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Abstract: This study proposes a novel method for detection of aflatoxin B1 (AFB1) in peanuts using
olfactory visualization technique. First, 12 kinds of chemical dyes were selected to prepare a colorimet-
ric sensor to assemble olfactory visualization system, which was used to collect the odor characteristic
information of peanut samples. Then, genetic algorithm (GA) with back propagation neural network
(BPNN) as the regressor was used to optimize the color component of the preprocessed sensor
feature image. Support vector regression (SVR) quantitative analysis model was constructed by
using the optimized combination of characteristic color components to achieve determination of
the AFB1 in peanuts. In this process, the optimization performance of grid search (GS) algorithm
and sparrow search algorithm (SSA) on SVR parameter was compared. Compared with GS-SVR
model, the model performance of SSA-SVR was better. The results showed that the SSA-SVR model
with the combination of seven characteristic color components obtained the best prediction effect.
Its correlation coefficients of prediction (RP) reached 0.91. The root mean square error of prediction
(RMSEP) was 5.7 µg·kg−1, and ratio performance deviation (RPD) value was 2.4. The results indicate
that it is reliable to use the colorimetric sensor array with strong specificity for the determination of
the AFB1 in peanuts. In addition, it is necessary to properly optimize the parameters of the prediction
model, which can obviously improve the generalization performance of the multivariable model.

Keywords: peanut; olfactory visualization technique; aflatoxin B1; feature optimization; determination

1. Introduction

Peanuts are an import cash crop and oil crop, which are grown on a large scale in all
countries in the world [1]. Peanuts are rich in plentiful nutrients such as fat and protein [2].
Finished peanuts are prone to mold contamination and mildew during the circulation and
storage process. Among them, aflatoxin is a highly toxic and carcinogenic compound,
which is often detected in moldy peanuts. Aflatoxin B1 (AFB1) is the most toxic [3]. It is
currently the most toxic of known molds and poses a high health threat to humans and
animals. Humans who ingest even small amounts of AFB1 can be poisoned and cause
liver damage [4]. Therefore, AFB1 is considered to be one of the most typical carcinogens.
The limit of the AFB1 in peanut and its products in China is 20 µg·kg−1. After peanuts
are contaminated by the AFB1, the value of peanuts will be greatly reduced, and more
importantly, the edible safety of peanuts and their products will be affected. Therefore, it is
essential to seek a suitable technique for quantitative determination of the AFB1 in peanuts.

The traditional detection methods of the AFB1 in food mainly include thin layer chro-
matography [5–7], high performance liquid chromatography (HPLC) [8–10], and immunological
methods [11,12]. Among them, the reversed-phase HPLC method using a fluorescence detector
has become the main method for detecting the AFB1 [13]. Although the HPLC method has
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its unique advantages, the preprocessing of sample detection is more complicated and the
detection time is long [14]. Meanwhile, the above-mentioned traditional detection methods
are all laboratory physical and chemical analysis methods, which are time-consuming,
arduous, and costly. These methods are difficult to meet the needs of on-site analysis and
detection of the AFB1 in modern grains. Therefore, it is very essential to develop a detection
method with high efficiency, high accuracy, and strong pertinence to realize the quantitative
determination of the AFB1 in peanuts.

Colorimetric sensor technology is a novel nondestructive testing technology [15].
It is a senor application technology based on odor sensing developed by Suslick et al. [16].
The method mainly realizes the attribute analysis of the sample by analyzing the color change in
the reaction between the color-sensitive material and the experimental sample. In recent years,
colorimetric sensor technology has been widely used [17], such as rice quality analysis [18–20],
tea quality analysis [21–24], and black tea fermentation process detection [25]. It has also been
successfully applied to the identification of mildew stage of mildew wheat [26]. However, there
are few reports on the quantitative determination of mycotoxins in cereals at home and
abroad. In addition, the core of colorimetric sensor technology is the preparation of color-
sensitive sensor arrays with strong specificity. However, there are relatively few related
studies on the preparation of sensors, and there is a lack of reliable theoretical guidance.
Most of the existing studies are based on experience or through trials to select a suitable
sensor array.

Therefore, in this study, some chemical dyes were selected according to the analysis
results to prepare specific sensor array. The characteristics of the sensor image data were
mined by using the chemometrics methods, and the nonlinear detection was constructed to
realize the quantitative determination of the AFB1 content in peanuts by the colorimetric
sensor technology.

