to account for 
over 50% of the variation in peak bone mass acquisition (5). As bone is progressively lost overtime, 
the higher the peak bone mass, the longer the skeleton could theoretically withstand damage. This 
progressive bone loss from peak bone mass occurs predominantly as a result of reduced bone forma-
tion from osteoblast (6, 7) and resultant protein composition (8) and persists for decades thereafter. 
Additionally, accelerated bone resorption predominates in women as a result of estrogen deficiency 

http://www.frontiersin.org/Endocrinology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2015.00190&domain=pdf&date_stamp=2016-03-07
http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://dx.doi.org/10.3389/fendo.2015.00190
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:richard.kremer@mcgill.ca
http://dx.doi.org/10.3389/fendo.2015.00190
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00190/abstract
http://loop.frontiersin.org/people/225064/overview
http://loop.frontiersin.org/people/34838/overview


March 2016 | Volume 6 | Article 1902

Kremer and Gilsanz Fat and Bone

Frontiers in Endocrinology | www.frontiersin.org

at the menopause but also to a lesser extent in men after the fifth 
decade (6). However, postmenopausal women have the ability 
to produce estrogens from the peripheral conversion in fat tis-
sues of testosterone to estradiol. Adipocytes indeed express the 
cytochrome P450 enzyme, aromatase, which can produce estra-
diol from testosterone. This peripheral production of estradiol 
has been proposed as a protective mechanism against bone loss 
in overweight women (9–11).

Bone strength is highly dependent on its structural and mate-
rial properties. The balance between bone formation and resorp-
tion, also called bone turnover, greatly influences the material 
properties of bone such as tissue mineral density and collagen 
cross-linking. Enhanced bone turnover, as seen with a lack of 
estrogen in postmenopausal women, influences the structural 
and material properties that lead to bone microdamage. With 
aging, the reduction in bone strength is further compounded 
by progressive muscle weakness and the increased risk for falls 
due to lack of balance and coordination. Maintenance of bone 
mineralization within a relatively narrow range is also critical 
to the maintenance of bone strength (12). Poorly mineralized 
bone loses its stiffness, whereas excessive mineralization makes 
bone more brittle. Bisphosphonates, the most widely used drugs 
to treat osteoporosis by excessive bone turnover, also lead to 
increased mineralization and stiffness overtime. Impairment of 
microdamage repair is another potential side effect of bisphos-
phonates since normal bone turnover replaces old bone with 
new bone and protects against microdamage. Long-term use of 
bisphosphonates has been linked to atypical fractures, and one 
could hypothesize that the combination of abnormal mineraliza-
tion and reduced turnover may play a role in its development.

The Components of the Bone 
Microenvironment
The bone microenvironment is comprised of several compart-
ments, including hematopoietic cells, bone cells, and stromal 
cells (13). Bone cells, also referred to as the bone remodeling 
unit (BMU), are composed of bone-forming osteoblasts, bone-
resorbing osteoclasts, and osteocytes embedded within the bone 
matrix. The BMU is also in close contact to stromal elements 
of the marrow and the blood vessels supply (14). Osteoclasts 
are of hematopoietic origin, whereas osteoblasts originate from 
bone marrow mesenchymal stem cells (MSCs) (11, 14, 15). One 
of the most interesting occurrences in this environment is the 
accumulation of fat cells during aging and in some pathological 
conditions. The functional significance of this “marrow fat (MF)” 
accumulation correlates strongly and inversely with bone strength 
(16). However, its causal relationship to bone degradation as well 
as its potential for therapeutic targeting in osteoporosis remains 
to be determined. There is indeed a significant gap of knowledge 
in our understanding of the mechanistic relationships between fat 
and bone especially during the aging process.

