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Handgrip Neuromuscular Modifications in Rheumatoid Arthritis:
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Objective. Rheumatoid arthritis (RA) causes progressive changes in the musculoskeletal system compromising neuromuscular
control especially in the hands. Whole-body vibration (WBV) could be an alternative for the rehabilitation in this population.
This study investigated the immediate effect of WBV while in the modified push-up position on neural ratio (NR) in a single
session during handgrip strength (HS) in women with stable RA. Methods. Twenty-one women with RA (diagnosis of disease:
±8 years, erythrocyte sedimentation rate: ±24.8, age: 54± 11 years, BMI: 28 ± 4 kg·m-2) received three experimental
interventions for five minutes in a randomized and balanced cross-over order: (1) control—seated with hands at rest, (2)
sham—push-up position with hands on the vibration platform that remained disconnected, and (3) vibration—push-up
position with hands on the vibration platform turned on (45Hz, 2mm, 159.73m·s-2). At the baseline and immediately after
the three experimental interventions, the HS, the electromyographic records (EMGrms), and range of motion (ROM) of the
dominant hand were measured. The NR, i.e., the ratio between EMGrms of the flexor digitorum superficialis (FDS) muscle and
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HS, was also determined. The lower NR represented the greater neuromuscular efficiency (NE). Results. The NR was similar at
baseline in the three experimental interventions. Despite the nonsignificance of within-interventions (p = 0:0611) and
interaction effect (p = 0:1907), WBV exercise reduced the NR compared with the sham and control (p = 0:0003, F = 8:86, η2 =
0:85, power = 1:00). Conclusion. Acute WBV exercise under the hands promotes neuromuscular modifications during the
handgrip of women with stable RA. Thus, acute WBV exercise may be used as a preparatory exercise for the rehabilitation of
the hands in this population. This trial is registered with trial registration 2.544.850 (ReBEC-RBR-2n932c).

1. Introduction

Rheumatoid arthritis (RA) is a chronic disease that causes
progressive damage to the musculoskeletal system. RA com-
promises neuromuscular control especially in the hands
[1–4]. It usually affects the joints in a symmetrical way, thus
determining a decline in muscle strength and a progressive
reduction of hand functional abilities [5]. Currently, the
prevalence of RA is 1-2% of the world’s population, with
the rate being two to three times higher in women [6] aged
between 20 and 65 years [7].

During the pathological process of RA, the individual
may have trouble while performing daily tasks induced by
pain, stiffness, and deterioration of the joint structure and
function. Damage to musculoskeletal tissue caused by RA’s
inflammation interferes directly with mobility, generation
of muscle strength and neuromuscular control [8, 9]. Neuro-
muscular control is necessary and essential for most daily
tasks [10]. Thus, women with RA tend to use higher levels
of neuromuscular activation in daily tasks than healthy
women [11].

Exercise programs are commonly used to improve hand
structure and function, but the disparity in determining the
most effective exercise for this population remains inconclu-
sive [11]. Whole-body vibration (WBV) exercise is a neuro-
muscular stimulus method, which can represent a
preparatory exercise in promoting lower joint impact and
greater neuromuscular modifications [12].

In the context of rehabilitation of patients with stable
RA, it is noteworthy that earlier studies evaluating the effect
of WBV focused on the lower limbs [3, 13]. Moreover, few
investigations have targeted the upper body by using a static
modified push-up position to assess the effects of WBV on
healthy participants [14, 15]. Other studies have examined
the effect of WBV exposure on neuromuscular activity of
the flexor digitorum superficialis (FDS) muscle [15, 16],
which is essential for manual skills involving handgrip [17].

Some of the possible mechanisms that may explain the
positive effects of WBV exercise are represented by the
changes provided in the neuromuscular activation pattern
in favor of greater neuromuscular modifications [18]. As evi-
denced by a two-fold increase in biceps brachial electromyo-
graphy (EMG) from WBV compared to baseline values [18],
it was suggested that this type of treatment can stimulate the
neuromuscular system and improve the neuromuscular
modifications, i.e., the ratio between EMG and mechanical
power, during handgrip activities [19].