2. Results
2.1. Division of the Sample Set

In this study, the sample set was divided into two parts: calibration set and prediction
set. First, the GA-BPNN algorithm was used to optimize the color sensor array. Considering
the randomness of the results of the optimization algorithm, this study independently ran
the GA-BPNN algorithm 50 times. In the process of optimizing variables, the sample set
was randomly dived into calibration set and prediction set with a partition ratio of 3:1.
The second step is to construct an analytical model of SVR using the optimization variables.
In order to make the model have better prediction performance, it is more reasonable to
divide the calibration set and the prediction set. The specific division rules are as follows:
the AFB1 values of all 100 samples were arranged in ascending order, and then a group of
four samples was randomly selected in order, one of which was put into the prediction set,
and the other three were put into the calibration set. This partition method can ensure that
the sample features of the calibration set include the sample features of the prediction set.
Table 1 show the division of samples during SVR construction. As can be seen from Table 1,
there is no significant difference between the average value and standard deviation of the
AFB1 of the peanut samples in the calibration set and the prediction set.

Table 1. The AFB1 values measurement result in the calibration and prediction sets.

Subsets Sample Number Units Minimum Maximum Mean Standard Deviation

Calibration set 75 µg kg−1 0.60 56.0 16.2 13.8
Prediction set 25 µg kg−1 0.71 46.5 15.9 13.6

2.2. Response Results of Colorimetric Sensor Array

Figure 1 shows the characteristic image of the colorimetric sensor array of peanut
samples with different AFB1 content after pretreatment. As can be seen from Figure 1, there
are significant differences in sensor feature image of peanut samples with different AFB1
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contents. Therefore, we can infer that during the moldy process of peanuts, the composition
of the volatile substances produced by the peanuts has undergone significant changes,
and the content of indicative volatile substance has also undergone specific changes at
different stages. These changes are easily detected by senor arrays and are reflected by color
differences. It can also be observed from Figure 1 that some color sensitive spots with large
color changes can be clearly distinguished by the naked eye. However, with intensification
of the mildew process, the color saturation of some points becomes smaller and smaller.
This directly indicates that the colorimetric sensor prepared in this study can visualize the
changes in volatile substances during peanut mildew. However, some of the color sensitive
spots show little difference in the adjacent mildew stage. It may be that some substances
release fewer volatile substances or change less during the moldy stage of peanut, resulting
in less obvious color reaction. Consequently, it is reliable to achieve determination of the
AFB1 in peanut using the colorimetric sensor array. The results presented in Figure 1 can
also indicate that there may be some information in all color sensitive points. Therefore,
before the construction of the SVR detection model, it is necessary to perform further
feature processing on the color components of the difference image before and after the
reaction of the sensor.
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Figure 1. Difference image of peanut colorimetric sensor with different mildew degree.

2.3. Feature Optimization Results Based on GA-BPNN

Figure 2 shows that statistics of the selected times of each color component after
the GA-BPNN algorithm runs independently for 50 times. The results in Figure 2 show
that all feature color components have been selected, and the color components with the
lowest frequency have been selected 10 times. The result indirectly shows that the GA
retains more variables in each variable optimization process, which may have a certain
relationship with the GA optimization criteria. It can be clearly observed from Figure 2 that
multiple characteristic color components are selected frequently. Especially for the 12th,
23rd, and 28th color components, their cumulative times all exceed 40. In each variable
optimization process, three color components are almost selected, which indicates that
three color components may effectively capture the changes in the AFB1 in moldy peanuts.
They can be used as important color components to construct the AFB1 model of moldy
peanuts. On the contrary, compared with most color components, some color components
have less cumulative frequency during 50 independently runs of the GA-BPNN, such as the
6th, and 26th color components. These color components have relatively little correlation
with the content of the AFB1 in moldy peanut. Therefore, in the later modeling process,
these variables can be eliminated to improve the stability of the model.
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Figure 2. Statistics of the selected times of each color component after the GA-BPNN algorithm was
run independently 50 times.