The Components and Distribution of  
Body Fat
In humans, white adipose tissue (WAT) is principally located 
beneath the skin (subcutaneous fat) and around internal organs 

(visceral fat or abdominal fat). The main cellular component of 
WAT is the adipocyte but other cell types are also present, includ-
ing fibroblasts, macrophages, and blood vessels. Its main function 
is energy storage. Adipose tissue also accounts for a significant 
proportion of the breast tissue and is found around other organs 
(such as pericardial and gonadal fat) providing protective pad-
ding. Adipocytes are also found in small amounts outside adipose 
tissues, including muscle, liver, pancreas, and heart, which are also 
referred as ectopic fat. Fat cells are also found in the bone marrow, 
“MF,” and have been the subject of enormous research interest to 
explore their relationship with the bone microenvironment.

Another form of adipose tissue is known as brown fat or 
brown adipose tissue (BAT) located mainly around the neck and 
large blood vessels of the thorax of neonates whose main function 
is to generate heat and protect neonates against cold (17). Recent 
studies indicate that BAT is also found in the neck and trunk of 
adults albeit in lesser amounts (18). Although this review focuses 
mainly on white fat, the relationship between BAT and bone will 
be briefly discussed.

Muscle Fat, Muscle Strength, and Bone 
Strength
Many studies have clearly demonstrated the positive impact of 
muscle strength on bone strength, but we will not cover this 
important area of research here. However, an interesting, but 
much less explored, area is the relationship between muscle fat 
and muscle strength and by extension its impact on bone strength. 
Fat accumulation in muscle may also have indirect effects on 
bone. Intermuscular adipose tissue accumulation occurs during 
aging or in pathological conditions such as Duchenne muscular 
dystrophy, which has been linked to decreased muscle strength, a 
known risk factor for osteoporosis and fractures (19). Increased 
intermuscular adipose tissue is associated with poor mobility 
(20) and increased risk of hip fractures (21). However, it is not 
yet known whether intermuscular adipose tissue accumulation 
is simply a marker of muscle dysfunction or has a direct causal 
effect on muscle function. The relationship between vitamin D 
and intermuscular adipose tissue is discussed later in this review.

BASiC UNDeRSTANDiNG OF THe 
MeCHANiSTiC ReLATiONSHiP BeTweeN 
MARROw FAT AND BONe STReNGTH

In this section, the origin, clinical significance, and the factors 
that influence MF accumulation will be discussed.

Clinical Observations
As we age, the cortex of the bones become thinner encircling 
concomitantly larger marrow cavities filled with fat, but whether 
this is a result of a passive accumulation of fat as bone is lost and 
marrow space increases or an age-related shift in MSC differentia-
tion with predominant adipogenesis against osteoblastogenesis is 
difficult to elucidate.

Meunier et  al. studied 81 iliac crest biopsies from elderly 
women and found that bone marrow samples from women with 
osteoporosis had a pronounced accumulation of adipocytes, 
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FiGURe 1 | (A) Depiction of the mid-third of the right femur in a 19-year-old 
male (the localizer image). (B) Values for % marrow fat (black circles) and 
cortical bone area (gray diamonds) at all slices along the mid-third of the right 
femoral shaft and their overall relationship in the same subject [reproduced 
from Wren et al. (46)].
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relative to levels in healthy young subjects (22). Subsequent stud-
ies showed increased bone marrow adiposity in postmenopausal 
women with osteoporosis and a negative association between 
bone–MF and rate of bone formation (23–25). Investigations 
using magnetic resonance imaging (MRI) have shown that the 
accumulation of bone–MF in the vertebral bodies of older women 
with low bone mass confers an additional risk for compression 
fracture beyond that associated with low BMD (26). Further 
support for this notion are data showing an association between 
exogenous glucocorticoid use and endogenous over production 
of cortisol and marked bone marrow infiltration by adipocytes 
with a significant increase in fracture risk (27–29).

Marrow stromal cells isolated from postmenopausal osteo-
porotic patients express more adipocytic differentiation markers 
than those with normal bone mass and are more likely to enter an 
adipocyte than an osteoblast differentiation program (30, 31). Fat 
in bone marrow may also promote bone resorption since marrow 
adipocytes, much like fat cells elsewhere, secrete inflammatory 
cytokines capable of recruiting osteoclasts (32).