From our previous work that reported immediate effects
of WBV exercise in promoting a transient increase in muscle
contractile performance in untrained healthy women [19,
20], it seems plausible that vibration WBV may be a useful

preparatory therapy capable of promoting neuromuscular
modifications for the rehabilitation of the hands in women
with stable RA. Therefore, the objective of the current study
was to investigate the effect of WBV exercise in a single ses-
sion on the static modified push-up position on the hand-
grip neuromuscular modifications in women with stable
RA. As secondary outcomes, we aimed to evaluate the hand-
grip strength (HS) and concomitant neuromuscular electri-
cal activity of the FDS muscle and determine if the wrist
flexion-extension range of motion (ROM) of the dominant
hand was enhanced. It was hypothesized that the acute expo-
sure to WBV directly under the hands would promote an
increase in wrist flexion-extension ROM and HS, in addition
to a concomitant reduction in electromyography (EMGrms).

2. Materials and Methods

2.1. Study Design and Participants. Twenty-six women diag-
nosed with RA were initially screened for eligibility. Twenty-
one (n = 21) eligible RA women were enrolled the study
(Figure 1).

The study design was a crossover clinical trial (i.e., all
volunteers performed all three experimental interventions
in a randomized order) with seven balanced blocks, three
by three. Experimental interventions were randomized by
sortition, and the participants were blinded. The interven-
tions were performed over a one-week period with a 48-
hour recovery following each intervention. The familiariza-
tion session was performed 48 hours prior to the beginning
of the experimental interventions and included a physical
examination, anthropometric measurements (height and
body mass), and familiarization with the vibrating platform,
HS, EMGrms, and ROM. On the day of familiarization, a
blood sample was also performed to check the inflammatory
activity of the disease through the erythrocyte sedimentation
rate (Figure 2).

This study was conducted in accordance with the check-
lists for randomized controlled and clinical trials CONSORT
and SPIRIT and ethical principles for research involving
human subjects (principles of the Declaration of Helsinki).
The study received approval from the Ethics Committee of
the Universidade Federal dos Vales do Jequitinhonha e
Mucuri (No. 2.544.850) and was submitted to the Registry
of Clinical Trials (ReBEC) (RBR-2n932c).

The participants were recruited between March of 2018
and May of 2019, at the medical clinic by the rheumatolo-
gists of the Regional Polyclinic, Basic Health Units and radio
advertising in Diamantina, MG, Brazil. The inclusion cri-
teria were as follows: women aged between 20 and 70 years,
with confirmed diagnosis of RA by a rheumatologist accord-
ing to the criteria of the American College of Rheumatology
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[21]. Participants were ineligible, if they presented the fol-
lowing: sensory disturbances; active infections; alcohol or
drug abuse; pregnancy or breastfeeding; anticoagulant treat-
ment; any concomitant disease that would prevent the exe-
cution of the experimental interventions; any other
rheumatological disease; serious complications of RA; non-
stable disease; and intra-articular infiltrations or other pro-
cedures, such as physical therapy or corrective surgeries,
and some contraindication vibrating platform. Participants
were advised to avoid adjusting their drug therapy and the
use of analgesics for pain.

2.2. Intervention

2.2.1. Experimental Interventions. All the volunteers per-
formed the three experimental interventions at the same
time of each day, in a controlled thermoneutral environment
(means of 22 ± 1°C and 53 ± 2% relative humidity).

(1) Control. Participants remained rested for five minutes in
a seated position with feet on the floor and hands in the
supine position on the lower limbs. There was no WBV
stimulus (Figure 3(a)).

(2) Sham. The participants were positioned for five minutes
continuously in the push-up position with their hands apart
at a distance of 28 cm on the vibrating platform that was dis-
connected, but with a sonorous stimulus mimicking the
WBV (Figure 3(b)).