From the further analysis in Figure 2, it can be found that there are 13 color components
with a frequency of 30 and above, which shows that these color components are closely
related to the change in the AFB1 content in moldy peanuts. If these variables are used
as the input of the model to rebuild the model, the computational difficulty in the model
operation process will be greatly reduced and the prediction accuracy of the model will be
further improved. Among them, compared with other color components, there are seven
color components more frequently, reaching more than 35 times. They are the 3rd, 12th, 19th,
23rd, 25th, 28th, and 32th color components in order. Among the seven color components,
there are three components whose cumulative frequency exceeds 40 times, followed by the
12th, 23rd, and 28th color components. According to the above analysis results, three color
components combinations based on 13 color components, 7 color components, and 3 color
components are used as model input. Meanwhile, the performance of three models with
different input variables is compared.

3. Discussion

Table 2 shows the prediction results of two the SVR models based on different feature
combinations. It is clear from the results of the GS-SVR model in Table 2 that the Case 2
prediction model obtains the best prediction performance. Although Case 3 mode selected
the least feature color components, the performance of the GS-SVR model established by
Case 3 mode was lower than of the GS-SVR model obtained by Case 1 and Case 2 mode.
The fact indicates that the intrinsic features of the original data cannot be retained to a
certain extent due to too few characteristic variables selected for modeling, which greatly
reduces the prediction accuracy of model. Figure 3 shows the process of searching the
optimal C and g value optimization of the SVR model based on the RBF kernel function
in Case 2 mode. When C = 1.1, g = 0.50, the model achieved the best results, where
RMSEP = 5.8, RP = 0.90, and RPD = 2.3.
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Table 2. Results of the different SVR models based on different combinations of color components.

Model Mode Number of Variables Parameter Combination
Calibration Set Validation Set

RC RMSEC RP RMSEP RPD

GS-SVR

Case 1 13 C = 0.50
g = 0.18 0.91 5.7 0.89 6.1 2.2

Case 2 7 C = 1.1
g = 0.50 0.94 4.5 0.90 5.8 2.3

Case 3 3 C = 5.7
g = 0.35 0.81 8.0 0.81 8.0 1.7

SSA-SVR

Case 1 13 C = 17.9
g = 1.5 0.94 4.7 0.91 5.8 2.3

Case 2 7 C = 50.3
g = 1.56 0.96 3.4 0.91 5.7 2.4

Case 3 3 C = 85.8
g = 11.6 0.86 7.1 0.75 9.2 1.5
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Figure 3. Three-dimensional view of C and g parameter is searched in the SVR using GS method.

From the further analysis in Table 2, it can be found that compared with the GS-SVR
analysis model, the SSA-SVR has achieved better prediction results overall. The result may
be related to the characteristics of the GS and the SSA. The grid search generally consists of
two steps. The first step is to set a wide search area in advance and ensure a large stride
length. The second step will narrow the step size and search scope on the basis of the first
step, so as to better and more accurate optimal solution. The search process can effectively
reduce the model running time and calculation difficulty. However, since the objective
function is generally non-convex, it is very likely to obtain a local optimum rather than
a global optimum. The SSA has high performance search capability, which enables it to
search the potential regions of the global optimum, and can effectively avoid the problem
of falling into the local optimum. Thus, the model achieves better generalization ability
than the GS-SVR model.