Role of MSC
Pluripotent bone marrow MSCs have the ability to become 
osteoblasts, chondrocytes, myocytes, or adipocytes under the 
influence of specific cell-derived differentiation factors (33). This 
process has been well demonstrated in vitro to control the fate of 
MSC into osteoblasts or adipocytes. This process is bidirectional 
and considerable plasticity has been observed both in vitro and 
in  vivo in the ability of bone cells to become adipocytes and 
vice versa. Mechanical stimuli on the skeleton can also modify 
the differentiation of MSC into the cell lineages responsible for 
bone and fat formation (34–39) such that increases in bone strain 
add to increased osteogenic activity, whereas decreases favor the 
adipogenic differentiation. Lastly, the lack of estrogen in rats fol-
lowing oophorectomy has been reported to lead to profound fatty 
bone marrow infiltration, suggesting that estrogen must play an 
important role in regulating adipocyte recruitment (40).

Data from pathological specimens and imaging studies have 
consistently observed a reciprocal relationship between bone 
mass and increased marrow adiposity in elderly humans (22, 
41–43). A recent study found that the accumulation of MF during 
aging is linked to increased expression of RANKL, a finding that 
could explain at least in part age-related bone loss (44). However, 
whether the relation between these two tissues in the elderly 
represents the clinical translation of preferential differentiation 
by MSC into the adipose cell lineage or is merely the unintended 
consequence of a passive accumulation of adipose tissue as bone 
is lost and marrow space increases has been a matter of consider-
able debate. To avoid this confounding effect, young subjects were 
examined and found that bone acquisition is tightly linked with 
decreases in marrow adiposity (16). The inverse relation between 
the amount of bone and MF is observed at all sites along the shaft 
of the bone in the young and the old regardless of age, gender, 
or anthropometric measures (45, 46) (Figure 1). Moreover, pro-
spective longitudinal studies have found that bone acquisition in 
the appendicular skeleton of healthy young females is inversely 
related to changes in marrow adiposity (16). Consequently, one 
could make a strong argument that during the aging process, 

differentiation of MSCs into adipocytes is favored at the expense 
of osteoblasts, resulting in MF accumulation and decreased 
bone mass. However, this causal relationship has not yet been 
demonstrated.

In summary, mounting evidence supports a mechanistic 
relationship between MF accumulation and bone loss, pointing 
out the potential to target this pathway to prevent or even reverse 
the process of bone aging.

BASiC UNDeRSTANDiNG OF THe 
ReLATiONSHiP BeTweeN BODY FAT, 
BODY weiGHT, AND BONe STReNGTH

In this section, we will summarize the current knowledge and 
conflicting data linking body fat, bone mass, and fracture rate.

Clinical Observations
Postmenopausal women have the ability to produce estrogens 
from the peripheral conversion of testosterone to estradiol in 
fat tissues. Adipocytes express the cytochrome P450 enzyme, 
aromatase, which can produce estradiol from testosterone. This 
peripheral production of estradiol has been proposed as protec-
tive mechanism against bone loss in overweight women (9–11). 
There are also reports showing an inverse relationship between 
BMI and osteoclast activity in normal postmenopausal women 
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(47) and an increase in bone resorption following weight loss 
(48). As discussed further in the next section, fat accumulation 
leads to hyperinsulinemia, which is anabolic to bone, and adipo-
cytes produce estrogen and adiponectin, which have a positive 
effect on bone strength and could therefore explain this positive 
association observed clinically (49).

Bone mineral density measured by dual-energy X-ray absorp-
tiometry (DXA) is positively related to body weight and BMI (49, 
50), possibly because higher body weight may increase mechanical 
loading on the skeleton, a mechanism known to stimulate bone 
formation. However, DXA measurements are falsely elevated by 
increased body fat and therefore DXA may overestimate BMD 
in obese individuals (51–54). Indeed, other studies have found a 
strong positive association between lean mass and BMD in young 
women and a much weaker association between BMD and fat 
mass (50).