(3) Vibration. The participants were positioned for five
minutes continuously in the push-up position with their
hands apart at a distance of 28 cm on the vibrating platform
turned on, using the vibratory stimulus intensities of 45Hz,
2mm, and 159.73ms-2. The vibrating platform (FitVibe,
GymnaUniphy NV, Bilzen, Belgium) produced vertical sinu-
soidal vibrations resulting in a simultaneous and symmetri-
cal movement on both sides of the body during exposure. A
horizontal bar at shoulder height was used to avoid trunk
flexion during the intervention and to guarantee an elbow
flexion of 10° (Figure 3(b)). The WBV parameters of fre-
quency (45Hz), amplitude (2mm), and exposure duration
of five minutes were selected in accordance with previous
studies reporting positive outcomes [19, 20, 22, 23].

2.3. Procedures. Prior to all three experimental interventions,
each participant rested for fifteen minutes in a seated posi-
tion with their hands placed in a supine position on the
lower limbs. This verified the resting electromyography of
the FDS muscle. Thereafter, each participant was positioned
in one of the experimental interventions described previ-
ously. At baseline and immediately after the intervention,
the muscle performance of the dominant hand was evalu-
ated using the HS dynamometer (Jamar, Warrenville,
USA). The electromyographic record of the FDS muscle of
the dominant hand was simultaneously recorded using a
portable electromyography data log instrument (Miotec,
Porto Alegre, Brazil). Following the ROM of the wrist,
flexion-extension of the dominant hand was measured using
a universal goniometer (Fibra Cirúrgica, Joinville, Brazil).
All the evaluations were performed by a single blinded
researcher.

2.4. Outcome Measures

2.4.1. Handgrip Strength (HS). Participants were seated with
feet on the floor, with the arm in adduction and elbow flexed
at 90°, forearm in a neutral position, and wrist extension
between 0° and 30°. The dominant hand performed three
repetitions of 3-second maximum HS. There was a 60-
second recovery period between repetitions. HS was deter-
mined by the average of the three peak values [24].

2.4.2. Electromyography (EMGrms). Electromyography of
the FDS muscle of the dominant hand was recorded using
a one-channel portable electromyography. Two passive Ag/
AgCl electrodes (Meditrace, Ludlow Technical Products,
Gananoque, Canada) were positioned on the muscle belly
of the FDS muscle with a fixed distance of 20mm, arranged
perpendicular to the direction of muscle fibers. One ground
electrode was attached to the lateral epicondyle of the
humerus according to the position described by SENIAM
(Surface Electromyography for the Non-Invasive Assess-
ment of Muscles) [25]. The recorded signals were treated
with 10-480Hz band pass butterworth filters for signal
amplitude analysis and to avoid noise. The analog-to-
digital conversion of the signals was performed with a 14-
bit input A/D hardware resolution, sampling frequency of
2 kHz, common rejection module greater than 100 dB,
signal-to-noise ratio less than 3μV, and system impedance

Assessed for
Eligibility (n= 26)

Excluded (n = 5):
Man n = 1;
Presence of nodules
and deformities n = 1;
Another city n = 1;
Withdrawal n = 2; Allocated

n = 21

45 Hz/2 mmPlaceboControl

Post-intervention
n = 21

Pre-
intervention

n = 21

Analyzed
n = 21

Figure 1: Flow of participants through the study.
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of 109 Ohms. The signal was captured by surface-active dif-
ferential sensors and recorded as the Root Mean Square
(RMS); this is a quantitative indicator in the recruitment of
motor units, in μV and the mean frequency in Hz [26].
The electromyography signals were collected in μV, normal-
ized by peak (peak-to-peak) and transformed into % RMS by
software (MiotecSuite 1.0.1065) for data analysis [25].

Both HS and EMGrms were determined concomitantly
by the average of the three repetitions performed before
and after the experimental interventions. The HS frequency
was 3000ms (i.e., 3 s) with the EMGrms analyzed using a
sliding window of within the interval range of 1000-2000ms.

2.4.3. Neural Ratio (NR). NR was calculated from the
EMGrms of FDS divided by the mechanical power (HS). A
lower NR represented greater neuromuscular modifica-
tion [18].

2.4.4. Range of Motion (ROM). The ROM was measured in
degrees from a universal manual goniometer, by a trained
researcher. The fixed arm of the goniometer was placed par-
allel to the longitudinal axis of the proximal end. The mov-
able arm was positioned parallel to the longitudinal axis of
the distal end, with the fulcrum at the axis of the joint. Mea-
surements were made of wrist flexion and extension of the
dominant hand [27].