For the SSA-SVR model, the results in Table 2 indicate that the SSA-SVR model
obtained in the Case 2 mode performs the best. In addition, the performance of the SSA-
SVR model established in Case 3 mode is lower than the performance of the SSA-SVR
model established Case 1 and Case 2, which is consistent with the performance result of
the GS-SVR model in different modes. It can be seen that although the model structure
can be simplified by using fewer feature variables for modeling, the overall prediction
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accuracy of the SVR model is reduced to a certain extent. Considering the comprehensive
performance of the model, we believe that the SSA-SVR model established in Case 2 mode
is the best model. Figure 4 shows the scatter plot of the prediction results and actual
measurement results of the best SSA-SVR model in the calibration set and prediction set.
In the model, RP = 0.91, and RPD = 2.4. In addition, it can also be seen from Figure 4 that the
best SSA-SVR model does not have a very good prediction effect on peanut samples with
higher AFB1 concentrations. We believe that this may be related to the actual measurement
error caused by human factors during the physical and chemical determination of AFB1
in peanuts. Therefore, accurate experimental data are the premise to ensure good model
calibration. However, this does not affect the purpose of our current study.
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Furthermore, there are some studies on the application of olfactory sensors to realize
the quality monitoring of mildew grain in the existing literature. For example, Gobbi et al.
used electronic nose to detect high fumonisin content and to predict fumonisin concentra-
tion in maize. The electronic nose could correctly recognize high and low fumonisin content
of maize cultures and provide a fair quantitative estimation [27]. Paolesse et al. studied the
possibility of the application of electronic nose for an early detection of volatile compounds
in infected samples and to discriminate between non-infected and infected samples with
two different species of fungi (Penicillium chrysogenum and Fusarium verticillioides). The re-
sults showed that the electronic nose has certain ability to track the changes in headspace
caused by fungal contamination [28]. Leggieri et al. evaluated the potential use of an elec-
tronic nose for rapid identification of mycotoxin contamination above legal limits in maize
samples. The results confirmed the application of e-nose, combined with ANN, as a reliable
assessment for AF and FB contamination in maize [29]. The above studies proved the po-
tential of olfactory sensor technology in grain mildew quality monitoring. However, most
of these studies are still in the level of qualitative analysis or semi-quantitative analysis,
and do not realize quantitative analysis in a real sense. In our current study, we achieved
the quantitative determination of AFB1 in peanut using olfactory visualization technology.
Although the model results need to be improved, they directly demonstrate the potential
of olfactory sensor technology for quantitative analysis of mycotoxin contamination levels
in cereals.



Molecules 2022, 27, 6730 7 of 12

4. Materials and Methods
4.1. Moldy Peanut Sample Preparation

Fresh peanuts (Baisha, Liaoning, China) were purchased from a large local market,
a total of 10 kg. The purchased peanuts were spread flat on two metal trays. The two
trays were then placed in a constant temperature and humidity equipment (HWS-250W,
Tianjin Hongnuo Instrument Co., Ltd., Tianjin, China). Here, the temperature and relative
humidity of the HWS-250W were set to 28 ◦C and 80%, respectively. Daily appropriate
samples were taken for physical and chemical experiments to determine the content of the
AFB1. Starting from the determination of the AFB1 in peanuts (day 5), 20 peanut samples
were taken from different position on the two trays every other day, and each sample was
10 g. After the 8th day, the degree of mildew in the peanut sample was visible to the naked
eye, and the sampling was terminated. In this way, a total of 100 peanut samples with
different AFB1 contents were collected in the experiment.

4.2. Determination of the Aflatoxin B1

For each peanut sample collected, the peanut sample was tested for the AFB1 in
accordance with the second method in GB 5009.22-2016.

4.3. Colorimetric Sensor Array Preparation

Based on the team’s previous research experience, some appropriate chemical dyes
were selected to prepare a colorimetric sensor array to capture the changing information of
moldy peanuts. The names of the porphyrin materials used to prepare the sensor arrays
are listed in Table S1.

The substrate prepared by the colorimetric sensor array is polyvinylidene fluoride (PVDF)
membrane (Millipore, USA). The specific manufacturing process is as follow: (1) PVDF was cut
into a rectangular base material of 4 cm × 3 cm for standby. (2) Dichloromethane was used as
the solvent, and 12 kinds of porphyrin materials were dissolved in it respectively to obtain
2 mg/mL solution. After 10 min of ultrasound, the solution was kept in a cool dark place
for reserve. (3) One microliter of solution was extracted from 100 mm × 0.3 mm capillaries
and dotted on hydrophobic PVDF with array template assist. After standing for a period of
time, the colorimetric sensor array can be obtained.

4.4. Sensor Data Collection and Preprocessing

Figure S1 shows the data acquisition and data preprocessing process of the olfactory
visualization system. First, a scanner was used to acquire the image before the colorimetric
sensor reacts with the sample. Then, a 10 g peanut power crushed by a multifunctional
crusher (BJ-150, Deqing Baijie Electric Appliance Co., Ltd., Deqing, China) was put into
the prepared petri dish. Next, the peanut sample and colorimetric sensor were sealed in
a petri dish using plastic wrap. After the sample reacted with the sensor for 16 min, the
sensor array was removed. Finally, the image information after the reaction between the
colorimetric sensor and the sample was obtained by using the flat plate scanner.