A meta-analysis indicates that a high BMI appears to pro-
tect against fractures at any site in both men and women (55). 
Similarly, a European study found that a higher BMI protects 
against vertebral fractures (56). In the study of osteoporotic 
fractures, body weight in the lowest quartile was found to double 
the risk of hip fracture (57). In contrast, other studies found 
that the risk of hip fractures is positively correlated with fat 
mass in a cohort of French women (58) and Chinese men (59). 
Interestingly, visceral adiposity has been linked to deterioration 
of bone structure and skeletal fragility (60, 61), suggesting that 
fat compartments may have different effects on bone strength. 
In summary, clinical observations linking body fat and bone 
strength are inconsistent, and more mechanistic studies are 
needed to support the purported beneficial effect of obesity on 
osteoporosis.

iNTeGRATeD HORMONAL ReGULATiON 
OF FAT AND BONe

In this section, we will review the major hormonal regulators con-
trolling fat and bone, with particular attention on the mechanisms 
underlying the reciprocal relationship between MF and bone.

Growth Factors
Insulin
Hyperinsulinemia is a hallmark of the metabolic syndrome 
characterized by accumulation of visceral fat (62). Osteoblasts 
express insulin receptors (63), and insulin directly stimulates 
osteoblast proliferation (64) and differentiation in  vitro (63). 
Furthermore, local application of insulin over the calvariae of 
adult male mice produces a significant increase of bone forma-
tion (65). Conversely, the glucose-dependent insulinotropic 
polypeptide (GIP)-receptor knockout mouse shows decreased 
bone size, mass, and formation rate (66). In clinical studies in 
patients with varying degrees of hyperinsulinemia, the risk of 
vertebral fracture was inversely related to insulin levels (67). 
Hyperinsulinemia following an oral glucose load is accompanied 
by suppression of parathyroid hormone (PTH) production and 
bone turnover and may therefore indirectly protect against bone 
loss (68, 69).

Growth Hormone and Insulin-Like Growth Factor 1
In  vitro GH induces MSC differentiation into osteoblast, while 
GH deficiency in mice results in decreased bone formation and 
increased bone marrow adiposity (70). Although IGF-1 does not 
have a direct effect on the differentiation of MSC in vitro (71), the 
PPAR-gamma 2 agonist rosiglitazone decreases IGF-1 expression 
in bone marrow MSC and lowers blood IGF-1 levels in mice and 
humans (72).

GLP-1 and GLP-2
Administration of glucagon-like peptide-1 (GLP-1) to diabetic 
mice results in an insulin-independent anabolic effect on bone 
(73). In humans, dietary fat and protein leads to reduction in bone 
turnover (74–76) possibly through GLP glucagon-like peptide-2 
(GLP-2), a polypeptide produced by intestinal L cells in response 
to feeding. GLP-2 administration to humans is accompanied by a 
reduction in bone resorption and an increase in bone density (55).

Adipokines
Leptin
Leptin is primarily produced by adipocytes and initially dis-
covered as an appetite suppressant (77). The hypothalamus is 
regarded as the principal target of leptin. The arcuate nucleus 
(in the hypothalamus) contains anabolic neurons, which express 
both neuropeptide Y and agouti-related protein, the activity 
of which is inhibited by leptin, and neurons expressing pro-
opiomelanocortin (POMC), which are activated by leptin. Insulin 
acts on both types of neurons in the same way as leptin, suggest-
ing that these hormones reinforce each other’s actions centrally, 
as well as peripherally (78).