3. Data Analysis

Data were reported as the mean ± 95%confidence intervals
(CIs). Intraclass correlation coefficients assessed the test-
retest reliability of the HS and electromyography measures.
Shapiro-Wilk’s test determined normality, and Levene for
homogeneity revealed that the data was normally distributed
and homogeneous.

The effects of the interventions were compared by split-
plot arrangement in a randomized block design and Tukey’s
(statistical significance level was set at 5%) test for means
comparison (within-test, between-test, and interaction).
Thus, the within-test column represented the time factor.
The between-test column represented the intervention fac-
tor. The interaction column represented the interaction
(time x intervention). The effect size (eta squared: η2) were
based on the following criteria: <0.25 represented small
effect; between 0.25-0.4, moderate effect; and >0.4, large
effect [28].

3.1. Sample Size. The sample size was calculated using the G-
Power® software (Franz Faul, Universitat Kiel, Germany). A
sample size of eighteen participants was required for an
error probability set at 5%, a power of 80%, and an effect size
of 0.64 this was obtained from a previous work evaluating
the dose-response of acute WBV exercise in the push-up
position on neural ratio in untrained healthy women [19].
Nevertheless, we considered an attrition rate of 15%; the
sample size had twenty-one participants (7 blocks of 3 × 3
participants). There was no participant dropout; therefore,
it was not necessary to analyze the data by intention to treat.

4. Results

The ICC test-retest reliability of HS, EMG activity of the
FDS muscle, and ROM were 0.984, 0.778, and 0.899,
respectively.

4.1. Characteristics of Participants. Table 1 presents the vol-
unteers characteristics concerning age, anthropometric
parameters, identification of the medical diagnosis’s period,
and erythrocyte sedimentation rate test to verify the inflam-
matory activity disease.

4.2. Primary Outcome

4.2.1. NR. NR was similar in the three experimental inter-
ventions at baseline [baseline-sham: 3.68 (95% CI: 2.67-
4.68), control: 3.88 (95% CI: 2.91-4.85), and vibration: 3.42
(95% CI: 41-4.43)]. Despite no within-interventions
(p = 0:0611, F = 3:94, η2 = 0:66, power = 0:99) and interac-
tion (p = 0:1907, F = 1:69, η2 = 0:50, power = 0:96) effect,
between-interventions analyses (p = 0:0003, F = 8:86, η2 =
0:85, power = 1:00) showed that acute WBV exercise
reduced the NR compared with the sham and control

Table 1: Characteristics of participants.

Characteristic (n = 21) Mean (95% CI)

Age (yr) 54 (48.99-59.01)

Body mass (kg) 72.9 (66.98-78.82)

Height (m) 1.59 (1.56-1.62)

BMI∗ (kg/m2) 28.6 (26.69-30.51)

Diagnostic time (yr) 8 (5.36-10.64)

Erythrocyte sedimentation rate (mm/h) 24.8 (18.43-31.17)

SODA∗ 106 (104.97-107.03)

BMI∗: Body Mass Index; SODA∗ : Sequential Occupational Dexterity
Assessment for Patients with Rheumatoid Arthritis.
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[after-sham: 3.63 (95% CI: 2.58-4.67), control: 3.71 (95% CI:
2.74-4.68), and vibration: 2.74 (95% CI: 1.79-3.69)]
(Figure 4).

4.3. Secondary Outcomes

4.3.1. HS. HS was similar in the three experimental interven-
tions at baseline. Despite no between-interventions effect,
there was interaction effect and within-interventions analy-
ses showed that immediately after the WBV exercise, the
HS augmented was approximately 11% compared with the
baseline and other experimental interventions (sham and
control) (Table 2).

4.3.2. EMGrms. EMGrms was similar in the three experimen-
tal interventions at baseline. Despite no within-interventions
and interaction effect, the between-interventions analyses
demonstrated that acute WBV exercise decreased significantly
the EMGrms activity of FDS muscle compared with sham and
control (Table 2).