MATLAB software (Matlab R2016a, MathWorks, Natick, MA, USA) was used to filter
the image information of colorimetric sensor array before and after the reaction. Then, the
gray mean values of red (R), green (G), and blue (B) components within the radius of 12
pixels around the colored sensitive points were extracted, respectively, and normalized
to 0–255. Then, the gray difference before and after the change in all kinds of sensitive
points is calculated. In this way, three color difference components ∆R, ∆G, and ∆B of each
corresponding color sensitive point can be obtained. Finally, the obtained ∆R, ∆G and ∆B
were normalized, and the gray-scale image was superimposed to generate the characteristic
image of the colorimetric sensor. In this study, each colorimetric sensor array had 12 color
sensitive points, and each color sensitive point can obtain 3 color feature components.
Thus, the colorimetric sensor eigenvalues of each peanut sample had 36 color components.
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4.5. Data Analyses Methods
4.5.1. Back Propagation Neural Network

Back propagation neural network (BPNN) is one of the most classic neural network
algorithms, and it is a neural network training system for calculating backpropagation
errors [30]. The main feature of the BPNN network is that the signal is forwarded, and the
error is propagated back. The weights of the network are optimized through iteration to
make the BPNN predicted output consistent with the expected output as much as possible.
In the process of continuous updating and innovation, BPNN algorithm has gradually
formed a huge learning system, which can deal with complex system. It has three main
parts, namely input layer, hidden layer, and output layer. BPNN has a forward pass process
and a back pass process. In the forward pass stage, the signal source is transmitted layer by
layer in turn and finally reaches the output layer. The input signal is processed at each layer
to finally generate the output signal. The result obtained is compared with the expected
output, an error is measured, and then the process of back propagation begins. In the
forward transmission of signals, neurons in each layer are activated and affect the state
of neurons in the next layer. Network weights are not updated during process. In the
back-propagation stage, the output error results will be transmitted back to the input
layer by layer, thereby affecting the weights of each node. BPNN continuously revises the
network weights in the learning process, which is repeated until the preset learning times
and learning errors are reached.

In this study, BPNN needs to initialize some parameter before running. For the BPNN,
the number of hidden layer neurons: 10; the learning rate: 0.10; the momentum factor: 0.95;
the initial weight: 0.30; the minimum root mean square error: 0.0010; and the maximum
number of training times: 100.

4.5.2. Genetic Algorithm

Genetic algorithm (GA) is an intelligent optimization algorithm based on the survival
of the fittest genetic mechanism in nature [31]. The characteristic of genetic algorithm is
that it operates directly with no objects. Unlike some algorithms, it has no constrains on
derivation and continuity of function. During the whole running process, it can adjust the
search direction spontaneously, and there is no definite search direction. These properties
make the algorithm have better global optimization ability. In the GA algorithm, population
and individual are important concepts. A population represents a collection of solution to
a problem. Individuals form a population through some genetic coding. Each individual
undergoes genetic manipulations such as replicative mutation. The operation process of
GA algorithm is as follows: (1) Firstly, the maximum number of iterations and the initial
count of evolutionary iterators are set, the number of populations are randomly generated
as the initial population, and the fitness of each individual in the population is calculated.
(2) The selection operation is performed on the population, and the optimized individuals
are inherited to the next generation through the new individuals generated by the pairing
and crossover, and the quality of the optimized population is continuously updated and
iteratively updated. Cross operation is performed on the species population to generate
new offspring. (3) The next generation group is obtained by updating the group with
mutation operation. (4) Repeat the above operations. When the counter number reaches
the maximum number of iterations, the individual with the greatest fitness obtained in the
evolution process is used as the optimal solution output, and the calculation is terminated.

In this study, The GA is used for feature optimization in the first step of colorimetric
sensor model construction. Taking into account the randomness of the GA, the GA algo-
rithm is run 50 times to eliminate the effect of randomness on the optimization results.
Here, the GA parameters are set as follows: the population size is set to 20, the crossover
probability and the mutation probability are set to 0.70 and 0.10, respectively, and the
maximum number of iterations is set to 100.
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4.5.3. Support Vector Regression

Support vector regression (SVR) is a promotion of support vector machine (SVM),
which is specially used to deal with regression analysis problems [32]. For nonlinear re-
gression problems, SVR mainly maps the input sample space to a high-dimensional feature
space by introducing an appropriate kernel function, and then constructs a regression
estimation function in this new space. In other words, it is trying to find an optimal classifi-
cation hyperplane so that the error of all training samples from the optimal hyperplane
is minimized. The SVR algorithm reduces the estimation problem to a convex quadratic
programming problem with linear equality constraints and linear inequality constraints,
which can ensure the global optimality of the algorithm. The SVR algorithm is based on
modern statistics, mainly for small samples, and its optimal solution is based on limited
sample information. From this point of view, the use of SVR to build the model in this
study is very suitable.