However, subsequent studies demonstrated the potent effect 
of leptin on bone in animal studies (79, 80). These studies dem-
onstrated that in obese mice deficient in leptin (ob/ob mice) or 
in mice where the leptin receptor is defective (db/db mice), ver-
tebral trabecular bone volume and bone formation are increased. 
Conversely, intracerebroventricular infusion of leptin decreased 
vertebral trabecular bone volume and bone formation (79). 
Further studies then demonstrated that these effects are mediated 
by the sympathetic nervous system acting on β-adrenergic recep-
tors at the surface of osteoblasts inhibiting bone formation (80). 
These inhibitory effects on bone in vivo contrast with the in vitro 
effects reporting that leptin directly promotes the differentiation 
of osteoblasts (81–85). Leptin also reduces expression of RANK 
ligand of human bone marrow stromal cells and RANK expression 
of peripheral blood mononuclear cells (81, 86), with a resultant 
inhibition of osteoclastogenesis (82, 86). Furthermore, clinical 
studies have not consistently showed a relationship between 
administration of beta blockers, bone density improvement, and 
fracture prevention (87). This apparent contradiction could be 
explained by the ability of leptin to act positively and directly on 
peripheral tissues or negatively via central mechanisms involving 
activation of the sympathetic nervous system.

Adiponectin
Adiponectin is another adipokine produced by adipocytes whose 
role is to increase insulin sensitivity. Its blood levels are decreased 
in obese and diabetic individuals (88, 89). In vitro treatment of 
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osteoblasts with adiponectin enhances their differentiation (90). 
In humans, cross-sectional studies found an inverse association 
between circulating adiponectin levels and bone mass in both 
men and women, even after adjustment for fat mass (91, 92).

Peroxisome Proliferator-Activated 
Receptor (PPAR) Gamma
PPARγ2 is the most important regulator of adipogenesis. In vitro 
PPARγ2 directs the commitment of MSCs into adipocytes and 
inhibits their differentiation into osteoblasts (9). Ablation of the 
PPARγ gene leads to enhanced osteoblastogenesis of embryonic 
stem cells in  vitro and results in enhanced bone mass in  vivo 
and reduced bone marrow adiposity (93). At the cellular level, 
ex vivo examination of MSCs shows commitment toward osteo-
blastogenesis and reduced adipogenesis (94). Administration of 
rosiglitazone, a specific activator of PPARγ, in mice decreases 
osteoblastogenesis and enhances adipogenesis in the bone mar-
row (95).

The canonical Wnt/beta-catenin pathway and non-canonical 
Wnt signaling have been implicated in this reciprocal regula-
tion via PPAR-gamma 2. In the canonical pathway following 
ligand activation, Wnt binds to a transmembrane coreceptor 
complex consisting of Frizzled receptors and LRP5 to stimulate 
bone formation (96). Although Wnt10b, Wnt 3a, and Wnt 7 
can stimulate the differentiation of MSC into osteoblast while 
inhibiting adipogenesis (97–101), only Wnt 7 has been shown to 
block PPAR-gamma 2 (99). Similarly, the non-canonical ligand 
Wnt5a was found to induce Runx2-mediated osteoblastogenesis 
while simultaneously suppressing adipogenesis in bone marrow 
MSC through the formation of a corepressor that blocks PPAR-
gamma 2 gene transcription (102). In addition, PPAR-gamma 
2 acts downstream of the Wnt receptor complex to enhance the 
proteosomic degradation of beta catenin, thereby acting as a 
direct regulator of osteoblastogenesis (103).

Cytokines
Duque et al. provided in vitro and in vivo evidence that interferon 
(IFN)-gamma is a potent inducer of MSC differentiation into 
mature osteoblasts and a key regulator of bone formation in mice 
and has therefore the potential to become an efficient drug target 
in osteoporosis (104, 105). It was further demonstrated that IFN-
gamma inhibits adipogenesis in vitro and prevents MF infiltration 
in oophorectomized mice in vivo (106). In addition, IFN-gamma 
suppresses osteoclast differentiation by interfering with RANKL 
signaling (107), thus acting synergistically on bone cells to 
enhance bone strength. As discussed earlier and independently of 
IFN-gamma, MF accumulation during aging is linked to increased 
expression of RANKL, highlighting another mechanism linking 
bone loss to MF (44). It remains to be established whether other 
proinflammatory and anti-inflammatory cytokines could affect 
the balance between MF and osteoblastogenesis.