4.3.3. ROM.Wrist flexion-extension ROM was similar in the
three experimental interventions at baseline. Within and
between-interventions and interaction analyses showed that
acute WBV exercise increased both wrist ROM compared
with baseline and the other experimental interventions
(sham and control) (Table 2).

5. Discussion

The current findings suggest that acute WBV exercise
directly under the hands promotes favorable handgrip neu-
romuscular modifications in women with stable RA. This
is in agreement with de Souza et al. [19], who reported that
in healthy individuals, the push-up position performed on
WBV machine promoted an acute positive effect on HS
accompanied by a lower index of neural efficiency, providing
a better efficiency of muscle contraction. Thus, WBV repre-
sents a possibility of preparatory activity with immediate
effect to be used prior to rehabilitation session of stable RA
patients. Therefore, to understand the neuromuscular mod-
ifications provided by this exercise in this population, first,
the effects of acute WBV exercise on HS muscular perfor-
mance concomitant with the neuromuscular activity of the
FDS muscles require consideration.

The HS of the current participants was 20.03 kg at base-
line in all experimental interventions, representing 62% of
the predicted HS in middle-aged and elderly Brazilians.
Thus, the disease resulted in a 33 to 37% impact on HS
[29, 30]. Considering the measurement properties of the
HS assessment, the minimum clinically important difference
(MCID) scores for women with carpometacarpal osteoar-
thritis, a chronic disease which results in deterioration of
the joint surfaces bone reformation such as RA, are approx-
imately 0.84 kg (affected side) and 1.12 kg (unaffected side)
[30, 31]. Although the MCID was estimated for another
chronic disease group, the score obtained in our study was
2.39 kg (1.88–2.90) with WBV, suggesting an important clin-
ical change. This is in agreement with Brorsson et al. [11],
who found that patients suffering from arthritis are weaker

than healthy individuals in terms of flexion-extension
strength. However, our results, as well as those of Villafañe
et al. [31] and Speed and Campbell [32], showed that
increases of muscle strength in individuals with RA may be
due to neural adaptation and, consequently, greater effi-
ciency elicits motor unit activation. Experiments with sur-
face electromyography showed that women with RA tend
to use higher levels of neuromuscular activation in daily
tasks than healthy women [11], especially during manual
skills involving handgrip. In the present study, we opted to
evaluate the EMGrms of the FDS muscle. This decision
was based on the major muscle group which is responsible
for handshake activity since it helps to provide balance for
the finger flexion arc [15, 16, 33]. Moreover, we decided
for the static push-up position on the vibration platform,
as there is evidence of greater muscle activation in the upper
limb muscles during acute WBV stimulation of this position
[34]. However, in our study, the acute WBV stimulation
reduced muscle activation levels immediately after the
WBV intervention, suggesting that fewer motor units were
required to perform the same handgrip activity.

According to our findings, a single acute WBV exercise
session directly under the hands, in a modified static push-
up position, was able to promote neuromuscular changes
in handgrip in women with RA. We observed that the NR
of the participants was about 3.66% at the baseline in all
experimental interventions. After exposure to the vibration
intervention, there was a reduction of approximately 24.5%
in handgrip NR compared to sham and control interven-
tions. These results demonstrate that a single session of acute
WBV, directly under the hands, promotes greater neuro-
muscular modifications. Corroborating the results of de
Souza et al. [19], which suggested an acute dose-dependent
WBV stimulus in a static push-up position potentiates hand-
grip myogenic response; additionally, the mechanism under-
lying this positive effect seems to be related to the
stimulation of the neuromuscular system and subsequent
postactivation potentiation, leading to neural enhancement.

Although there are few publications in the context of the
rehabilitation of patients with stable RA involving WBV and
upper limbs. It is noteworthy that studies generally evaluated
the effect of training with WBV, focused on the lower limbs
[3, 13, 35]. Regarding the changes and consequent neuro-
muscular modifications of the hands, to our knowledge,
there are no studies that have reported this in RA popula-
tion. However, Krol et al. [34] and other researches
demonstrated an increase in the neuromuscular efficiency
and concluded that vibration exercise can be useful to
stimulate the neuromuscular system in healthy popula-
tion [14, 19, 20, 36].