In this study, radial basis function (RBF) is used as the kernel function, and the penalty
coefficient C and RBF kernel function parameter g of the SVR are optimized by using the
five-fold cross-validation combined with grid search.

4.5.4. Parameter Optimization Algorithm

Grid search (GS) is the simplest and most widely used hyperparameter search al-
gorithm [33]. The method optimizes the estimated function parameters through a cross-
validation method to achieve the optimal learning algorithm.

Sparrow search algorithm (SSA) is an intelligent optimization algorithm proposed
in 2020 [34]. Sparrows are omnivorous gregarious birds. Compared with other birds,
sparrows are relatively intelligent and have better memory. In daily life, sparrows are
divided into producers and beggars. The producers actively seek food, while the beggars
obtain food from the producers. Through this strategy of producers and beggars, sparrows
are able to obtain food to survive. Inspired by the foraging behavior of sparrows, the
specific optimization process of the algorithm is shown in Figure 5.

In this study, C and g in the SVR model are mainly optimized., and the model results
are compared. Here, when the GS optimizes the parameters C and g of the SVR, their value
ranges are 2−10,2−9.5, . . . , 29.5, 210. When the SSA optimizes the parameters C and g of the
SVR, the population size is 20 and the maximum number of iterations is 100. The value
range of C is set to 0.001–100, and the value range of g is set to 0.0010–1000.

4.5.5. Model Evaluation

In this study, in order to evaluate the performance of the established multiple regres-
sion model, correlation coefficient of calibration (RC), correlation coefficient of prediction
(RP), root mean square error of calibration (RMSEC), and root mean square error of predic-
tion (RMSEP) are mainly used. In addition, in order to standardize the prediction accuracy,
the ratio performance deviation (RPD) of the SSA-SVR model is calculated. When the RPD
value is less than 1.4, the prediction performance of the model is considered to be poor.
Their specific calculation formula is as follows:

RMSEC =

√
∑Ncal

i=1 (yi − ỹi)
2

Ncal
(1)

RC =

√√√√1 − ∑Ncal
i=1 (yi − ỹi)

2

∑Ncal
i=1 (yi − yi)

2 (2)

RPD =
SD

RMSEP
(3)

In the above formula, yi, ỹi and yi represent the measured AFB1 value, the predicted
AFB1 value and the average AFB1 value in the calibration set, respectively. Ncal is the
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number of samples of the corresponding data set. Similarly, the values of RMSEP and RP
can be calculated. In the third formula, SD is the standard deviation of the AFB1 values of
all peanut samples in the prediction set.
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Figure 5. The specific flow chart of the SVR prediction model based on SSA.

5. Conclusions

In this study, a special colorimetric sensor array was prepared for the indicative charac-
teristic volatile substances in the process of peanut mold, which was used for determination
of AFB1 in peanut. The GA-BPNN was employed to select the feature combinations of the
sensor, the optimal characteristic color components are obtained; the SVR model of optimal
combination of different color components is established, and the effects of the GS and the
SSA optimization algorithm on the SVR parameter optimization are compared combine.
The results of the study show that compared with the GS-SVR model, the SSA-SVR has
better prediction performance. The SSA-SVR model with seven characteristic color compo-
nents obtains the best prediction results. Its RP reaches 0.91, and the RPD value is 2.4. This
study has shown that it is reliable to achieve the quantitative determination of the AFB1
in peanut by colorimetric sensor technology combined with appropriate stoichiometry
method. This research can provide another technical method for quantitative and on-site
detection of mycotoxins in peanut and other cereals during storage.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27196730/s1, Table S1: The names of porphyrin materials
used to prepare colorimetric sensor arrays. Figure S1: Data acquisition and pretreatment process of
the olfactory visualization system.

https://www.mdpi.com/article/10.3390/molecules27196730/s1
https://www.mdpi.com/article/10.3390/molecules27196730/s1
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