Glucocorticoids
Excessive production or supre-physiological administration of 
GC excess results in inhibition of osteoblastogenesis and acceler-
ated adipogenesis (108) through suppression of Wnt signaling 
(109) and induction of PPAR-gamma 2 expression (110).

Calcium-Regulating Hormones
Vitamin D
Vitamin D insufficiency is a worldwide phenomenon affecting 
even the sunniest areas (111–113).

Vitamin D (from skin irradiation or in the diet) must 
be metabolically activated first by the liver 25 hydroxylase 
(CYP2R1) to 25hydroxyvitamin D (25OHD) and then by the 
kidney 1αhydroxylase to its active form 1,25dihydroxyvitamin 
D [1,25(OH)2D]. The role of vitamin D on bone and mineral 
homeostasis is well known, but its role in other tissue function 
including fat is still the subject of considerable debate.

The relationship between vitamin D and fat has been the 
subject of many studies in recent years. Several studies found 
a strong and inverse correlation between circulation levels of 
25OHD and weight but also BMI (113–117) in both men and 
women across the ages. Furthermore, this inverse association 
was seen in all fat compartments but was stronger for visceral fat 
(113), perhaps indicative of higher cardiovascular morbidity. In 
support of this, several studies showed that decreased 25OHD 
levels impair insulin action (118–120) and are associated with the 
metabolic syndrome (120–122). At the cellular level, mechanistic 
studies also support this association. 1,25(OH)2D treatment of 
pre-adipocytes in culture decreases adipogenesis (123) through 
inhibition of C/EBPalpha and PPARγ;VDR and PPARγ act syner-
gistically to inhibit adipogenesis (124). The effect of vitamin D on 
MF has also been examined in animal studies. Our group showed 
that continuous administration of 1,25(OH)2D in senescence-
accelerated mice (SAM-P/6) suppressed adipogenesis in the 
marrow and that isolated MSCs had a reduced expression of the 
adipogenic enhancer PPARγ (125) and accelerated differentiation 
into osteoblasts compared to placebo-treated animals. This was 
accompanied by an increase in both cortical and trabecular bone 
strength (126). Other studies also support our data that vitamin D 
enhances MSC differentiation to osteoblasts (127, 128), suggest-
ing that 1,25(OH)2D may exert a protective effect on bone aging.

However, a causal relationship supporting the role of vitamin 
D as a regulator of fat metabolism and distribution in humans 
has been difficult to prove. In support of this theory, Ortega et al. 
found that baseline 25OHD levels are predictive of the efficacy 
of weight loss regimen and that the vitamin D status potentiates 
the effect of low caloric diet (129). Several other studies showed 
that vitamin D supplementation induces a moderate effect on 
weight loss while others did not (130–135). On the other hand, 
other clinical studies point to the evidence of fat as a reservoir for 
vitamin D (sequestration theory). First, it was shown that obesity 
is directly related to 25OHD levels: sequestration hypothesis 
(136, 137) and second, that weight loss tends to increase 25OHD 
levels (138).