The current findings support the concept that the acute
WBV exercise potentiates the neural response. The following
protocol description reproduces information already
reported elsewhere [15, 19]. WBV exercise is reported to
represent an alternative exercise for the treatment of RA
due to its ability in promoting lower joint impact and greater
neuromuscular modifications. Previous studies have
reported satisfactory results of using WBV training that
ranged from 24Hz, 2mm, acceleration [45.43m·s-2] to
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30Hz, 3mm, acceleration [106.48m·s-2]. Moreover, the
stimulus duration varied from 10.5 minutes to 15 minutes
intermittently [13, 35, 36]. Nevertheless, the current WBV
parameters (frequency: 45Hz; amplitude: 2mm, acceleration:
159.73m·s-2) of 5 minutes continuous WBV were selected
based on previous research [19, 20, 22, 23]. Additionally, all
participants adhered to the 5-minute protocol and successfully
completed the vibration without discomfort.

In the context of joint damage in patients with RA, one
of the most affected is the wrist (78%) [37]. Thus, usually,
a hand’s joints present reduction in muscle contraction, fir-
ing rate of motor units, ROM, and mobility, as well as
change in the muscle fiber type [38]. In the current study,
the wrist flexion ROM in the RA group was on average
11.8° lower than normal values [27], and after acute WBV
exposure, there was an increase around 4.29° (compared
with a sham test showing an increase around 3.39°). Regard-
ing the wrist extension ROM, the RA group presented a
19.4° value lower than the predicted values [27], which
increased after acute WBV (compared with sham test show-
ing an increase around 4.15°).

The rationale for WBV exercise as a preparatory activity
before training or rehabilitation sessions is based on the pre-
mise of promoting “active muscle warm-up” [22, 23]. Active
warm-up consists of low-intensity movements that are effec-
tive in raising body temperature, promoting tissue warm-up,
and producing a variety of improvements in physiological
functions [39]. Therefore, warm-up activities are necessary
to prepare the body for vigorous physical activity since they
increase performance and decrease the risk of muscle injury.
Moderate intensity of active warming and passive warming
can increase muscle performance by 3 to 9% [39]. In addi-
tion, WBV exercise is purported to increase neuromuscular
spindle activity, triggering a reflex-stretch response [40],
and consequently creates a small and rapid change in muscle
length [41].

In the literature, few studies have investigated the effects
of acute WBV on ROM that have focused mainly on the
lower limb flexibility [42, 43]. According to Oliveira et al.
[44], joint ROM is related to functionality and is a determi-
nant factor of morbidity and a mortality predictor in RA
patients. Thus, we considered relevant to investigate the
effect of acute WBV exercise applied directly to the hand
on the ROM of the wrist flexion-extension. The current data
suggests that vibratory exercise significantly improved the
wrist ROM, probably triggering small and rapid modifica-
tions in muscle length. However, this requires further inves-
tigation to substantiate this proposition.

Inevitably, this study had some inherent limitations. As
this investigation was only performed with RA women, a
certain degree of caution should be acknowledged. However,
the statistical analyses demonstrated a large effect size
within-between-interventions, as well as interaction for
NR. The blood analysis of Erythrocyte Sedimentation Rate
and the SODA instrument demonstrated that the studied
population was not in the inflammatory activity phase of
the disease and presented satisfactory manual dexterity.
Moreover, because specific conditions were evaluated, such
as platform position, stimulus duration, frequency, and

amplitude, and EMGrms analyses of only one muscle group;
therefore, the findings of this study cannot be extrapolated
to other parameters of acute WBV and cannot be general-
ized to another population.

6. Conclusions

In conclusion, acute WBV exercise, directly under the hands,
in the push up position, promotes neuromuscular modifica-
tions, suggesting positive impact on neuromuscular perfor-
mance and wrist ROM, with concomitant reduction in
handgrip NR in women with stable RA. As clinical rele-
vance, acute WBV exercise under the hands of stable RA
patients suggests positive effects on aspects of structure and
function related to manual activities that involve object
manipulation. Thus, acute WBV exercise may be a comple-
mentary and alternative preparatory exercise for the treat-
ment of patients with musculoskeletal dysfunction.
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