An unexplored effect of vitamin D action on bone could come 
from its effect on fat accumulation in muscle. Vitamin D is also 
a major determinant of skeletal muscle function (139–142). A 
severe lack of vitamin D can cause myopathy (143, 144), which 
tends to be more marked in the proximal muscles (145). In the 
elderly, vitamin D deficiency is linked to muscle weakness and 
increased susceptibility to falls and fractures, which improve 
with administration of vitamin D with calcium (146–157). We 
recently found that in healthy young women, vitamin D levels are 
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FiGURe 2 | Conceptual model of the interrelationship between bone, 
fat, and muscle and the role of vitamin D. An increase in vitamin D should 
lead to a decrease in muscle fat leading to an increase in muscle strength 
and a subsequent increase in bone and simultaneous decrease in marrow fat 
(MF). However, there is also the possibility that increases in vitamin D will also 
directly lead to an increase in bone.
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inversely related to the degree of fat infiltration in muscle (112), 
a phenotype associated with impaired muscle strength (19, 20, 
158). Available data indicate higher muscle lipid content to also 
be associated with decreased muscle function in patients with 
neuromuscular disorders (19). Indeed, even in healthy subjects, 
higher muscle lipid content is associated with lower levels of 
muscle strength and physical performance, independent of mus-
cle mass (20, 158). Among the different mechanisms that could 
explain the accumulation of fat in muscle, it is tempting to specu-
late that mesenchymal progenitors normally present in skeletal 
muscle  –  MSCs, muscle-derived stem cells, or muscle satellite 
cells – could potentially allow muscular growth and regeneration 
or differentiate into cells with an adipocyte phenotype, including 
the abilities to express adipocyte-specific genes and accumulate 
lipids (159–161).

Our studies showing that vitamin D is inversely related to 
fat infiltration in muscle (112) and positively related to muscle 
strength (139) in healthy young females support the notion that 
vitamin D may be a key determinant of muscle precursor cell 
(MPC) differentiation. However, whether vitamin D-mediated 
muscle adiposity and performance determine bone acquisition, 
and simultaneous decreases in marrow adiposity remains to be 
determined. A conceptual relationship between muscle, bone, 
and fat and how it could be influenced by vitamin D is shown 
in Figure 2.

Most vitamin D supplementation trials on muscle strength 
have been done in the elderly and found a reduction in falls, 
improvements in balance and body sway, and/or resolution of 
myalgia in statin-treated patients with treatment periods as short 
as 8–12  weeks (146, 162, 163). Likewise, several studies have 
examined the impact of vitamin D supplementation on muscle 
composition, primarily by assessing muscle fiber number and 
diameter, infiltration of fat and fibrosis, and all were in elderly 
subjects (152, 164, 165); treatment with vitamin D and calcium 
improved muscle composition after as short a time as 3 months. 
The ability to obtain tissue samples from healthy, young women 
undergoing surgery for sports-related injuries represents a unique 
approach in this field of research.

Two vitamin D supplementation studies have been done 
in girls; one found improvements in muscle function in the 
vitamin D-treated group but no significant differences in bone 
measures using DXA and peripheral quantitative computed 
tomography (CT), while the other found increases in DXA 

measures of lean mass and spine bone mineral content (139, 
166). These discrepant results likely reflect the limitations of the 
techniques employed. Changes in body composition influence 
DXA measures during growth, and peripheral quantitative CT 
measures in children have poor reproducibility due to large 
variations in bone growth (167, 168). Confounding effects 
associated with growth and development are common when 
studying sexually and skeletally immature young women, using 
DXA or CT.

Parathyroid Hormone
Parathyroid hormone is a major regulator of calcium and bone 
homeostasis, but studies on its effect of fat have been so far 
limited. Two epidemiological studies suggest a possible positive 
association between circulating levels of PTH and fat mass. The 
first showed that circulating PTH concentrations are directly 
correlated with fat mass (169), and the other showed that body 
weight is increased in women with primary hyperparathyroidism 
as compared to controls (170).

BROwN ADiPOSe TiSSUe AND BONe

Much of this review focused on the interaction between white 
fat and bone, which is by far the most studied. In contrast, the 
literature on BAT and bone is almost non-existent except for 
two correlative studies showing that a positive relationship exists 
between BAT and bone volume in children and adolescent boys 
and girls (171), and BAT and bone size in both children and 
adults (171, 172). The effect of BAT became insignificant when 
muscle mass was introduced in the model, a finding supported 
by a previous study showing a positive relationship between BAT 
and muscle mass (173). It has also been reported that young 
women with active BAT have higher BMD than women without 
BAT (174), further supporting a possible mechanistic relationship 
between BAT, bone growth, and bone strength. The underlying 
mechanism(s) remains to be established.

THe CHALLeNGeS OF FAT iMAGiNG

In this section, we will briefly summarize the recent progress 
in non-invasive measurement of MF and body using imaging 
technologies.

Studies assessing MF–bone interactions have been hindered 
by the difficulty of independently examining different tissues at 
the same site. The most commonly employed method to assess 
bone and body composition has been DXA, which cannot analyze 
muscle or MF. In contrast, CT and MRI provide accurate measures 
of bone, muscle, and fat independently (175–179). MRI has the 
added advantage of being able to quantify the amount of any tissue 
without exposing the subject to radiation. However, MRI meas-
urements of bone, bone–MF, and muscle require state-of-the-art 
imaging, including Dixon capabilities. Over the past 25  years, 
Dixon’s method has evolved significantly (19, 177, 180–183), and 
recent advances have led to more generalized algorithms (176, 
184–186). We used three-point Dixon MR technique for fat 
quantification (182) and determined that reproducibility of the 
fat fraction quantifications in phantom models was excellent with 
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a coefficient of variation of <1.5% (182). In vivo reproducibility of 
MF varies between 1.3 and 3% (176, 177). Pixel signal intensities 
from the medullary canal are obtained, and total fat % is calcu-
lated by integration in slice selection direction over the imaging 
volume. To calculate bone structural properties from the MRI 
images, our group has developed a graphical user interface with 
Matlab (Mathworks, Natick, MA, USA) using custom algorithms. 
The program is designed to automatically extract endosteal and 
periosteal contours of the bone and to calculate geometric and 
structural parameters. First, the user selects a DICOM image and 
then crops a rectangular region of interest containing the bone 
of interest. The image is automatically thresholded according 
to bone and muscle peaks from the image histogram. Edges of 
the cortex are detected and contours generated. The correlation 
of this method with quantitative CT is excellent (187). Multiple 
investigators have previously evaluated properties of the femoral 
midshaft using tracing (188), deformable models (189), and 
semi-automatic algorithms.

Possible differences in the distribution of fat accumulation in 
children have been difficult to establish due to the limitations and 
the risks of the techniques used. While there are many techniques, 
including underwater weighing, anthropometry, body water dilu-
tion, impedance, and DXA, to estimate total body fat content, 
it has not been possible to differentiate between subcutaneous 
and visceral fat until the advent of CT and MRI (190). Both CT 
and MRI provide a three-dimensional assessment of body tis-
sues (175). CT provides cross-sectional images from which the 
amounts and distributions of subcutaneous fat and visceral fat 
are well distinguished, but these determinations are areal meas-
urements (cm2) and multiple scans are necessary to obtain true 
volumetric values, exposing the child to radiation. In contrast, 
MRI allows for volume determinations and can reliably measure 
the amount and distribution of abdominal fat, without radiation 

exposure (cm3) (175, 179). In a study comparing MRI with five 
other methods (underwater weighing, O dilution, K counting, 
skinfold thickness, and body electrical impedance methods), MR 
gave the least variability and an estimate of body fat significantly 
closer to the mean of the five other methods than any other tech-
nique alone. MRI-based studies are likely to be less affected by 
individual variability and may therefore achieve higher statistical 
power for a given sample size (178).

CONCLUSiON

The interactions between fat and bone are complex and new 
emerging concepts regarding their relationship have the 
potential of transforming our therapeutic targeting of the 
skeleton. The inverse relationship between MF and bone is an 
enthralling area of research based on the very origin of bone 
and fat cell differentiation from MSC. The obesity epidemic has 
also brought new challenges in terms of prevention and treat-
ment of common illnesses, such as type 2 diabetes. Here again, 
the interactions between body weight, body fat, and bone are 
much more complex, and the influence of clinical context, age, 
sex, and ethnicity should be considered when examining this 
relationship. Overall, bone and fat may not be such an odd 
couple but rather a very important one that deserves to be 
examined in all its facets as it represents a unique challenge 
for future health.
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